Parallel Multilevel Algorithms for
Multi-constraint Graph Partitioning

*

Kirk Schloegel, George Karypis, and Vipin Kumar

Army HPC Research Center
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455
(kirk, karypis, kumar)@cs.umn.edu

Abstract. Sequential multi-constraint graph partitioners have been de-
veloped to address the load balancing requirements of multi-phase simu-
lations. The efficient execution of large multi-phase simulations on high
performance parallel computers requires that the multi-constraint par-
titionings are computed in parallel. This paper presents a parallel for-
mulation of a recently developed multi-constraint graph partitioning al-
gorithm. We describe this algorithm and give experimental results con-
ducted on a 128-processor Cray T3E. We show that our parallel algo-
rithm is able to efficiently compute partitionings of similar edge-cuts as
serial multi-constraint algorithms, and can scale to very large graphs. Our
parallel multi-constraint graph partitioner is able to compute a three-
constraint 128-way partitioning of a 7.5 million node graph in about 7
seconds on 128 processors of a Cray T3E.

1 Introduction

Algorithms that find good partitionings of highly unstructured and irregular
graphs are critical for the efficient execution of scientific simulations on high
performance parallel computers. In these simulations, computation is performed
iteratively on each element of a physical (2D or 3D) mesh, and then some in-
formation is exchanged between adjacent mesh elements. Efficient execution of
these simulations requires a mapping of the computational mesh to the proces-
sors such that each processor gets a roughly equal number of elements and the
amount of inter-processor communication required to exchange the information

* This work was supported by DOE contract number LLNL B347881, by NSF
grant CCR~9972519, by Army Research Office contracts DA/DAAG55-98-1-0441, by
Army High Performance Computing Research Center cooperative agreement num-
ber DAAHO04-95-2-0003/contract number DAAH04-95-C-0008, the content of which
does not necessarily reflect the position or the policy of the government, and no of-
ficial endorsement should be inferred. Additional support was provided by the IBM
Partnership Award, and by the IBM SUR equipment grant. Access to computing
facilities was provided by AHPCRC, Minnesota Supercomputer Institute. Related
papers are available via WWW at URL: http://www-users.cs.umn.edu/~karypis

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 296-BT0] 2000.
© Springer-Verlag Berlin Heidelberg 2000

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 297

between adjacent mesh elements is minimized. This mapping is commonly found
using a traditional graph partitioning algorithm. Even though the problem of
graph partitioning is NP-complete, multilevel schemes [3| [7, 11} [12] have been
developed that are able to quickly find excellent partitionings of graphs that
correspond to the 2D or 3D irregular meshes used for scientific simulations.

Despite the success that multilevel graph partitioners have enjoyed, for many
important classes of scientific simulations, the formulation of the traditional
graph partitioning problem is inadequate. For example, in multi-phase simula-
tions such as particle-in-mesh simulations, crash-worthiness testing, and combus-
tion engine simulations, there exists synchronization steps between the different
phases of the computation. The existence of these requires that each phase be
individually load balanced. That is, it is not sufficient to simply sum up the
relative times required for each phase and to compute a decomposition based on
this sum. Doing so may lead to some processors having too much work during
one phase of the computation (and so, these may still be working after other
processors are idle), and not enough work during another. Instead, it is critical
that every processor have an equal amount of work from each of the phases of
the computation. In general, multi-phase simulations require the partitioning to
satisfy not just one, but a number of balance constraints equal to the number of
computational phases.

Traditional graph partitioning techniques have been designed to balance a
single computational phase only. An extension of the graph partitioning problem
that can balance multiple phases is to assign a weight vector of size m to each
vertex. The problem then becomes that of finding a partitioning that minimizes
the total weight of the edges that are cut by the partitioning (i.e., the edge-cut)
subject to the constraints that each of the m weights are balanced across the
subdomains. Such a multi-constraint graph partitioning formulation as well as
serial algorithms for computing multi-constraint partitionings are presented in

It is desirable to compute multi-constraint partitionings in parallel for a num-
ber of reasons. Computational meshes in parallel scientific simulations are often
too large to fit in the memory of one processor. A parallel partitioner can take
advantage of the increased memory capacity of parallel machines. Thus, an effec-
tive parallel multi-constraint graph partitioner is key to the efficient execution of
large multi-phase problems. Furthermore, in adaptive computations, the mesh
needs to be partitioned frequently as the simulation progresses. In such computa-
tions, downloading the mesh to a single processor for repartitioning can become
a major bottleneck.

The multi-constraint partitioning algorithm in [6] can be parallelized us-
ing the techniques presented in the parallel formulation of the single-constraint
partitioning algorithm [8] as both are based on the multilevel paradigm. This
paradigm consists of three phases: coarsening, initial partitioning, and multilevel
refinement. In the coarsening phase, the original graph is successively coarsened
down until it has only a small number of vertices. In the initial partitioning
phase, a partitioning of the coarsest graph is computed. In the multilevel refine-

298 Kirk Schloegel, George Karypis, and Vipin Kumar

Multilevel K-way Partitioning

Cp &
NS
L

Initial Partitioning Phase

Coarsening Phase
aseyd Bujuasieoosun

Fig. 1. The three phases of multilevel k-way graph partitioning. During the coarsening
phase, the size of the graph is successively decreased. During the initial partitioning
phase, a k-way partitioning is computed, During the uncoarsening/refinement phase,
the partitioning is successively refined as it is projected to the larger graphs. Gy is the
input graph, which is the finest graph. G;+1 is the next level coarser graph of G;. G4
is the coarsest graph.

ment phase, the initial partitioning is successively refined using a Kernighan-Lin
(KL) type heuristic [10] as it is projected back to the original graph. Figure [1]il-
lustrates the multilevel paradigm. Of these phases, it is straightforward to extend
the parallel formulations of coarsening and initial partitioning to the context of
multi-constraint partitioning. The key challenge is the parallel formulation of
the refinement phase. The refinement phase for single-constraint partitioners is
parallelized by relaxing the KL heuristic to the extent that the refinement can
be performed in parallel while remaining effective. This relaxation can cause
the partition to become unbalanced during the refinement process, but the im-
balances are quickly corrected in succeeding iterations. Eventually, a balanced
partitioning is obtained at the finest (i. e., the input) graph. Similar relaxation
does not work for multi-constraint partitioning because it is non-trivial to correct
load imbalances when more than one constraint is involved. A better approach
is to avoid situations in which partitionings becomes imbalanced. This can be
accomplished by either serializing the refinement algorithm, or else by restrict-
ing the amount of refinement that a processor is able to perform. The first will
reduce the scalability of the algorithm and the second will result in low quality
partitionings. Neither of these is desirable. Hence, the challenge in developing a
parallel multi-constraint graph partitioner lies in developing a relaxation of the

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 299

refinement algorithm that is concurrent, effective, and maintains load balance
for each constraint.

This paper describes a parallel multi-constraint refinement algorithm that
is the key component of a parallel multi-constraint graph partitioner. We give
experimental results of the full graph partitioning algorithm conducted on a 128-
processor Cray T3E. We show that our parallel algorithm is able to compute
balanced partitionings that have similar edge-cuts as those produced by the
serial multi-constraint algorithm, while also being fast and scalable to very large
graphs.

2 Parallel Multi-constraint Refinement

The main challenge in developing a parallel multi-constraint graph partitioner
proved to be in developing a parallel multilevel refinement algorithm. This algo-
rithm needs to meet the following criteria.

1. It must maintain the balance of all constraints.
2. It must maximize the possibility of refinement moves.
3. It must be scalable.

We briefly explain why developing an algorithm to meet all three of these crite-
ria is challenging in the context of multiple constraints, and then describe our
parallel multilevel refinement algorithm.

In order to guarantee that partition balance is maintained during parallel re-
finement, it is necessary to update global subdomain weights after every vertex
migration. Such a scheme is much too serial in nature to be performed efficiently
in parallel. For this reason, parallel single-constraint partitioning algorithms al-
low a number of vertex moves to occur concurrently before an update step is
performed. One of the implications of concurrent refinement moves is that the
balance constraint can be violated during refinement iterations. This is because
if a subdomain can hold a certain amount of additional vertex weight without
violating the balance constraint, then all of the processors assume that they can
use all of this extra space for performing refinement moves. Of course, if just two
processors move the amount of additional vertices that a subdomain can hold
into it, then the subdomain will become overweight.

Parallel single-constraint graph partitioners address this challenge by en-
couraging subsequent refinement to restore the balance of the partitioning while
improving its quality. For example, it is often sufficient to simply disallow further
vertex moves into overweight subdomains and to perform another iteration of
refinement. In general, the refinement process may not always be able to balance
the partitioning while improving its quality in this way (although experience has
shown that this usually works quite well). In this case, a few edge-cut increasing
moves can be made to move vertices out of the overweight subdomains.

The real challenge is when we consider this phenomenon in the context of mul-
tiple balance constraints. This is because once a subdomain become overweight
for a given constraint, it can be very difficult to balance the partitioning again.

300 Kirk Schloegel, George Karypis, and Vipin Kumar

—————————————————————————————————————— --110%
-1 5%

Extra
—1 Average

Space

Subdomain A Subdomain B Subdomain C ~ Subdomain D

Fig. 2. This figure shows the subdomain weights for a 4-way partitioning of a 3-
constraint graph. The white bars represent the extra space in a subdomain for each
weight given a 5% user specified load imbalance tolerance.

Furthermore, the problem becomes more difficult as the number of constraints
increases, as the multiple constraints are increasingly likely to interfere with
each other during balancing. Given the difficulty of balancing multi-constraint
partitionings, a better approach is to avoid situations in which the partitioning
becomes imbalanced. Therefore, we would like to develop a multi-constraint re-
finement algorithm that can help to ensure that balance is maintained during
parallel refinement.

One scheme that ensures that the balance is maintained during parallel re-
finement is to divide the amount of extra vertex weight that a subdomain can
hold without becoming imbalanced by the number of processors. This then be-
comes the maximum vertex weight that any one processor is allowed to move
into a particular subdomain in a single pass through the vertices. Consider the
example illustrated in Figure 2l This shows the subdomain weights for a 4-way, 3-
constraint partitioning. Lets assume that the user specified tolerance is 5%. The
shaded bars represent the subdomain weights for each of the three constraints.
The white bars represent the amount of weight that if added to the subdomain,
would bring the bring the total weight to 5% above the average. In other words,
the white bars show the amount of extra space each subdomain has for a partic-
ular weight given a 5% load imbalance tolerance. Figure [2] shows how the extra
space in subdomain A can be split up for the four processors. If each processor
is limited to moving the indicated amounts of weight into subdomain A, it is not
possible for the 5% imbalance tolerance to be exceeded.

While this method guarantees that no subdomain (that is not overweight to
start with) will become overweight beyond the imbalance tolerance, it is overly
restrictive. This is because in general not all processors will need to use up
their allocated space, while others may want to move more vertex weight into
a subdomain than allowed by their slice. Furthermore, as the numbers of either
processors or constraints increases, this effect increases. The reason is that as

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 301

the number of processors increases, the slices allocated to each processor get
thinner. As the number of constraints increases, each additional constraint will
also be sliced. This means that every vertex proposed for a move will be required
to fit the slices of all of the constraints. For example, consider a three-constraint,
ten-way partitioning computed on ten processors. If subdomain A can hold 20
units of the first weight, 30 units of the second weight, and 10 units of the third
weight, then every processor must ensure that the sum of the weight vectors of
all of the vertices that it moves into subdomain A is less than (2, 3, 1). It could
very easily be the case then that this restriction is too severe to allow any one
processor to perform their desired refinement.

It is possible to allocate the extra space of the subdomains more intelligently
than simply giving each processor an equal share. We have investigated schemes
that make the allocations based on a number of factors, such as the potential
edge-cut improvements of the border vertices from a specific processor to a spe-
cific subdomain, the weights of these border vertices, and the total number of
border vertices on each processor. While these schemes allow a greater number
of refinement moves to be made than the straightforward scheme, they still re-
strict more edge-cut reducing moves than the serial algorithm. Our experiments
have shown that these schemes produce partitionings that are up to 50% worse
in quality than the serial multi-constraint algorithm. (Note, these results are not
presented in this paper.)

Our Parallel Multi-constraint Refinement Algorithm. We have developed a par-
allel multi-constraint refinement algorithm that is no more restrictive than the
serial algorithm with respect to the number of refinement moves that it allows,
while also helping to ensure that none of the constraints become overly imbal-
anced. In the multilevel context, this algorithm is just as effective in improving
the edge-cuts of partitionings as the serial algorithm.

This algorithm (essentially a reservation scheme) performs an additional pass
through the vertices on every refinement iteration. In the first pass, refinement
moves are made concurrently (as normal), however, only temporary data struc-
tures are updated. Next, a global reduction operation is performed to determine
whether or not the balance constraints will be violated if these moves commit. If
none of the balance constraints are violated, the moves are committed as normal.
Otherwise, each processor is required to disallow a portio of its proposed ver-
tex moves into those subdomains that would be overweight if all of the moves are
allowed to commit. The specific moves to be disallowed are selected randomly
by each processor. While selecting moves randomly can negatively impact the
edge-cut, this is usually not a problem because further refinement can easily
correct the effects of any poor selections that happen to be made. Except for
these modifications, our multi-constraint refinement algorithm is similar to the
coarse-grain refinement algorithm described in [4].

1 This portion is equal to one minus the amount of extra space in the subdomain

divided by the total weight of all of the proposed moves into the subdomain.

302 Kirk Schloegel, George Karypis, and Vipin Kumar

It is important to note that the above scheme does not guarantee that the bal-
ance constraints will be maintained. This is because when we disallow a number
of vertex moves, the weights of the subdomains from which these vertices were
to have moved become higher than the weights that had been computed with
the global reduction operation. It is therefore possible for some of these subdo-
mains to become overweight. To correct this situation, a second global reduction
operation can be performed followed by another round in which a number of
the (remaining) proposed vertex moves are disallowed. These corrections might
then lead to other imbalances, whose corrections might lead to others, and so
on. We can easily allow this process to iterate until it converges (or until all of
the proposed moves have been disallowed). Instead, we have chosen to simply
ignores this problem. This is because the number of disallowed moves is a very
small fraction of the total number of vertex moves, and so, any imbalance that
is brought about by them is quite modest. Our experimental results show that
the amount of imbalance introduced in this way is small enough that further
refinement is able to correct it. In fact, as long as the amount of imbalance in-
troduced is correctable, such a scheme can potentially result in higher quality
partitionings compared to schemes that explore the feasible solution space only.
(See the discussion in Section Bl)

Scalability Analysis. The scalability analysis of a parallel multilevel (single-
constraint) graph partitioner is presented in [§]. This analysis assumes that (i)
each vertex in the graph has a small bounded degree, (ii) this property is also
satisfied by the successive coarser graphs, and (iii) the number of nodes in suc-
cessive coarser graphs decreases by a factor of 1 + ¢, where 0 < € < 1. (Note,
these assumptions hold true for all graphs that correspond to well-shaped finite
element meshes.) Under these assumptions, the parallel run time of the single-
constraint algorithm is

Tpur = O (g) + O(plogn) 1)

and the isoefficiency function is O(p?logp), where n is the number of vertices
and p is the number of processors. The parallel run time of our multi-constraint
graph partitioner is similar (given the two assumptions). However, during both
graph coarsening and multilevel refinement, all m weights must be considered.
Therefore, the parallel run time of the multi-constraint algorithm is m times
longer, or

nm
Tpar = O (7) + O(pmlogn). (2)
Since the sequential complexity of the serial multi-constraint algorithm is O(nm),
the isoefficiency function of the multi-constraint partitioner is also O(p? log p).
3 Experimental Results

In this section, we present experimental results of our parallel multi-constraint k-
way graph partitioning algorithm on 32, 64, and 128 processors of a Cray T3E.

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 303

We constructed two sets of test problems to evaluate the effectiveness of our
parallel partitioning algorithm in computing high-quality, balanced partitionings
quickly. Both sets of problems were generated synthetically from the four graphs
described in Table [

The purpose of the first set of problems is to test the ability of the multi-
constraint partitioner to compute a balanced k-way partitioning for some rela-
tively hard problems. From each of the four input graphs we generated graphs
with two, three, four, and five weights, respectively. For each graph, the weights
of the vertices were generated as follows. First, we computed a 16-way partition-
ing of the graph and then we assigned the same weight vector to all of the vertices
in each one of these 16 subdomains. The weight vector for each subdomain was
generated randomly, such that each vector contains m (for m = 2,3,4,5) ran-
dom numbers ranging from 0 to 19. Note that if we do not compute a 16-way
partitioning, but instead simply assign randomly generated weights to each of
the vertices, then the problem reduces to that of a single-constraint partitioning
problem. The reason is that due to the random distribution of vertex weights,
if we select any [vertices, the sum of their weight vectors will be around (Ir, Ir,
..., Ir) where r is the expected average value of the random distribution. So the
weight vector sums of any two sets of [vertices will tend to be similar regardless
of the number of constraints. Thus, all we need to do to balance m constraints
is to ensure that the subdomains contain a roughly equal number of vertices.
This is the formulation for the single-constraint partitioning problem. Requiring
that all of the vertices within a subdomain have the same weight vector avoids
this effect. It also better models many applications. For example, in multi-phase
problems, different regions of the mesh are active during different phases of the
computation. However, those mesh elements that are active in the same phase
typically form groups of contiguous regions and are not distributed randomly
throughout the mesh. Therefore, each of the 16 subdomains in the first problem
set models a contiguous region of mesh elements.

The purpose of the second set of problems is to test the performance of the
multi-constraint partitioner in the context of multi-phase computations in which
different (possibly overlapping) subsets of nodes participate in different phases.
For each of the four graphs, we again generated graphs with two, three, four, and
five weights corresponding to a two-, three-, four-, and five-phase computation,
respectively. In the case of the five-phase graph, the portion of the graph that
is active (i.e., performing computations) is 100%, 75%, 50%, 50%, and 25% of
the subdomains. In the four-phase case, this is 100%, 75%, 50%, and 50%. In
the three- and two-phase cases, it is 100%, 75%, and 50% and 100% and 75%,
respectively. The portions of the graph that are active was determined as follows.
First, we computed a 32-way partitioning of the graph and then we randomly
selected a subset of these subdomains according to the overall active percentage.
For instance, to determine the portion of the graph that is active during the
second phase, we randomly selected 24 out of these 32 subdomains (i.e., 75%).
The weight vectors associated with each vertex depends on the phases in which
it is active. For instance, in the case of the five-phase computation, if a vertex

304 Kirk Schloegel, George Karypis, and Vipin Kumar
[Edge-cut I Balance —— Edge-cut Normalized by Metis

1.1

1 444 . H . E: W . 4311 5] |

0.9 I IO NN
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0’\(7/'\‘7/’\’]/’\‘7/ NAYXNYN VN D NYXNYN VN D NYXNYN VAN D
oooeoo(\%oo(\%00&00&000600&00& ook\c’0006000%00090005’00060006000% o°°cjo°&o°°%o°&o°°600060°°60°(\% o°°cjo°oeo°(\%o°(\%oo(\c)oo&c;&eoé\%
VU O D K X o O VU O D K X o O VU D D " X o9 O VU D D " X o 6

mrng1 mrng2 mrng3 mrng4

Fig. 3. This figure shows the edge-cut and balance results from the parallel multi-
constraint algorithm on 32 processors. The edge-cut results are normalized by the
results obtained from the serial multi-constraint algorithm implemented in MFELS.

is active only during the first, second, and fifth phase, its weight vector will
be (1, 1, 0, 0, 1). In generating these test problems we also assigned weight to
the edges to better reflect the overall communication volume of the underlying
multi-phase computation. In particular, the weight of an edge (v,u) was set to
the number of phases that both vertices v and u are active at the same time.
This is an accurate model of the overall information exchange between vertices
since during each phase, vertices access each other’s data only if both are active.

Graph |Num of Verts|Num of Edges
mrngl 257,000 1,010,096
mrng2| 1,017,253 4,031,428
mrng3| 4,039,160 16,033,696
mrng4| 7,533,224 29,982,560

Table 1. Characteristics of the various graphs used in the experiments.

Comparison of Serial and Parallel Multi-constraint Algorithms. Figures Bl H
and Blcompare the edge-cuts of the partitionings produced by our parallel multi-
constraint graph partitioning algorithm with those produced by the serial multi-

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 305

[0 Edge-cut I Balance —— Edge-cut Normalized by Metis

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Fig. 4. This figure shows the edge-cut and balance results from the parallel multi-
constraint algorithm on 64 processors. The edge-cut results are normalized by the
results obtained from the serial multi-constraint algorithm implemented in MFELS.

constraint algorithm [6], and give the maximum load imbalance of the parti-
tionings produced by our algorithm. Each figure shows four sets of results, one
for each of the four graphs described in Table [l Each set is composed of two-,
three-, four-, and five-constraint Type 1 and 2 problems. These are labeled “m
cons t” where m indicates the number of constraints and t indicates the type
of problem (i.e., Type 1 or 2). So the results labeled “2 cons 1” indicates the
edge-cut and balance results for a two-constraint Type 1 problem. The edge-cut
results shown are those obtained by our parallel algorithm normalized by those
obtained by the serial algorithm. Therefore, a bar below the 1.0 index line in-
dicates that our parallel algorithm produced partitionings with better edge-cuts
than the serial algorithm. The balance results indicate the maximum imbalance
of all of the constraints. (Here, imbalance is defined as the maximum subdomain
weight divided by the average subdomain weight for a given constraint.) These
results are not normalized. Note that we set an imbalance tolerance of 5% for all
of the constraints. The results given in Figures Bl [and Bl give the arithmetic
means of three runs by our algorithm utilizing different random seeds each time.
Note that in every case, the results of each individual run were within a few per-
cent of the averaged results shown. For each figure, the number of subdomains
computed is equal to the number of processors.

Figures[3, Bl and [l show that our parallel multi-constraint graph partition-
ing algorithm is able to compute partitionings with similar or better edge-cuts

306 Kirk Schloegel, George Karypis, and Vipin Kumar

compared to the serial multi-constraint graph partitioner, while ensuring that
multiple constraints are balanced.

Notice that the parallel algorithm is sometimes able to produce partitionings
with better edge-cuts than the serial algorithm. There are two reasons for this.
First, the parallel formulation of the matching scheme used (heavy-edge match-
ing using the balanced-edge heuristic as a tie-breaker [f]) is not as effective in
finding a maximal matching as the serial formulation. (This is due to the pro-
tocol that is used to arbitrate between conflicting matching requests made in
parallel [4].) Therefore, a smaller number of vertices match together with the
parallel algorithm than with the serial algorithm. The result is that the newly
computed coarsened graph tends to be larger for the parallel algorithm than
for the serial algorithm, and so, the parallel algorithm takes more coarsening
levels to obtain a sufficiently small graph. The effect of this is that the match-
ing algorithm usually has one or more additional coarsening levels in which to
remove exposed edge weight (i. e., the total weight of the edges on the graph).
By the time the parallel algorithm computes the coarsest graph, it can have
significantly less exposed edge weight than the coarsest graph computed by the
serial algorithm. This makes it easier for the initial partitioning algorithm to
compute higher-quality partitionings. During multilevel refinement, some of this
advantage is maintained, and so, the final partitioning can be better than those
computed by the serial algorithm. The disadvantage of slow coarsening is that
the additional coarsening and refinement levels take time, and so, the execution
time of the algorithm is increased. This phenomenon of slow coarsening was also
observed in the context of hypergraphs in [I].

The second reason is that in the serial algorithm, once the partitioning be-
comes balanced it will never explore the infeasible solution space in order to
improve the edge-cut. Since the parallel refinement algorithm does not guaran-
tee to maintain partition balance, the parallel graph partitioner may do so. This
usually happens on the coarse graphs. Here, the granularity of the vertices makes
it more likely that the parallel multi-constraint refinement algorithm will result
in slightly imbalanced partitionings. Essentially, the parallel multi-constraint
refinement algorithm it too aggressive in reducing the edge-cut here, and so,
makes too many refinement moves. This is a poor strategy if the partitioning
becomes so imbalanced that subsequent refinement is not able to restore the
balance. However, since our parallel refinement algorithm helps to ensure that
the amount of imbalance introduced is small, subsequent refinement is able to
restore the partition balance while further improving its edge-cut.

Run Time Results. TablePlcompares the run times of the parallel multi-constraint
graph partitioning algorithm with the serial multi-constraint algorithm imple-
mented in the MEOS library [5] for mrngl. These results show only modest
speedups for the parallel partitioner. The reason is that the graph mrngl is
quite small, and so, the communication and parallel overheads are significant.
However, we use mrngl because it is the only one of the test graphs that is small
enough to run serially on a single processor of the Cray T3E.

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 307

[Edge-cut I Balance —— Edge-cut Normalized by Metis

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Fig. 5. This figure shows the edge-cut and balance results from the parallel multi-
constraint algorithm on 128 processors. The edge-cut results are normalized by the
results obtained from the serial multi-constraint algorithm implemented in MFELS.

Table [3 gives selected run time results and efficiencies of our parallel multi-
constraint graph partitioning algorithm on up to 128 processors. Table [3] shows
that our algorithm is very fast, as it is able to compute a three-constraint 128-way
partitioning of a 7.5 million node graph in about 7 seconds on 128 processors
of a Cray T3E. It also shows that our parallel algorithm obtains similar run
times as you double (or quadruple) both the size of problem and the number of
processors. For example, the time required to partition mrng2 (with 1 million
vertices) on eight processors is similar to that of partitioning mrng3 (4 million
vertices) on 32 processors and mrng4 (7.5 million vertices) on 64 processors.

k |serial time|parallel time
2 7.3 6.4
4 7.5 4.4
8 8.0 2.5
16 8.3 1.7

Table 2. Serial and parallel run times of the multi-constraint graph partitioner for a
three-constraint problem on mrngl.

308 Kirk Schloegel, George Karypis, and Vipin Kumar

Graph| 8-processors | 16-processors | 32-processors | 64-processors |128-processors
time|efficiency|time|efficiency |time|efficiency |time|efficiency|time|efficiency
mrng2| 9.8 | 100% | 5.3 92% 3.5 70% 25| 49% 3.1 20%
mrng3|31.8| 100% [16.9| 94% 9.3 85% 5.7 70% 4.4 45%
mrng4| out of mem. [30.7| 100% |16.7| 92% |9.2| 83% |6.4| 60%

Table 3. Parallel run times and efficiencies of our multi-constraint graph partitioner
on three-constraint type 1 problems.

Graph |8-processors|16-processors|32-processors|64-processors|128-processors
mrng2 5.4 3.1 2.1 1.5 1.7
mrng3 15.8 8.8 4.8 3.0 2.7
mrng4 38.6 16.2 8.8 5.0 3.6

Table 4. Parallel run times of the single-constraint graph partitioner implemented in
PARMEILS.

Table Hl gives the run times of the k-way single-constraint parallel graph par-
titioning algorithm implemented in the PARMELS library [9] on the same graphs
used for our experiments. Comparing Tables [l and M shows that computing a
three-constraint partitioning takes about twice as long as computing a single-
constraint partitioning. For example, it takes 9.3 seconds to compute a three-
constraint partitioning and 4.8 seconds to compute a single-constraint partition-
ing for mrng3 on 32 processors. Also, comparing the speedups indicates that the
multi-constraint algorithm is slightly more scalable than the single-constraint al-
gorithm. For example, the speedup from 16 to 128 processors for mrng3 is 3.84
for the multi-constraint algorithm and 3.26 for the single-constraint algorithm.
The reason is that the multi-constraint algorithm is more computationally inten-
sive than the single-constraint algorithm, as multiple (not single) weights must
be computed regularly.

Parallel Efficiency. Table Bl gives selected parallel efficiencies of our parallel
multi-constraint graph partitioning algorithm on up to 128 processors. The effi-
ciencies are computed with respect to the smallest number of processors shown.
Therefore, for mrng2 and mrng3, we set the efficiency of eight processors to
100%, while we set the efficiency of 16 processors to 100% for mrng4. The par-
allel multi-constraint graph partitioner obtained efficiencies between 20% and
94%. The efficiencies were good (between 90% - 70%) when the graph was suffi-
ciently large with respect to the number of processors. However, these dropped
off for the smaller graphs on large number of processors. The isoefficiency of the
parallel multi-constraint graph partitioner is O(p? log p). Therefore, in order to

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning 309

maintain a constant efficiency when doubling the number of processors, we need
to increase the size of the data by a little more than four times. Since mrng3 is
approximately four times as large as mrng2 we can test the isoefficiency function
experimentally. The efficiency of the multi-constraint partitioner with 32 proces-
sors for mrng?2 is 70%. Doubling the number of processors to 64 and increasing
the data size by four times (64-processors on mrng3) yields a similar efficiency.
This is better than expected, as the isoefficiency function predicts that we need
in increase the size of the data set by more than four times to obtain the same
efficiency. If we examine the results of 64 processors on mrng2 and 128 proces-
sors on mrng3 we see a slightly decreasing efficiency of 49% to 45%. This is what
we would expect based on the isoefficiency function. If we examine the results
of 16 processors on mrng2 and 32 processors on mrng3 we see that the drop
in efficiency is larger (92% to 85%). So here we get a slightly worse efficiency
than expected. These experimental results are quite consistent with the isoeffi-
ciency function of the algorithm. The slight deviations can be attributed to the
fact that the number of refinement iterations on each graph is upper bounded.
However, if a local minima is reached prior to this upper bound, then no further
iterations will be performed on this graph. Therefore, while the upper bound
on the amount of work done by the algorithm is the same for all of the exper-
iments, the actual amount of work done can be slightly different depending on
the refinement process.

4 Conclusions

This paper has presented a parallel formulation of the multi-constraint graph
partitioning algorithm for partitioning 2D and 3D irregular and unstructured
meshes used in scientific simulations. This algorithm is essentially as scalable
as the widely used parallel formulation of the single-constraint graph partition-
ing algorithm []]. Experimental results conducted on a 128-processor Cray T3E
show that our parallel algorithm is able to compute balanced partitionings with
similar edge-cuts as the serial algorithm. We have shown that the run time of
our algorithm is very fast. Our parallel multi-constraint graph partitioner is able
to compute a three-constraint 128-way partitioning of a 7.5 million node graph
in about 7 seconds on 128 processors of a Cray T3E.

Although the experiments presented in this paper are all conducted on syn-
thetic graphs, our parallel multi-constraint partitioning algorithm has also been
tested on real application graphs. Basermann et al. [2] have used the parallel
multi-constraint graph partitioner described in this paper for load balancing
multi-phase car crash simulations of an Audi and a BMW in frontal impacts
with a wall. These results are consistent with the run time, edge-cut, and bal-
ance results presented in Section [3

While the experimental results presented in Section[3] (and [2]) are quite good,
it is important to note that the effectiveness of the algorithm depends on two
things. First, it is critical that a relatively balanced partitioning be computed
during the initial partitioning phase. This is because if the partitioning starts out

310 Kirk Schloegel, George Karypis, and Vipin Kumar

imbalanced, there is no guarantee that it will ever become balanced during the
course of multilevel refinement. Our experiments (not presented in this paper)
have shown that an initial partitioning that is more than 20% imbalanced for
one or more constraints is unlikely to be improved during multilevel refinement.
Second, as is the case for the serial multi-constraint algorithm, the quality of the
final partitioning is largely dependent on the availability of vertices that can be
swapped across subdomains in order to reduce the edge-cut, while maintaining all
of the balance constraints. Experimentation has shown that for a small number
of constraints (i.e., two to four) there is a good availability of such vertices, and
so, the quality of the computed partitionings is good. However, as the number
of constraints increases further, the number of vertices that can be moved while
maintaining all of the balance constraints decreases. Therefore, the quality of
the produced partitionings can drop off dramatically.

References

[1] C. Alpert, J. Huang, and A. Kahng. Multilevel circuit partitioning. In Proc. of
the 34th ACM/IEEE Design Automation Conference, 1997.

[2] A. Basermann, J. Fingberg, G. Lonsdale, B. Maerten, and C. Walshaw. Dynamic
multi-partitioning for parallel finite element applications. Submitted to ParCo 99,
1999.

[3] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
Proceedings Supercomputing 95, 1995.

[4] G. Karypis and V. Kumar. A coarse-grain parallel multilevel k-way partitioning
algorithm. In Proceedings of the 8th SIAM conference on Parallel Processing for
Scientific Computing, 1997.

[5] G. Karypis and V. Kumar. MFELIS: A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices, version 4.0. Technical report, Univ. of MN, Dept. of Computer Sci. and
Engr., 1998.

[6] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph par-
titioning. In Proceedings of Supercomputing 98, 1998.

[7] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48(1), 1998.

[8] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for
irregular graphs. Siam Review, 41(2):278-300, 1999.

[9] G. Karypis, K. Schloegel, and V. Kumar. PARMEIS: Parallel graph partition-
ing and sparse matrix ordering library. Technical report, Univ. of MN, Dept. of
Computer Sci. and Engr., 1997.

[10] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49(2):291-307, 1970.

[11] B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement
for multilevel graph-partitioning. Technical report, University of Paderborn, 1999.

[12] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh
partitioning. Technical Report 99/IM/44, University of Greenwich, UK, 1999.

	Introduction
	Parallel Multi-constraint Refinement
	Experimental Results
	Conclusions

