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Abstract. In this paper we present a parallel formulation of a multilevel k-way graph partitioning
algorithm. A key feature of this parallel formulation is that it is able to achieve a high
degree of concurrency while maintaining the high quality of the partitions produced by
the serial multilevel k-way partitioning algorithm. In particular, the time taken by our
parallel graph partitioning algorithm is only slightly longer than the time taken for re-
arrangement of the graph among processors according to the new partition. Experiments
with a variety of finite element graphs show that our parallel formulation produces high-
quality partitionings in a short amount of time. For example, a 128-way partitioning of
graphs with one million vertices can be computed in a little over two seconds on a 128-
processor Cray T3D. Furthermore, the quality of the partitions produced is comparable
(edge-cuts within 5%) to those produced by the serial multilevel k-way algorithm. Thus
our parallel algorithm makes it feasible to perform frequent repartitioning of graphs in
dynamic computations without compromising the partitioning quality.
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1. Introduction. Graph partitioning is an important problem that has extensive
applications in many areas, including scientific computing, very large scale integra-
tion (VLSI) design, geographical information systems, operations research, and task
scheduling. The problem is to partition the vertices of a graph in p roughly equal
partitions, such that the number of edges connecting vertices in different partitions is
minimized. For example, the solution of a sparse system of linear equations Ax = b via
iterative methods on a parallel computer gives rise to a graph partitioning problem.
A key step in each iteration of these methods is the multiplication of a sparse matrix
and a (dense) vector. A good partitioning of the graph corresponding to matrix A
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can significantly reduce the amount of communication in parallel sparse matrix-vector
multiplication [22].

The graph partitioning problem is NP-complete. However, many algorithms have
been developed that find a reasonably good partition. Recently, a number of re-
searchers have investigated a class of algorithms in which the original graph is suc-
cessively coarsened down until it has only a small number of vertices, a partitioning
of this coarsened graph is computed, and then this initial partitioning is successively
refined using a Kernighan–Lin (KL) type heuristic as it is being projected back to
the original graph. This multilevel paradigm was studied independently by Bui and
Jones [4] in the context of computing fill-reducing matrix reordering, by Hendrickson
and Leland [13] in the context of finite element grid partitioning, and by Hauck and
Borriello [11] (called optimized KLFM) and Cong and Smith [5] for hypergraph par-
titioning. Karypis and Kumar studied this paradigm extensively in [17] and [20] for
graph partitioning and presented new graph coarsening schemes that made the mul-
tilevel paradigm more robust. Multilevel schemes [13, 20, 18] are relatively fast and
provide excellent partitions for a wide variety of graphs. In particular, these schemes
provide significantly better partitions than those provided by spectral [24] and geomet-
ric [7] partitioning techniques, and are generally at least an order of magnitude faster
than even the state-of-the art implementation of spectral techniques [3]. Karypis and
Kumar [18] also developed a multilevel k-way partitioning scheme in which a k-way
partitioning of the coarsened graph is computed and refined using a variation of the
KL refinement scheme. Multilevel k-way partitioning techniques are generally faster
and provide better quality solutions than multilevel recursive bisection schemes [18].

Even though the multilevel partitioning algorithms produce high-quality parti-
tions in a very small amount of time, the ability to perform partitioning in parallel
is important for many reasons. The amount of memory on serial computers is not
sufficient to allow the partitioning of graphs corresponding to large problems that can
now be solved on massively parallel computers and workstation clusters. A parallel
graph partitioning algorithm can take advantage of the significantly higher amount of
memory available in parallel computers. In many applications, the graph is already
distributed among processors, but needs to be repartitioned due to the dynamic na-
ture of the underlying computation. For example, in the context of large-scale finite
element simulations, adaptive mesh computations dynamically adjust the discretiza-
tion of the physical domain. Such dynamic adjustments to the mesh lead to load
imbalances and thus require repartitioning of the graph for efficient parallel computa-
tion [6]. In some problems, the computational effort in each grid cell changes over time
[7]. For example, in many codes that advect particles through a grid, large temporal
and spatial variations in particle density can introduce substantial load imbalance.
Dynamic repartitioning of the corresponding vertex-weighted graph is crucial for bal-
ancing the computation among processors. Frequent repartitioning of meshes is also
needed in some parallel mesh generation algorithms. In all such computations, if the
mesh partitioning step is not performed in parallel, then the cost of moving the mesh
to a single processor for partitioning can be very high. Graph partitioning is also used
to compute fill-reducing ordering in the parallel formulation of direct solvers based
upon sparse Cholesky factorization. With the recent development of highly parallel
formulations of sparse Cholesky factorization algorithms [10, 16, 26], numeric factor-
ization on parallel computers can take much less time than the step for computing
a fill-reducing ordering on a serial computer, making that the new bottleneck. For
example, on a 1024-processor Cray T3D, some matrices can be factored in less than
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two seconds using our parallel sparse Cholesky factorization algorithm [10], but serial
graph partitioning (needed for computing a fill-reducing ordering) takes an order of
magnitude more time.

The problem of partitioning graphs on parallel computers has received a lot of
attention [12, 25, 7, 14, 2, 1, 19, 29] due to its extensive applications in many areas.
However, most of this work has been concentrated on algorithms based on geometric
graph partitioning [12, 7] or spectral bisection [2, 1, 14]. Development of parallel
formulations of multilevel graph partitioning schemes is quite challenging. Coarsening
requires that nodes connected via edges be merged together. Since the graph is
distributed across the processors, parallel coarsening schemes can require a lot of
communication [25, 1, 19]. The KL refinement heuristic and its variant, which are
used during the uncoarsening phase, appear to be serial in nature [9], and previous
attempts to parallelize them have had mixed success [9, 7, 19]. In particular, parallel
formulations of the refinement often have to trade quality for the available concurrency
in this phase. Parallel formulation of the multilevel k-way partitioning scheme is
even harder, as the refinement of the k-way partitioning appears to require global
interactions.

In this paper we discuss problems encountered in parallelizing different phases
of multilevel k-way partitioning schemes, and present a parallel formulation for the
multilevel k-way partitioning algorithm [18]. A key feature of our parallel formulation
is that it is able to achieve a high degree of concurrency while maintaining the high
quality of the partitions produced by the serial multilevel partitioning algorithm.
Parallel formulation of the coarsening phase is generally applicable to any multilevel
graph partitioning algorithm that coarsens the graph, and the parallel formulation of
the k-way partitioning refinement algorithm can also be used in conjunction with any
other parallel graph partitioning algorithm that requires refinement (e.g., [7, 27]) of a
k-way partitioning. We present a theoretical analysis of the scalability of our scheme
as well as experimental evaluation of a large number of graphs from finite element
methods and transportation domains.

The remainder of the paper is organized as follows. Section 2 briefly describes the
serial multilevel k-way partitioning algorithm. Section 4 details our parallel formula-
tion of the multilevel k-way partitioning algorithm. Section 5 provides a theoretical
performance and scalability analysis. Section 6 presents an experimental evaluation
of the parallel algorithm and compares its performance to that of the serial algorithm.

2. Multilevel k-way Graph Partitioning. Consider a weighted graph G = (V,E),
with weights on both vertices and edges. The k-way graph partitioning problem is to
partition V into k subsets such that the sum of the weight of the vertices in each subset
is roughly the same and the number of edges of E whose incident vertices belong to
different subsets is minimized. A k-way partitioning of V is commonly represented
by a partition vector P of length n, such that for every vertex v ∈ V , P [v] is an
integer between 1 and k, indicating the partition to which vertex v belongs. Given a
partitioning P , the number of edges whose incident vertices belong to different subsets
is called the edge-cut of the partitioning.

The basic structure of a multilevel algorithm is illustrated in Figure 2.1. The
graph G = (V,E) is first coarsened down to a small number of vertices, a k-way
partitioning of this much smaller graph is computed (using multilevel recursive bi-
section [20]), and then this partitioning is projected back towards the original graph
(finer graph) by periodically refining the partitioning. Since the finer graph has more
degrees of freedom, such refinements improve the quality of the partitions.
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Fig. 2.1 The various phases of the multilevel k-way partitioning algorithm. During the coarsening
phase, the size of the graph is successively decreased; during the initial partitioning phase,
a k-way partitioning of the smaller graph is computed; and during the uncoarsening phase,
the partitioning is successively refined as it is projected to the larger graphs.

In the rest of this section we briefly describe the various phases of the multilevel
k-way partitioning algorithm. The reader should refer to [18] for further details.

2.1. Coarsening Phase. The coarsening phase of the multilevel k-way partition-
ing is identical to that used in the multilevel recursive bisection schemes [13, 20].
During the coarsening phase, a sequence of smaller graphs, Gi = (Vi, Ei), is con-
structed from the original graph, G0 = (V0, E0), such that |Vi| > |Vi+1|. Graph Gi+1
is constructed from Gi by finding a maximal matching Mi ⊆ Ei of Gi and collapsing
together the vertices that are incident on each edge of the matching. Vertices that
are not incident on any edge of the matching are simply copied over to Gi+1.

When vertices v, u ∈ Vi are collapsed to form vertex w ∈ Vi+1, the weight of
vertex w is set equal to the sum of the weights of vertices v and u, and the edges
incident on w are set equal to the union of the edges incident on v and u minus the
edge (v, u). For each pair of edges (x, v) and (x, u) (i.e., x is adjacent to both v and u)
a single edge (x,w) is created whose weight is set equal to the sum of the weights of
these two edges. Thus, during successive coarsening levels, the weight of both vertices
and edges increases.

Maximal matchings can be computed in different ways [13, 20, 18]. The method
used to compute the matching greatly affects both the quality of the partition and
the time required during the uncoarsening phase. The matching scheme that we
use is called heavy-edge matching (HEM) and computes a matching, Mi, such that
the weight of the edges in Mi is high. The HEM is computed using a randomized
algorithm as follows. The vertices are visited in a random order. However, instead
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of randomly matching a vertex with one of its adjacent unmatched vertices, HEM
matches it with the unmatched vertex that is connected with the heavier edge. As a
result, the HEM scheme quickly reduces the sum of the weights of the edges in the
coarser graphs. The coarsening phase ends when the coarsest graph, Gm, has a small
number of vertices.

2.2. Partitioning Phase. The second phase of a multilevel k-way partitioning
algorithm is to compute a k-way partitioning of the coarse graph, Gm = (Vm, Em),
such that each partition contains roughly |V0|/k vertex weights of the original graph.
Since, during coarsening, the weights of the vertices and edges of the coarser graph
were set to reflect the weights of the vertices and edges of the finer graph, Gm contains
sufficient information to enforce the balanced partitioning and the minimum edge-cut
requirements intelligently. In our partitioning algorithm, a k-way partitioning of Gm
is computed using our multilevel recursive bisection algorithm [20]. Our experiments
have shown that it produces good initial partitions in a relatively short amount of
time.

2.3. Uncoarsening Phase. During the uncoarsening phase, the partitioning of
the coarser graph, Gm, is projected back to the original graph by going through the
graphs Gm−1, Gm−2, . . . , G1. Since each vertex u ∈ Vi+1 contains a distinct subset
U of vertices of Vi, the projection of the partitioning from Gi+1 to Gi is constructed
by simply assigning the vertices in U to the same partition in Gi to which vertex u
belongs in Gi+1. After a partitioning is projected from Gi+1 to Gi, it is refined using
local refinement heuristics.

Our multilevel k-way partitioning algorithm uses a variation of the KL [21] al-
gorithm to provide k-way partitioning refinement. This algorithm is called greedy
refinement (GR). Its complexity is largely independent of the number of partitions
being refined. Key to the GR algorithm is the concept of gain, which is defined as the
decrease in the edge-cut achieved by moving a vertex from one partition to another.
The GR algorithm consists of a number of iterations, and in each iteration all the
vertices are checked in a random order to see if they can be moved. Let v be such a
vertex. If v is a boundary vertex, then v is moved to the partition that leads to the
largest reduction in the edge-cut (i.e., the partition with the largest positive gain),
subject to partition balance constraint. The balance constraint ensures that all parti-
tions have roughly the same weight. Specifically, if the balance constraint parameter
is b, then the weight of the heaviest partition divided by the average weight of the
partitions should be less than b.

3. Challenges and Related Work. Out of the three phases of the multilevel
k-way partitioning algorithm described in section 2, the coarsening and the uncoars-
ening phases require the bulk of the computation (over 95%). Hence, it is critical
for any efficient parallel formulation of the multilevel k-way partitioning algorithm to
successfully parallelize these two phases. In the following, we review the difficulties
encountered in parallelizing these phases, and previous related works.

Coarsening. Recall that, during the coarsening phase (section 2.1), a matching of
the edges is computed, and this is used to contract the graph. One possible way of
computing the matching in parallel is to have each processor only compute matchings
between the vertices that it stores locally, and to use these local matchings to contract
the graph. Since each pair of matched vertices resides on the same processor, this
approach requires no communication during the contraction step. This approach
works well as long as each processor stores relatively well connected portions of the
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entire graph. In particular, if the graph is distributed among the processors in a
partitioned fashion, then this approach works extremely well. This is not a realistic
assumption in many cases, since a good partitioning of the graph is what we are
trying to compute by the multilevel k-way partitioner. Nevertheless, this approach of
local matchings can work reasonably well when the number of processors used is small
relative to the size of the graph and the average degree of the graph is relatively high.
The reason is that even a random partitioning of a graph among a small number of
processors can leave many connected components at each processor. This approach
can also work well for computing a new partitioning of meshes arising in adaptive
computations, especially if the adapted graph is a small perturbation of the original
well-partitioned graph.

Another scheme investigated in [19] uses a two-dimensional distribution of the
adjacency matrix of the graph. This requires the vertices of the graph to be partitioned
among only

√
p processors. Hence, this graph distribution allows a moderate amount

of coarsening even by using purely local matchings. This local matching produces
sufficient coarsening as long as the average degree of the coarse graphs is sufficiently
large (proportional to the square root of the number of processors). However, if the
degree of the graphs is small (as is the case for finite element meshes and their duals),
then this local matching cannot sufficiently reduce the size of the graph before folding
is required, resulting in poor speedup.

An alternate approach is to allow vertices belonging to different processors to
be matched together. Compared to local matching schemes, this type of matching
provides matchings of better quality, and its ability to contract the graph does not de-
pend on the number of processors or the existence of a good prepartitioning. However,
this global matching requires a high degree of fine-grain interprocessor communication
that can be expensive, especially on message passing architectures. Furthermore, this
global matching significantly complicates the parallel formulation because it requires
a distributed matching algorithm. For example, if vertices v and u are located in two
different processors, P1 and P2, then on the P1 vertex, v might be matched to u, while
on the P2 vertex, u may be matched to a different vertex w. Furthermore, another
processor P3 may match its vertex z to vertex u as well. Any correct and usable dis-
tributed matching algorithm must resolve both of these conflicts efficiently. Note that
since pairs of vertices that are contracted together can reside on different processors,
a global communication is required when the contracted graph is constructed.

A scheme for global matching has been investigated by Barnard [1] in the context
of a parallel formulation of a multilevel spectral algorithm. This algorithm uses a one-
dimensional mapping of the graph to the processors and uses a parallel formulation
of Luby’s [23] algorithm to compute a maximal independent set of vertices to con-
struct the next-level coarser graph. Another approach was investigated by Raghavan
[25] in the context of the multilevel nested dissection algorithm. Raghavan’s paral-
lel algorithm uses one-dimensional partitioning of the graphs and constructs succes-
sively coarser graphs by computing matchings between different pairs of processors
at each coarsening level. Note that this matching scheme pairs vertices located on
different processors, but it does not make use of global maximal matchings across
all processors in each coarsening step. This allows coarsening to be performed with
only limited interaction among processors by trading the quality of the matching
obtained.

Refinement During Uncoarsening. During the uncoarsening phase, the k-way parti-
tioning is iteratively refined while it is projected to successively finer graphs. The
serial algorithm scans the vertices in a random order and moves any vertices that lead
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Fig. 3.1 Concurrent moves of vertices may increase the overall edge-cut even if each individual
vertex move leads to a reduction.

to a reduction in the edge-cut. Any parallel formulation of this algorithm will need
to move a group of vertices at a time in order to speed up the refinement process.
This group of vertices needs to be carefully selected so that every vertex in the group
contributes to the reduction in the edge-cut. For example, it is possible that processor
Pi would decide to move a set of vertices Si to processor Pj to reduce the edge-cut
because the vertices in Si are connected to a set of vertices T that are located on
processor Pj . But, in order for the edge-cut to improve by moving the vertices in
Si, the vertices in T must not move. However, while Pi selects Si, processor Pj may
decide to move some or all of the vertices in T to some other processor. Consequently,
when both sets of vertices are moved by Pi and Pj , the edge-cut may not improve,
and it may even get worse. This is illustrated in the two simple examples shown in
Figure 3.1. In both examples, moving vertices v and u individually will lead to a
reduction in the edge-cut; however, if both of these moves are performed, the overall
edge-cut will increase.

The group selection algorithm must eliminate this type of unnecessary vertex
movement. Note that this problem does not arise if the movement of vertices in the
refinement is restricted such that whenever vertices are considered for movement from
partition i to j, then vertices in j are not considered for movement to any other par-
tition (including i). One possible way of avoiding redundant moves along these lines
is proposed by Diniz et al. in [7]. In this method, the refinement process is restricted
to disjoint pairs of partitions. Consider, for example, the 10-way partitioning of a
graph shown in Figure 3.2a and assume that the graph has been placed among the
processors such that processor Pi stores the ith partition of the graph. Figure 3.2b
shows the corresponding partition graph, that is, a graph in which there is an edge
between partitions i and j if they are neighbors (i.e., share a common boundary).
Note that a partitioning refinement algorithm needs to move vertices across bound-
aries for each one of these shared boundaries, that is, edges in the partition graph.
The boundaries that can be refined concurrently are determined by a matching of the
partition graph [7]. In the scheme used by Diniz et al. [7], the refinement is performed
in 6 steps as shown in Figure 3.2c–Figure 3.2h. In each step, the common boundaries
corresponding to the edges of the subgraph are refined. These boundaries are deter-
mined by computing a matching of the edges that have not yet been refined. Note
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Fig. 3.2 Refinement restricted to disjoint pairs of partitions.

that in the last three steps, only a small fraction of the processors are actually busy
performing refinement, which limits the concurrency available in the refinement step.
A major drawback of this parallel refinement algorithm is that it restricts the type of
vertex movement that can be performed in each step. Hence, it lacks the global view
available in the serial refinement algorithm, in which each vertex is free to move to
the partition that leads to the maximum reduction in the edge-cut. Experiments in
[7] show that the quality of the partitions produced by the parallel inertial algorithm
are up to 13% worse compared to the serial implementation of the inertial algorithm
that uses sequential KL refinement.

4. Parallel Formulation. In this section, we present parallel formulations for
all three phases of the multilevel k-way graph partitioning algorithm. Our parallel
formulation computes a coloring of the graph at each coarsening level, which is used to
eliminate conflicts in the computation of global matching in the coarsening phase and
to eliminate unnecessary vertex movement during the k-way refinement performed
in the uncoarsening phase. Specifically, during the coarsening phase, our algorithm
computes a global matching incrementally by only matching nodes of the same color
at a time. Similarly, the k-way refinement is also performed incrementally by only
moving vertices of the same color at a time. Since the vertices of the same color
form an independent set, this scheme ensures that every vertex movement will indeed
lead to a reduction in the edge-cut. We also exploit the task-level parallelism of the
initial graph partitioning algorithm to further reduce the already small run time of
this phase.

This coloring-based method used for coarsening and refinement has the following
drawbacks: (i) the computation of coloring requires a lot of global communication;
(ii) since matching is done for one color at a time, a global synchronization is needed
for each color. In our formulation, we try to limit both of these drawbacks by making
some modifications to the above method.

Let p be the number of processors used to compute a p-way partitioning of
the graph G = (V,E). G is initially distributed among the processors using a
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one-dimensional distribution, so that each processor receives n/p vertices and their
adjacency lists. At the end of the algorithm, a partition number is assigned to each
vertex of the graph. In the following sections we first describe the algorithm for com-
puting a coloring of a graph on a distributed memory computer, and then describe
our parallel formulations for the three phases of the multilevel k-way partitioning
algorithm described in section 2.

4.1. Computing a Coloring of a Graph. A coloring of a graph G = (V,E)
assigns colors to the vertices of G so that adjacent vertices have different colors. We
like to find a coloring such that the number of distinct colors used is small. Our
parallel graph coloring algorithm consists of a number of iterations. In each iteration,
a maximal independent set of vertices I is selected using a variation of Luby’s [23]
algorithm. All vertices in this independent set are assigned the same color. Before the
next iteration begins, the vertices in I are removed from the graph, and this smaller
graph becomes the input graph for the next iteration. A maximal independent set I
of a set of vertices S is computed in an incremental fashion using Luby’s algorithm as
follows. A random number is assigned to each vertex, and if a vertex has a random
number that is smaller than all the random numbers of the adjacent vertices, it is
then included in I. Now this process is repeated for the vertices in S that are neither
in I nor adjacent to vertices in I, and I is augmented similarly. This incremental
augmentation of I ends when no more vertices can be inserted in I. It is shown in [23]
that one iteration of Luby’s algorithm requires a total of O(log |S|) such augmentation
steps to find a maximal independent set of a set S.

Luby’s algorithm can be implemented quite efficiently on a shared memory par-
allel computer, since for each vertex v, a processor can easily determine if the random
value assigned to v is the smallest among all the random values assigned to the adja-
cent vertices. However, on a distributed memory parallel computer, for each vertex,
random values associated with adjacent vertices that are not stored on the same pro-
cessor need to be explicitly communicated. Furthermore, a faithful implementation of
Luby’s algorithm will also suffer from high synchronization overheads, as it requires
a global synchronization step during each iteration. Jones and Plassmann [15] have
developed an asynchronous variation of Luby’s algorithm that is particularly suited
for distributed memory parallel computers. In their algorithm, each vertex is assigned
a single random number and, after a communication step, each vertex determines the
number of its adjacent vertices that have smaller and greater random numbers. At
this point each vertex gets into a loop waiting to receive the color values of its ad-
jacent vertices that have smaller random numbers. Once all these colors have been
received, the vertex selects a consistent color and sends it to all of its adjacent vertices
with greater random numbers. The algorithm terminates when all vertices have been
colored. Note that, besides the initial communication step to determine the number
of smaller and greater adjacent vertices, this algorithm proceeds asynchronously.

Rather than using the algorithm by Jones and Plassmann to compute the coloring
of a graph, we decided to use a direct implementation of the original algorithm by
Luby, as it is easier to implement. In our implementation of Luby’s algorithm, we
perform only a single augmentation step to compute the independent set during each
iteration. Hence, the independent set computed is not maximal. Even though this
leads to an increase in the number of colors required to color the entire graph, it sig-
nificantly reduces the overall run time. Furthermore, we do not color all nodes of the
graph, but stop when a large fraction of the graph is colored. This is acceptable be-
cause it still allows most of the nodes at any level to participate in the coarsening and
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refinement phase while significantly limiting the required number of synchronization
steps.

In our implementation of Luby’s algorithm, prior to performing the coloring in
parallel, we perform a communication setup phase, in which appropriate data struc-
tures are created to facilitate this exchange of random numbers. In particular, we
predetermine which vertices are located on a processor boundary (i.e., a vertex con-
nected with vertices residing on different processors) and which are internal vertices
(i.e., vertices that are connected only to vertices on the same processors). These
data structures are used in all the phases of our parallel multilevel graph partitioning
algorithm.

4.2. Coarsening Phase. Recall from section 2.1 that during the coarsening phase
a sequence G1, G2, . . . , Gm of successively smaller graphs is constructed. Graph Gi+1
is derived from Gi by finding a matching Mi of Gi and then collapsing the vertices
incident on the edges of Mi. Since the matching Mi is an independent set of edges,
we can use Luby’s parallel algorithm on the line graph1 of Gi to compute a global
matching in parallel. However, computing a matching using this algorithm can be
quite expensive since the line graph usually has significantly more vertices than Gi,
and it is somewhat denser. For this reason, we use a matching algorithm based on
the coloring of the graph. This coloring algorithm also happens to be essential for
parallelizing the partitioning refinement phase.

Our parallel matching algorithm is based on an extension of the serial algorithm
and utilizes graph coloring to structure the sequence of computations. Consider the
graph Gi = (Vi, Ei) that has been colored using our parallel formulation of Luby’s
algorithm, and let Match be a variable associated with each vertex of the graph,
which is initially set to −1. At the end of the computation, the variable Match for
each vertex v stores the vertex to which v is matched. If v is not matched, then Match
= v. To simplify the presentation, we first describe the algorithm assuming that the
target parallel computer has a shared memory architecture, and later show how this
algorithm is implemented on a distributed memory machine.

The matching Mi is constructed in an iterative fashion. During the cth iteration,
vertices of color c that have not yet been matched (i.e., Match = −1) select one
of their unmatched neighbors using the heavy-edge heuristic, and modify the Match
variable of the selected vertex by setting it to their vertex number. Let v be a vertex
of color c and (v, u) be the edge that is selected by v. Since the color of u is not
c, this vertex will not select a partner vertex at this iteration. However, there is a
possibility that another vertex w of color c may select (w, u). Since both vertices v and
w perform their selections at the same time, there is no way of preventing this. This
is handled as follows. After all vertices of color c select an unmatched neighbor, they
synchronize. The vertices of color c that have just selected a neighbor read the Match
variable of their selected vertex. If the value read is equal to their vertex number, then
their matching was successful, and they set their Match variable equal to the selected
vertex; otherwise the matching fails, and the vertex remains unmatched. Note that
if more than one vertex (e.g., v and w) want to match with the same vertex (e.g.,
u), only one of the writes in the Match variable of the selected vertex will succeed,
and this determines which matching survives. However, by using coloring we restrict
which vertices select partner vertices during each iteration; thus, the number of such
conflicts is significantly reduced. Also note that, even though a vertex of color c may

1The line graph G′ of G is constructed by creating a vertex for each edge of G and connecting
two vertices in G′ if the corresponding edges in G are incident on a common vertex.
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fail to have its matching accepted due to conflicts, this vertex can still be matched
during a subsequent iteration corresponding to a different color.

The above algorithm is implemented quite easily on a distributed memory parallel
computer as follows. The writes into the Match variables are gathered together and
are sent to the corresponding processors in a single message. If a processor receives
multiple write requests for the same vertex, the one that corresponds to the heavier
edge is selected. Any ties are broken arbitrarily. Similarly, the reads from the Match
variables are gathered by the processors that store the corresponding variables and
they are sent in a single message to the requesting processors. Furthermore, during
this read operation, the processors who own the Match variables also determine if
they will be the ones storing the collapsed vertex in Gi+1. This is done by using a
uniformly distributed random variable. The vertex is kept or given away with the
same probability. Our experiments have shown that this simple heuristic leads to a
very good load balance.

After a matching Mi is computed, each processor knows how many vertices (and
the associated adjacency lists) it needs to send and how many it needs to receive.
Each processor then sends and receives these subgraphs, and it forms the next-level
coarser graph by merging the adjacency lists of the matched vertices. The coarsening
process ends when the graph has O(p) vertices.

4.3. Partitioning Phase. During the partitioning phase, a p-way partitioning
of the graph is computed using a recursive bisection algorithm. Since the coarsest
graph has only O(p) vertices, this step can be performed serially without significantly
affecting the performance of the entire algorithm. Nevertheless, in our algorithm we
also parallelize this phase using a recursive decomposition. This is done as follows: the
various pieces of the coarse graph are gathered to all the processors using an all-to-all
broadcast operation [22]. At this point the processors perform recursive bisection
using an algorithm that is based on nested dissection [8] and greedy partitioning
refinement. However, each processor explores only a single path of the recursive
bisection tree. At the end each processor stores the vertices that correspond to its
partition of the p-way partitioning. Note that after the initial all-to-all broadcast
operation, the algorithm proceeds without any further communication.

Note that the algorithm used for computing the initial partitioning of the graph
in the parallel multilevel algorithm is different from the multilevel recursive bisection
used in the serial algorithm. The multilevel algorithm produces significantly better
initial partitions than nested dissection but it requires more time. Consequently, the
initial partitioning step may become a bottleneck for a very large number of processors,
particularly for smaller graphs. However, due to the k-way refinement performed
in the uncoarsening phase, the final partitions are only slightly worse than those
produced by the serial k-way algorithm (that uses the multilevel recursive bisection
algorithm for computing initial partitions). Thus, the use of nested dissection for
initial partitioning (in place of a more accurate multilevel recursive bisection scheme)
trades a slight reduction in quality for better run time and scalability.

4.4. Uncoarsening Phase. In the uncoarsening phase, the partitioning is pro-
jected from the coarse graph to the next-level finer graph, and it is refined using the
GR algorithm (section 2.3). Recall that during a single phase of the refinement in the
serial algorithm, vertices are randomly traversed and moved to a partition that leads
to greater decrease in the edge-cut subject to the balance constraint. After each such
vertex movement, the external degrees of the adjacent vertices are updated.
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In the parallel formulation of greedy refinement, we retain the spirit of the serial
algorithm, but we change the order in which the vertices are traversed to determine
whether they can be moved to different partitions. In particular, the single phase
of the refinement algorithm is broken up into c subphases, where c is the number of
colors of the graph to be refined. During the ith phase, all the vertices of color i are
considered for movement, and the subset of these vertices that leads to a reduction
in the edge-cut (or improves the balance without increasing the edge-cut) is moved.
Since the vertices with the same color form an independent set, the total reduction in
the edge-cut achieved by moving all vertices at the same time is equal to the sum of
the edge-cut reductions achieved by moving these vertices one after the other. After
performing this group movement, the external degrees of the vertices adjacent to this
group are updated, and the next color is considered.

During the parallel refinement step, it appears natural to physically move the ver-
tices as they change partitions. That is, each processor initially stores all the vertices
of a single partition, and as vertices move between partitions during refinement, they
can also move between the corresponding processors. However, in the context of mul-
tilevel graph partitioning such an approach requires significant communication. This
is because, for each vertex v in the coarse graph Gi that we move, we need to send not
only the adjacency list of v but also the adjacency lists of all the vertices collapsed
in v for the higher level finer graphs Gi−1, Gi−2, . . . , G0. In our parallel refinement
algorithm we solve this problem as follows. Vertices do not move from processor to
processor—only the partition number associated with each vertex changes. This also
ensures that the computations performed during the refinement are reasonably load
balanced provided that the vertices are initially distributed in a random order. In
this case, during refinement, each processor will have some boundary vertices that
need to be moved since each processor stores a roughly equal number of vertices from
all p partitions. This also leads to a simpler implementation of the parallel refine-
ment algorithm, since vertices (and their adjacency lists) do not have to be moved
around. Of course, all the vertices are moved to their proper location at the end of
the partitioning algorithm, using a single all-to-all personalized communication [22].

The balance constraint is maintained as follows. Initially, each processor knows
the weights of all p partitions. During each refinement subphase, each processor
enforces balance constraints based on these partition weights. For every vertex it
decides to move, it locally updates these weights. At the end of each subphase,
the global partition weights are recomputed, so that each processor knows the exact
weights. Even though the balance constraints maintained by this scheme are less
exact than those maintained by the serial algorithm, our experiments have shown
that the hybrid of local and global partition balance constraints is able to produce
well-balanced partitions.

Furthermore, the above parallel refinement algorithm is highly concurrent, as long
as the number of colors is small compared to the total number of vertices in the graph.
For three-dimensional finite element meshes with tetrahedral elements, the number
of colors tends to be less than 20, and for the graphs corresponding to their duals, it
tends to be less than 5. Since the serial and parallel refinement algorithms are similar
in spirit, both exhibit similar partitioning refinement capabilities.

5. Performance and Scalability Analysis. The parallel formulation of the mul-
tilevel k-way partitioning algorithm described in section 4 consists of five different
parallel algorithms, namely, coloring, matching, contraction, initial partitioning, and
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refinement. Out of these five algorithms, four of them (coloring, matching, con-
traction, and refinement) have similar requirements in terms of computation and
communication. The exact computational and communication requirements of these
phases depend on the characteristics of the graph that is partitioned. In particular,
the computational requirements depend on the average degree of the graph, whereas
the communication requirement depends on the average degree, as well as the chro-
matic number of the graph. A graph with a higher chromatic number will require
more iterations and global synchronizations during the coarsening and the uncoars-
ening steps, as the number of inner iterations that are performed in each such step
is proportional to the number of colors of the graph. In the rest of this section, we
will analyze the parallel complexity and scalability of our algorithm under the follow-
ing two assumptions: (i) each vertex in the graph has a small bounded degree; and
(ii) this property is also satisfied by the successive coarser graphs. These assumptions
allow us to make the following observations and simplifications:

i. The chromatic number of graphs at all coarsening levels is a small constant.
ii. The size of the successively coarser graphs decreases by a factor of 1+ε, where

0 < ε ≤ 1.
iii. We can ignore the number of edges from the analysis, as it is of the same

order as the number of vertices.
It may seem that these assumptions limit the applicability of the analysis; however,
they are true for all graphs that correspond to well-shaped finite element meshes or
their duals, the class of problems that often requires parallel graph partitioning. We
further assume that the graph is initially distributed randomly among processors.
This is, in general, a worst-case assumption. If there is a locality in the distribution
of the graph, then often it can be exploited to reduce the time of different phases.

The amount of computation performed by each one of these four algorithms is
proportional to the size of the graph stored locally on each processor. Since the size
of the successively coarser graphs decreases by a factor of 1 + ε for 0 < ε ≤ 1, the
computation performed for the original graph dominates the computation performed
for the subsequent O(log n) coarser graphs. Thus, the amount of overall computation
performed is

Tcalc = O

(
n

p

)
.(5.1)

The amount of communication performed by each one of these four algorithms
depends on the number of interface vertices. For example, during coloring, each
processor needs to know the random numbers associated with the vertices adjacent
to the locally stored vertices. Similarly, during refinement, every time a vertex is
moved the adjacent vertices need to be notified to update their external degrees.
Each processor stores n/p vertices and nd/p edges, where d is the average degree of the
graph. Thus, the number of interface vertices is at most O(n/p). Since the vertices are
initially distributed randomly, these interface vertices are equally distributed among
the p processors. Hence, each processor needs to exchange data with O(n/p2) vertices
of each processor. Alternatively, each processor needs to send information for about
O(n/p2) locally stored vertices to each other processor. This can be accomplished by
using the all-to-all personalized communication operation [22], whose complexity is
O(n/p) +O(p). The communication complexity over all O(log n) coarsening levels is

Tcomm = O

(
n

p

)
+O(p log n),(5.2)

since the size of the graph is successively halved.
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Note that for (5.2) to be valid, the data to be communicated among proces-
sors must be roughly equally distributed. Since the graph is randomly distributed,
this is a reasonable assumption (otherwise, a somewhat more expensive generalized
all-to-all personalized communication [28] is needed). Furthermore, the successively
coarser graphs also remain randomly distributed because, during matching, decisions
regarding where the contracted vertex will reside are made randomly.

In addition to the communication of the interface vertices, both matching and
refinement perform additional communication. During matching, a prefix-sum is
performed to determine the numbering of the vertices in the coarser graph. The
complexity of this operation over all O(log n) coarsening levels is O(log p log n) [22].
During refinement, a reduction of a p-vector is performed to compute the weights of
the partitions. Since the size of the vector is equal to p, each such reduction can
be done in O(p) time [22]. Thus, the complexity over all O(log n) coarsening lev-
els is O(p log n). Finally, all four algorithms require global synchronizations, whose
complexity is O(log p log n). However, the complexity of the above communication
overheads is subsumed by the complexity of sending information about interface ver-
tices (cf. (5.2)).

During the initial partitioning phase, a graph of size O(p) is partitioned into p
partitions using recursive bisection. As described in section 4.3, the graph is gathered
on each processor using an all-to-all broadcast operation [22], whose complexity is
O(p). After that, each processor performs recursive bisection, but keeps only one of
the two bisections. Thus, the computational complexity of the initial partitioning is
O(p).

Thus, from (5.1) and (5.2) we have that the parallel run time of the multilevel
partitioning algorithm is

Tpar = O

(
n

p

)
+O(p log n).(5.3)

Since the sequential complexity of the serial algorithm is O(n), the isoefficiency func-
tion [22] of our algorithm is O(p2 log p).

In most application domains where parallel graph partitioning is required, it is
followed by a step that permutes the graph according to the computed partitioning.
For this reason, it is instructive to compare the run time of our parallel k-way parti-
tioning algorithm with the amount of time required to perform this permutation. If
we assume that the graph is randomly distributed among the processors, this permu-
tation is equivalent to an all-to-all personalized communication of the original graph.
The run time of this communication operation is O(n/p) + O(p) [22]. Thus, the run
time of our parallel graph partitioning algorithm is only slightly higher (by a factor
of O(log n) in the second term of (5.3)) than the amount of time required to actually
permute the graph; hence, it imposes limited additional computational overhead on
the underlying application.

6. Experimental Results. We evaluated the performance of our parallel multi-
level k-way graph partitioning algorithm on a wide range of graphs arising in different
application domains. The characteristics of these graphs are described in Table 6.1.

We implemented our parallel multilevel algorithm on a 128-processor Cray T3D
parallel computer. Each processor on the T3D is a 150 MHz Dec Alpha (EV4).
The processors are interconnected via a three-dimensional torus network that has a
peak unidirectional bandwidth of 150 bytes per second, and a small latency. We
used the SHMEM message passing library for communication. In our experimental
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Table 6.1 Various graphs used in evaluating the parallel multilevel k-way graph partitioning algo-
rithm.

Graph name No. of vertices No. of edges Description
144 144649 1074393 3D finite element mesh
598A 110971 741934 3D finite element mesh
AUTO 448695 3314611 3D finite element mesh
BRACK2 62631 366559 3D finite element mesh
COPTER2 55476 352238 3D finite element mesh
M14B 214765 1679018 3D finite element mesh
MAP1 267241 334931 Highway network
MDUAL 258569 513132 Dual of a 3D finite element mesh
MDUAL2 988605 1947069 Dual of a 3D finite element mesh
OCEAN 143437 409593 2D finite element mesh
ROTOR 99617 662431 3D finite element mesh
WAVE 156317 1059331 3D finite element mesh

setup, we obtained a peak bandwidth of 90 Mbytes and an effective startup time of 4
microseconds.

Since each processor on the T3D has only 64 Mbytes of memory, some of the
larger graphs could not be partitioned on a single processor. For this reason, we
compare the parallel run time on the T3D with the run time of the serial multilevel
k-way algorithm running on an SGI Challenge with 0.5 Gbytes of memory and 150
MHz Mips R4400. Even though the R4400 has a peak integer performance that is
10% lower than the Alpha, due to the significantly higher amount of secondary cache
available on the SGI machine (1 Mbyte on SGI versus 0 Mbytes on T3D processors),
the code running on a single-processor T3D is about 20% slower than that running
on the SGI. Since the nature of the multilevel algorithm discussed is randomized,
we performed all experiments with fixed seed. Our extensive experiments with both
parallel and serial multilevel k-way partitioning algorithms have shown that neither
the quality nor the run time varies significantly for different randomized runs (they
are usually within a few percentage points of each other), especially when the number
of partitions is greater than eight.

Partition Quality. Table 6.2 shows the quality of the partitions produced by the
parallel k-way algorithm as well as the amount of time it took to produce these
partitions on a Cray T3D for the problems of Table 6.1. Partitions in 16, 32, 64, and
128 partitions are shown, each produced on 16, 32, 64, and 128 processors, respectively.
Table 6.3 shows the quality of the partitions and the amount of time required by the
serial algorithm running on the SGI for the same problems.

The quality of the partitions produced by the parallel algorithm relative to those
produced by the serial k-way partitioning algorithm is shown graphically in Figure 6.1.
From this figure we see that the edge-cut produced by the parallel algorithm is quite
close to that produced by the serial algorithm. For most graphs, the edge-cut of
the parallel algorithm is worse than that of the serial algorithm by at most a factor
of 5%, while for some graphs, the parallel algorithm is somewhat better (by 1% to
3%). Since both the coarsening and uncoarsening phases of the parallel algorithm are
similar (sections 4.2 and 4.4), the reason for the small deviation compared to the serial
algorithm can be traced back to the use of nested dissection in the initial partitioning
phase. However, the quality differences can be eliminated if multilevel bisection is
used during the initial partitioning phase.
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Table 6.2 The performance of the parallel multilevel k-way partitioning algorithm on the Cray T3D.
For each graph, the performance is shown for 16-, 32-, 64-, and 128-way partitions on
16, 32, 64, and 128 processors, respectively. The times are in seconds.

16-way 32-way 64-way 128-way
Graph name Edge-cut Time Edge-cut Time Edge-cut Time Edge-cut Time
144 44742 3.021 65845 1.956 87573 1.270 120365 0.977
598A 31211 2.436 47037 1.557 61225 1.039 90724 0.805
AUTO 91540 8.384 139760 5.071 197166 3.255 264662 2.215
BRACK2 13454 0.858 20675 0.589 30161 0.426 43937 0.389
COPTER2 20677 0.938 30714 0.638 42047 0.475 58470 0.424
M14B 50554 4.455 77944 2.834 108294 1.834 159825 1.383
MAP1 343 0.942 701 0.583 1174 0.398 1956 0.344
MDUAL 13144 2.637 20004 1.600 25575 1.058 35457 0.795
MDUAL2 24800 10.241 36227 5.778 50114 3.442 71355 2.250
OCEAN 10392 1.240 16529 0.799 25311 0.551 35846 0.446
ROTOR 25146 1.684 38134 1.128 53547 0.819 78163 0.670
WAVE 49502 1.914 72969 1.245 98572 0.894 131896 0.743

Table 6.3 The performance of the serial multilevel k-way partitioning algorithm. For each graph,
the performance is shown for 16-, 32-, 64-, and 128-way partitions. The times are in
seconds on an SGI Challenge workstation.

16-way 32-way 64-way 128-way
Graph name Edge-cut Time Edge-cut Time Edge-cut Time Edge-cut Time
144 42987 12.140 63425 12.900 85967 13.620 116870 15.380
598A 30081 9.230 44604 9.320 62520 10.190 86891 11.050
AUTO 88125 48.490 135629 49.880 190508 51.640 259948 54.610
BRACK2 13539 3.680 20133 4.000 29515 4.520 42775 5.740
COPTER2 20852 3.970 30273 4.510 41672 5.160 56619 5.990
M14B 49029 18.830 75316 19.440 108874 20.560 153048 22.070
MAP1 323 9.580 674 10.020 1104 10.140 1881 11.210
MDUAL 13688 14.840 20715 15.890 25946 16.560 34235 18.790
MDUAL2 23891 74.050 34144 76.800 47628 76.910 67364 79.380
OCEAN 10033 7.160 16183 7.650 24483 8.370 34015 9.640
ROTOR 24723 7.140 36396 7.680 52463 8.380 73881 9.530
WAVE 47939 10.850 69370 11.490 95747 12.240 125925 14.100

Parallel Run Time. From Table 6.2 we can see that the run time of the parallel
algorithm is very small. For 9 out of the 12 graphs, the parallel algorithm requires
less than one second to produce a 128-way partitioning on 128 processors. Even for
the larger graphs (AUTO with half a million vertices, and MDUAL2 with one million
vertices) it requires only 2.2 seconds.

Table 6.4 shows the amount of time required by the different phases of the parallel
graph partitioning algorithm for some of the graphs of our experimental testbed. Note
that during the communication setup phase, the processors determine how many
interface vertices they need to send and receive, and set up the appropriate data
structures for this communication. From this table we see that, as the number of
processors increases, the amount of time required by each phase decreases. The only
exception is the initial partitioning phase, for which the time actually increases. This
is because both the size of the coarsest graph and the number of partitions increase
with the number of processors. However, the amount of time required by this phase
is very small compared to the run time of the entire partitioning algorithm.
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Fig. 6.1 Quality of the partitions produced by the parallel, relative to the serial, multilevel k-way
partitioning algorithm. For each graph, the ratio of the edge-cut of the parallel to that
of the serial algorithm is plotted for 16-, 32-, 64-, and 128-way partitions. Bars under
the baseline indicate that the parallel algorithm produces partitions with a smaller edge-cut
than the serial algorithm.

Table 6.4 The amount of time (in seconds) required by the different phases of the parallel partition-
ing algorithm for some graphs, on 16 and 128 processors.

AUTO MDUAL MDUAL2
Phase name 16 PEs 128 PEs 16 PEs 128 PEs 16 PEs 128 PEs
Communication setup 0.978 0.279 0.290 0.114 1.730 0.386
Graph coloring 2.480 0.477 0.581 0.102 2.239 0.351
Computing matching 1.271 0.353 0.458 0.111 1.752 0.385
Graph contraction 2.115 0.421 0.676 0.122 2.674 0.436
Initial partition 0.006 0.051 0.009 0.079 0.004 0.098
k-way refinement 1.534 0.634 0.623 0.267 1.842 0.594
Total run time 8.384 2.215 2.637 0.795 10.241 2.250

The speedup achieved by the parallel algorithm on the Cray T3D relative to
the serial algorithm running on the SGI is shown in Figure 6.2. For the smaller
graphs, the parallel algorithm achieves a speedup in the range of 14 to 17 on 128
processors, and as the size of the graphs increases, the speedup improves to the
20 to 35 range. As discussed earlier, due to architectural differences between the
Cray T3D and the SGI Challenge, the run time of the multilevel partitioning code
running on a single processor of the SGI is somewhat smaller than that running on
a single processor of the Cray T3D. Thus, the actual speedups (i.e., with respect to
the serial algorithm running on a single processor of the Cray T3D) are higher by a
factor of about 20%. Furthermore, as discussed in section 4, the parallel algorithm
incurs the additional computational overhead of computing graph coloring during the
coarsening phase, an overhead that it is not present in the serial algorithm. In addition
to the coloring overhead, the parallel algorithm also requires a communication setup
phase that is used to exchange information about the interface vertices. Again, on the
serial algorithm, this overhead is not present. For instance, for AUTO, from Table 6.4
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Fig. 6.2 The speedup achieved by the parallel partitioning algorithm running on a Cray T 3D relative
to the serial algorithm running on an SGI. For each graph, the speedup on 16, 32, 64, and
128 processors is shown.

we see that out of the run time of 2.2 seconds on 128 processors, the coloring and
communication setup overheads take 0.8 seconds, which is 36% of the total run time.
Also note that for MAP1, MDUAL, MDUAL2, and OCEAN, for which the above two
overheads are smaller (since these graphs have smaller average degrees), they achieve
better speedup than other graphs with similar numbers of vertices.

Experimental Scalability. From Table 6.2, we see that for each graph, the run time of
the parallel algorithm decreases as the number of processors and partitions increases.
From Table 6.3, we see that the run time of the serial multilevel k-way partition-
ing algorithm increases as k increases. Since the asymptotic complexity of the serial
algorithm is O(n) [18], this increase in run time is due to an increase in the num-
ber of interface vertices that exist as the number of partitions increases. Refining
these interface vertices also leads to more work, but does not increase the asymptotic
complexity of the algorithm. Evidence of the increased computational requirements
during the k-way refinement can also be seen in Table 6.4. From this table we see that
as the number of processors increases, the amount of time required for refinement de-
creases at a slower rate than the time required for coloring, matching, or contraction.
For instance, for MDUAL, going from 64 to 128 processors, the run time of matching
decreased by 43%, while the run time for refinement decreased by only 19%.

This modest increase in the computational requirements makes it hard to draw
any conclusions about the experimental scalability of the parallel algorithm from the
raw parallel run times in Table 6.2. However, from the serial run times, we know by
how much the computational requirements increase as k increases. For this reason, we
use the increase in the serial run time to compute the scaled relative efficiencies shown
in Figure 6.3 for some graphs. These efficiencies are relative to the 16-processor run
times, and they are scaled to reflect the increase in the computation. For example,
we know from Table 6.3 that, for AUTO, going from a 16-way to a 128-way partition,
the run time increases from 48.49 seconds to 54.61 seconds, a 12.6% increase. To
compute the speedup of the parallel algorithm on 128 processors relative to that on
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16 processors, we multiply the run time on 16 processors (8.38 seconds) by 1.126 (i.e.,
a 12.6% increase in computational requirements), and divide it by the run time on
128 processors (2.21 seconds). This relative speedup is 4.27, thus yielding a relative
efficiency of 0.53 (since 128 = 8 ∗ 16). From Figure 6.3 we see that for any graph, as
the number of processors increases, the efficiency decreases. This is to be expected for
any nontrivial parallel algorithm, since the communication overhead increases with
the number of processors. Similarly, as the size of the graphs increases, the achieved
efficiency improves because the communication overhead increases more slowly than
the amount of computation performed.

From the analysis in section 5, we have shown that the isoefficiency function of our
parallel algorithm is O(p2 log p). That is, in order to maintain a fixed efficiency, the
graph size should increase as O(p2 log p) [22]. For example, if we double the number
of processors, then we need to increase the size of the graph by a factor a little
over 4 in order to achieve the same efficiency. In order to evaluate the scalability of
the algorithm experimentally, we use the speedup obtained by the parallel algorithm
over the serial algorithm running on the SGI. Because of the differences between
the serial and parallel algorithms discussed earlier (additional use of coloring by the
parallel algorithm), it is important to compare the efficiencies achieved on graphs that
have a similar structure, so they will lead to similar coloring overheads. Among the
graphs in our experimental testbed (Table 6.1), the following pairs of graphs (144 with
AUTO and MDUAL with MDUAL2) require the same number of colors, and they have
appropriate relative sizes. AUTO is about 3.1 times larger than 144, while MDUAL2



PARALLEL MULTILEVEL GRAPH PARTITIONING 297

Table 6.5 The amount of time (in seconds) required by the different phases of the parallel parti-
tioning algorithm for different initial vertex distributions, on 16 and 128 processors. The
columns labeled “Rand” correspond to a random distribution of the graph, whereas the
columns labeled “PrePart” correspond to a prepartitioned distribution of the graph.

AUTO MDUAL2
16 PEs 128 PEs 16 PEs 128 PEs

Phase name Rand PrePart Rand PrePart Rand PrePart Rand PrePart
Communication setup 1.002 0.391 0.288 0.180 1.732 0.447 0.403 0.311
Graph coloring 2.503 1.840 0.493 0.231 2.257 1.384 0.354 0.191
Computing matching 1.265 0.726 0.362 0.129 1.772 0.812 0.386 0.139
Graph contraction 2.122 1.192 0.429 0.163 2.692 1.296 0.438 0.181
Initial partition 0.007 0.005 0.060 0.054 0.004 0.010 0.088 0.075
k-way refinement 1.541 1.216 0.663 0.550 1.853 1.264 0.597 0.400
Total run time 8.430 5.370 2.295 1.310 10.310 5.213 2.266 1.297

is about 3.83 times larger than MDUAL. From Figure 6.2 we see that the speedup
achieved by AUTO (and MDUAL2) on 32, 64, and 128 processors are comparable to
the speedup achieved by 144 (and MDUAL) on 16, 32, and 64 processors, respectively.
Thus, the experiments confirm that the isoefficiency function of our parallel graph
partitioning algorithm is O(p2 log p).

Effects of Initial Graph Distribution. The experiments shown in Table 6.2 were per-
formed by initially distributing the graphs between the processors in a block distri-
bution. That is, as the graphs were read from the file, consecutive n/p vertices were
assigned to each processor. We refer to this as the as-is distribution. This ordering is
somewhat different than the random distribution that was assumed in the description
and analysis of the parallel algorithm (sections 4 and 5) and was chosen for its simplic-
ity. To study the performance of our parallel algorithm under different initial graph
distribution schemes, we performed experiments using both random and preparti-
tioned distributions. In both cases, a permutation was applied to the graph before
distribution onto the processors. In the case of random distribution, this permutation
was computed randomly, whereas in the case of the prepartitioned distribution, this
permutation was computed from a serial p-way partitioning of the graph.

Table 6.5 shows the run times of these two different distribution schemes for two
of the larger graphs in our experimental testbed. Comparing these run times with
those shown in Table 6.4, we see that there is little difference between the random
and the as-is distributions. The run time of the random distribution is only higher by
less than 1%, which was expected, since both distributions result in initial partitions
that cut more than 90% of the edges. However, the run time is significantly reduced
when the prepartitioned distribution is used. For example, in the case of MDUAL2
on 16 processors, the run time of the prepartitioned distribution is almost half that
achieved by either the random or the as-is distribution. This reduction in run time is
due to the following two reasons: (a) reduced communication requirements, and (b)
better cache utilization.

For the prepartitioned graph distribution, the number of edges that get cut as a
result of the initial distribution is significantly reduced to only 7.5% for AUTO, and
3.6% for MDUAL2. Consequently, the distributed graph has significantly fewer inter-
face vertices. In each of the graph coloring, matching, contraction, and partitioning
refinement algorithms, communication takes a significant fraction of the overall run
time. Therefore, reduction in the run time is due to the reduced communication re-
quired for the prepartitioned graph. The reduced communication requirements can be
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clearly seen in the amount of time required by the communication setup phase (espe-
cially for 16 processors), whose complexity depends highly on the number of interface
vertices. Besides reducing communication overheads, the much better data locality
that is produced by the prepartitioned distribution also significantly improves cache
utilization. This is particularly important on a machine like the Cray T3D, since it
has only a small amount of primary cache (8 kbytes) and no secondary cache. This
improved cache reuse is the primary reason for the almost 50% improvement achieved
by the coloring, matching, and contraction algorithms. The primary significance of
the cache can also be seen when looking at the time required by the k-way refinement.
In this case, the improvements are not as dramatic (somewhere between 27% and 40%
on 16 processors). This is because, during k-way refinement, only a few vertices get
moved; hence, there is limited cache reuse.

7. Conclusion. In this paper we presented a parallel formulation of the multi-
level k-way partitioning algorithm. We show that the algorithm is scalable for a class
of graphs that includes the commonly used finite element meshes. In particular, the
time taken by our parallel graph partitioning algorithm is only slightly longer than
the time taken for rearrangement of the graph among processors according to the new
partition. Experiments with a variety of finite element graphs show that our parallel
formulation produces high-quality partitioning in a short amount of time. For ex-
ample, a 128-way partitioning of graphs with one million vertices can be computed
in a little over two seconds on a 128-processor Cray T3D. Furthermore, the quality
of the produced partitions is comparable (edge-cuts within 5%) to that of the par-
titions produced by the serial multilevel k-way algorithm. Even though the parallel
formulation is implemented for non-cache-coherent shared-address space architectures
such as the Cray T3D, the formulation can be easily adapted for message passing ar-
chitectures such as the IBM SP2. On such architectures, all interactions are done
via message passing that has much larger startup latency than that of the one-sided
communication operations on architectures such as the Cray T3D. Due to this worse
ratio of computation and communication, comparable efficiency will be obtained only
for proportionately larger graphs.

Even though our parallel formulation is able to obtain high efficiencies on up to
128 processors, obtaining similar efficiencies on much larger numbers of processors
(thousands) will be much harder, as our scalability analysis of this algorithm shows
that its isoefficiency function is O(p2). This term is due to an operation similar to
an all-to-all broadcast inherent in the setup, matching, and refinement phases. If the
graph is considered to be completely randomly distributed, then this O(p2) term in the
isoefficiency cannot be avoided, as even the redistribution of the graph would require
a similar all-to-all operation. However, if the parallel graph partitioner is being used
only to repartition an adaptively refined graph, then this O(p2) can be eliminated
from the isoefficiency by appropriately modifying the setup, coloring, matching, and
refinement phases to take advantage of this inherent locality.
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