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PARALLEL MULTILEVEL PRECONDITIONERS

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND JINCHAO XU

Abstract. In this paper, we provide techniques for the development and anal-
ysis of parallel multilevel preconditioners for the discrete systems which arise in
numerical approximation of symmetric elliptic boundary value problems. These
preconditioners are defined as a sum of independent operators on a sequence
of nested subspaces of the full approximation space. On a parallel computer,
the evaluation of these operators and hence of the preconditioner on a given
function can be computed concurrently.

We shall study this new technique for developing preconditioners first in
an abstract setting, next by considering applications to second-order elliptic
problems, and finally by providing numerically computed condition numbers
for the resulting preconditioned systems. The abstract theory gives estimates
on the condition number in terms of three assumptions. These assumptions
can be verified for quasi-uniform as well as refined meshes in any number of
dimensions. Numerical results for the condition number of the preconditioned
systems are provided for the new algorithms and compared with other well-
known multilevel approaches.

1. Introduction

We shall provide some new techniques for the development and analysis
of preconditioners for the discrete systems which arise in approximation to
the solutions of elliptic boundary value problems. It has been demonstrated
that preconditioned iteration techniques often lead to the most computationally
effective algorithms for the solution of the large algebraic systems corresponding
to boundary value problems in two- and three-dimensional Euclidean space
(cf. [3] and the included references). The use of preconditioned iteration will
become even more important on computers with parallel architecture.

This paper provides an approach for developing completely parallel multilevel
preconditioners. In order to illustrate the resulting algorithms, we shall describe
the simplest application of the technique to a model elliptic problem. Let Q
be a polygonal domain in R   and consider the problem of approximating the
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2 J. H. BRAMBLE, i. E. PASCIAK, AND JINCHAO XU

solution u of

(1.1)

where

Lu = f   in Q,
w = 0   on<9í2,

v^    d        du

1,7=1        ' J

We assume that the matrix {aiJ(x)} is symmetric and uniformly positive defi-
nite and a(x) > 0 in Q,.

We first define a sequence of multilevel finite element spaces in the usual
way. Since Q. is polygonal, we can define a 'coarse' triangulation t, = U/ti »
where t, represents an individual triangle and t, denotes the triangulation.
Successively finer triangulations {xk,k = 2,... , J} are defined by breaking
each triangle of a coarser triangulation into four triangles by connecting the
midpoints of the edges. The subspace Jik is defined to be the continuous
functions defined on Q which are piecewise linear with respect to xk and
vanish on 9Q. We shall be interested in developing a preconditioner for the
solution of the Galerkin equations on the 7th subspace, i.e., U eJf} satisfying

(1.2) A(U, <p) = (f, cp)   foraMtpeJTj.

Here A(-, •) denotes the generalized Dirichlet integral defined by

(1.3) A(u,v)= y^  / a,,-—-—dx + / auvdx
ijí\'a   Jdxidxj Jn

and (•, •) denotes the L   inner product on £1.
Let {4>k} denote the usual nodal basis for the subspace J?k , i.e., the /th

basis function is one on the /th node of the k\\t triangulation and vanishes on
all others. The preconditioner ¿% is defined by

;i.4) <gv = J2¿2(v,<p'kw,, if
k=\  I

The above preconditioner is simply a double sum, the terms of which can be
computed concurrently. This results in an inherently parallel algorithm.

As is well-known, the rate of convergence of an iterative method can be
estimated in terms of the condition number of the preconditioned system. We
provide a theory for the estimation of the condition number for this type of
multilevel preconditioner in terms of a number of a priori assumptions. In
the above example, this theory can be used to show that the relevant condition
number is at worst 0(J ). Moreover, these results hold for problems in two,
three, and higher dimensions as well as problems with only locally quasi-uniform
mesh approximation.
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PARALLEL MULTILEVEL PRECONDITIONERS 3

We note that many alternative preconditioning techniques have been pro-
posed for such discrete systems. For example, domain decomposition precondi-
tioners have been developed ([5], [6], [7], [8], [13], and the included references).
These domain decomposition preconditioners are inherently parallel, however
become somewhat complex in three-dimensional applications. Alternatively,
multigrid [4], [9], [14], [17] and hierarchical multigrid [2], [20] techniques give
rise to different multilevel preconditioners. The standard multigrid algorithms
do not allow for completely parallel computations, since the computations on a
given level use results from the previous levels. Theoretical results for the usual
multigrid algorithms are available, in general, for problems in any number of
spatial dimensions but only for quasi-uniform mesh approximation. Good re-
sults hold for the hierarchical basis method in two dimensions with refined
meshes but degenerate when applied to three-dimensional problems. Finally,
preconditioners based on approximate LU factorization are often proposed;
however, a comprehensive theory is yet to be developed [11], [12], [18],

The outline of the remainder of the paper is as follows. A general abstract
theory for the development and analysis of parallel multilevel preconditioners is
given in §2. In §3, this theory is applied to second-order elliptic boundary value
problems, and the serial and parallel complexity of the resulting algorithms is
discussed. We apply the abstract theory to a second-order problem with a locally
refined mesh in §4. Finally, the results of numerical experiments illustrating the
theory of the earlier sections are given in §5.

2. General theory

In this section, we develop a general theory for the construction of parallel
multilevel preconditioners. This theory is presented in an abstract setting to
most clearly illustrate the relevant analytic techniques and assumptions. The
development of this class of preconditioners is based on a certain orthogonal
decomposition of the approximation space. The parallel multilevel precondi-
tioners are then abstractly defined in terms of this decomposition by the replace-
ment of orthogonal projections by more computationally efficient operators.
Applications to second-order elliptic boundary value problems are given in §§3
and 4.

We start with the basic abstract framework. We assume that we are given a
nested sequence of finite-dimensional spaces,

(2.1) ^c/jC-'Cljs!,        J>2.

The space „# and hence all of its subspaces are equipped with two inner prod-
ucts (•, •) and A(-, •). The first part of this section will consider properties
of a certain orthogonal decomposition of Jf with respect to the inner product
(•, •) and the sequence of spaces (2.1). We shall investigate the spectral prop-
erties of these spaces with respect to the form A(-, ■) since, ultimately, we are
interested in computing the solution to the Galerkin equations: Given / e Jf ,
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4 J. H. BRAMBLE. J. E. PASCIAK, AND JINCHA0 XU

find «6/ satisfying

(2.2) A(u,v) = (f,v)       for all wel.
We shall use the following notation in the development and analysis.  For

each k = I, ... , J , we introduce the following operators:
(1) The projection Pk : J£ —> Jfk is defined for ue,€ by

A(Pku, v) = A(u, v)   for all veJik.

(2) The projection Qk : Jf —► Jtk is defined for «el by

(Qku, v) = (u, v)   fora\\veJ?k.

(3) The operator Ak : Jfk —► ¿&k is defined for u e y$k by

(Aku, v) = A(u, v)   foraViveJik.

We shall also denote A = A3 and define

&k = {<t>\4> = (Qk-Qk_x)H' , HieJï},
where Q0 = 0. We shall study the spectral properties of A with respect to the
decomposition

(2.3) Jf = cfy + ---+cfj.
It follows from the above definitions that

Q,A = A,P,,(2.4) k k k
QkQ, = QlQk = Q,   forl<k.

From the second equation of (2.4), it follows that

(öfc-ßfc_I)(ß/-ß/_,) = o
if k jt I, and hence the decomposition (2.3) is orthogonal, i.e.,  (u, v) = 0
whenever u ecf¡, v etfk with / ^ k .

We consider first the operator

(2-5) B = z2rkl(Qk-Q, k-\.
k=\

where kk  denotes the spectral radius of Ak .   Clearly,  B  is symmetric and
positive definite, and

J       _ 2

(2.6) A(BAv,v) = YJ^   (Qk-Qk-Mv
k=\

where ||-||   =(•,•)• Note that B is block diagonal with respect to the decom-
position (2.3) and each diagonal block is a multiple of the identity matrix.

The operator B may be thought of as an "approximate inverse" for A . Thus,
we shall be interested in estimating the condition number K(BA) of BA . We
note that K(BA) < Cy/c0 for any positive constants c0, c, satisfying

(2.7) c0A(v , v) < A(BAv , v) < c.A(v , v)    for all v G J?.
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PARALLEL MULTILEVEL PRECONDITIONERS 5

Remark 2.1. The form of the operator B can be motivated by the spectral
decomposition of the operator A . Indeed, for a special example, namely, Jik
the space spanned by the eigenvectors corresponding to the smallest k distinct
eigenvalues of A , the operator B defined by (2.5) is in fact equal to A" .

In general, we can see that

(2.8) A(BAv,v)<JA(v,v)   for all v eJt.

Indeed, by (2.4), (2.6) and the definition of Xk ,
j j

A(BAv , v) < \Thl \\QkAv\? <J2A(Pkv,Pkv).
k=\ k=\

Inequality (2.8) follows from the fact that Pk is a bounded operator with op-
erator norm one in the norm induced by the A(-, ■) inner product.

The lower estimate of (2.7) will require some hypotheses concerning the
spaces Jik . We first consider the following assumptions on the operators Qk :
For k = I, ... , J , there exists a constant C, > 0 such that

2
(Al) (I-Qk-X)v     <C.XkXA(v,v)   for all we.lk-\!u       ^^\nk

We can now prove the following theorem.

Theorem 1. Assume that (A.l) holds. Then

(2.9) C~[J~iA(v,v)<A(BAv,v)<JA(v,v)   for all »ei.
Proof. By (2.8), we need only prove the first inequality of (2.9). We note that

A(v,v) = Y,A((Qk-Qk_x)v,v)
k=\

= J2^-Qk-x)vAQk-Qk-X)Av)-
k=\

By the Schwarz inequality and (A.l) , it follows that
j

A(v,v)<C\l2Y,A(v,v)XI2rk{l2\(Qk-Qk_y)Av
k=l

Applying the Schwarz inequality to the sum gives

A(v,v)l/2<C¡/2Jl/2A(BAv,vf\

which is the lower inequality of (2.9).

Corollary 1. For any real s,

(2.10) Bs = J2^s(Qk-Qk-i)-
k = l
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6 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU

Moreover, for any s e [0, 1 ],

(2.11) J~s(Asv,v)<(B~sv,v)<(CxJ)\Asv, v)   for all «el.
Proof. The orthogonality of the decomposition (2.3) immediately implies (2.10).
Clearly, Bs and As are Hubert scales. By interpolation, it suffices to verify
(2.11) for s = 0 and s = 1. The case s = 0 is trivial and 5 = 1 is given by
Theorem 1.

We have included Corollary 1 for the purpose of future applications which
will not be described in this paper. In particular, it will be used for the develop-
ment of preconditioners for certain boundary operators which arise in domain
decomposition techniques for second-order boundary value problems [10].

In the next corollary, we consider the case of the sum of two operators. Let
A(-, •) be another symmetric positive definite form and let A, {Ak} and {Xk}
be defined analogously in terms of A(-, •). Consider the operator B : Jf i-+ JÍ
defined by

B = t^h+k)~\Qk-Qk-x)-
k=\

Theorem 1 immediately implies the following corollary.

Corollary 2. Assume that (A.l) holds for both A and A . Then,

J~\(A + A)v, v) < (B~Xv, v)< CXJ((A + A)v, v)   for all v eJf.
Proof. A change of variable shows that (2.9) is equivalent to

J~l(Av, v) < (B~Xv,v) < CxJ(Av, v)   for all v eJ?.

Corollary 2 follows adding this and the analogous inequality involving A .

The most natural application of the above corollary is to the discrete systems
which arise in parabolic time-stepping algorithms. At each time level, a function
(/"el satisfying

(I + xA)U" = F" ,
with known F" e .<# must be computed. Here x is a positive number which
is related to the time step size. We shall not consider further application of
Corollary 2 in this paper.

We next apply the above results to analyze parallel multilevel preconditioners
for A . An operator J'i/h/ is a good preconditioner for A if it satisfies:

(1) The action of 38 on vectors of .<# is economical to compute.
(2) The condition number K(38 A) of the preconditioned system is not too

large.
Item ( 1 ) above guarantees that the cost per iteration in a preconditioned scheme
using 38 for solving (2.2) will not be unreasonable. Item (2) guarantees that the
number of iterations in a preconditioned scheme will not be too large. Note that
by Theorem 1, B satisfies (2). 33 may in fact satisfy (1) in many applications
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PARALLEL MULTILEVEL PRECONDITIONERS 7

but generally it is desirable to avoid evaluating the action of Qk . Hence we
shall develop more computationally effective algorithms by modifying (2.5).

To get a computationally effective preconditioner, we write (2.5) in the form

5 = ¿(^,-a¡-;,)o,+a;1/.
k = \

Notice that if {lk}k=l satisfies the growth condition Afc , > okk for a > 1,
then the operator

(2.12) B = ErklQk
k = \

satisfies
( 1 - o~ )(Bu, u) < (Bu, u) < (Bu, u)   for all ueJi.

We consider a slightly more general operator defined by replacing Xk I in (2.12)
with a symmetric positive definite operator Rk:.£k^.£k, i.e.,

(2.13) & = T,RkQk-
k=\ •

Clearly, 38 is symmetric and positive definite on Jf. The cost of evaluating
the action of the preconditioner 38 on a vector in Ji will be discussed in later
sections but will obviously depend on an appropriate choice of Rk .

For our subsequent analysis, we shall need to make the following assumption
concerning the operator Rk . We assume that

\\u\\ _](A.2) C2——< (Rku, u) < C3(Ak  u,u)   fora\\ueJfk,
Ák

where C2 and C3 are positive constants not depending on J. Clearly, the
choice Rk = Àk I corresponding to (2.12) satisfies (A.2).

The preconditioner (2.13) can be thought of as a parallel version of a V-cycle
multigrid algorithm. The operator Rk plays the role of a smoothing procedure.
The major difference between (2.13) and the V-cycle multigrid scheme is that the
smoothing on every level of (2.13) is applied to the original fine grid residual. In
contrast, the multigrid V-cycle applies the smoothing to the residual computed
using the corrections from the previously visited grid. Obviously, the different
terms in (2.13) can be computed in parallel while, in contrast, computations on
a given grid level in a standard multigrid algorithm must wait for the results
from previous levels. The connection between (2.13) and the multigrid V-cycle
will be more fully discussed in §3. However, it is not surprising that assumptions
which are equivalent to (A.2) have been made in the analysis of the usual serial
multigrid algorithms [4], [9], [15], [16].

Remark 2.2. A particularly interesting choice of Rk can be motivated as fol-
lows. As noted above, Rk = Xk I satisfies (A.2). Let {ipk} be an orthonormal
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8 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU

basis for Jfk . Then

(2.14) X~k u = X~k   \^2,(u,Vk)Vk   fora\\ueJ?k.
i

In practice, an orthonormal basis for JKk is seldom available. However, for fi-
nite element applications with quasi-uniform grids, the right-hand side of (2.14)
with normalized nodal basis functions {ipk} defines an Rk satisfying (A.2) (see
§3). Moreover, we note that for ueJt,

Ä*ß*" = ¿it1 £(«.?*)?*.
i

and hence RkQk is computable without the solution of Gram matrix systems.
This will be discussed in more detail in §3.

With 38 defined in (2.13), we have the following corollary.

Corollary 3. Under assumptions (A.l) and (A.2),

(2.15) C~lC2J~lA(v, v) <A(38Av,v) < C3JA(v,v)   for allveJ?.
Proof. By (A.2), for tie/,

j j
(2.16) A(38Av,v) = YJ^kAkPkv,AkPkv) < C^A(Pkv, Pkv),

Jt=i k=\

from which the second inequality of (2.15) follows. For the first inequality, by
Theorem 1 and (A.2),

C~lJ~lA(v, v) <A(BAv,v)
j

^XX' llßjt'HI2 ̂ C~lA(38Av,v).
k=\

This completes the proof of the corollary.

We next provide an alternative hypothesis for a lower estimate in (2.15).
This is the so-called "regularity and approximation" assumption often used in
multigrid analysis (cf. [4], [14], [17]). We assume that for a fixed a e (0, 1],
there exists a positive constant C4 not depending on k = \, ... , J satisfying

(A.3)      A((I-Pk_l)v,v)<(C4Ak[\\Akv\\2)aA(v,v)1~"   for all veJtk,

where PQ = 0. In finite element applications, the above assumption is usually
proved by using elliptic regularity for the continuous problem and the approxi-
mation properties of the space ^_, [1], [4]. In such applications, assumption
(A.3) may be stronger than (A.l), e.g., when a = 1 , (A.3) implies (A.l). We
can now prove the following theorem.
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PARALLEL MULTILEVEL PRECONDITIONERS 9

Theorem 2. Assume that (A.2) and (A.3) hold. Then

C2C4   J     /aA(v,v)<A(38Av,v)-1   ,1-1/a

(2.17)
<C3JA(v,v)   forallveJf.

Proof. We need only prove the first inequality in (2.17). Writing
./

« = E(/fc-p*-i)«'.
k=\

and using the properties of Pk and (A.3), gives

j
A(v,v) = Y,A((I-Pk_x)Pkv,Pkv)

k=\

<c:E^\\Akrkv\\2)a¿(v,v)l-a.
k=l

By (A.2),
j

A(v , v) < (C2_1C4)° ])Z(RkAkPkv, AkPkvf(Av , v
k=\

By Holder's inequality, for a sequence of nonnegative numbers {bk} , we clearly
have

it=i \/t=i /
from which it follows that

(2.18)
A(v,vf < (C;lC4)aJl'a(j2(RkAkPkv,AkPkv))n

< (C2XC.fJX~aA(38Av,vf.'2    ^4>

The first inequality of (2.17) follows from (2.18) in an obvious manner. This
completes the proof of Theorem 2.

Remark 2.3. Included in (A. 1 ) and (A.3) is the implicit assumption that Cx and
C4 are greater than or equal to K(AX). In finite element applications, K(AX)
will not be large if the grid size of the coarsest grid is of unit size. However,
if a good preconditioner R. is available for any finer grid, i.e., /? satisfies in
addition

(2.19) (R~lu,u)<C5(AjU,u),

then it suffices to use

^ = ZRkQk-
k=j
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10 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU

In such applications, (A.l) or (A.3) need only be satisfied for k > j . Note that
R. = A~x will be effective provided that the 7th grid size is relatively small.
Many alternative choices are possible.

3. The quasi-uniform application

In this section, we shall illustrate the application of the abstract theory and
algorithms discussed in the previous section to a second-order elliptic boundary
value problem approximated using finite element functions on a quasi-uniform
mesh. We first show that the hypotheses of the previous section are satisfied.
We also consider the computational complexity of the resulting algorithm in
both serial and parallel computing applications. For brevity, we consider only
the most basic finite element applications. Many other applications are possible,
including examples of elliptic problems in higher dimensions.

Let ./#, c ■ • ■ c Jtj e/ be the finite element spaces defined in the intro-
duction subsequent to (1.1), A(-, •) be the generalized Dirichlet form defined
in (1.3) and (•, •) be the L2 inner product on Q.

We will apply the results of §2 to Problem (1.2) with the above sequence of
spaces. Let hk denote the size of the kxh triangulation. It easily follows that
there are constants cQ and c, , not depending on k and satisfying

(3.1) c0h-k2<Xk<cxh-k2.
Inequality (A. 1 ) with k > 2 is well-known. For k = 1, we have that

2       — 1||i>||   <A    A(v , v)   for all v e ./#,
where A is the smallest eigenvalue of A and is obviously bounded away from
zero (independently of J ). We shall suppose in this application that J?x is
such that hx is proportional to the diameter of £2, so that C, > A,/A, which
is not large.

We next consider the operator Rk motivated by Remark 2.2, i.e.,

(3.2) Rkv = J2(v,<plk)<p'k    forveJ?k,
1

where the sum is taken over all nodes of xk . As observed in Remark 2.2, the
action of Rk Qk can be computed without explicitly computing Qk . Moreover,
using Rk defined by (3.2) in (2.13) leads to the preconditioner of (1.4).

We now show that (A.2) holds for this Rk . Any ueJfk may be represented
by
(3.3) u = J2a,(pk,

I
where a¡ is the value of u at the /th node of xk .  Let a denote the corre-
sponding vector with entries {q;}, Gk denote the matrix with entries (Gk)¡   =
(4>k , (f)k) and (•, •) denote the Euclidean inner product. Note that

(3.4) (Rku, u) = £(«, 4>k)   = (Gka, Gka) .
1
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PARALLEL MULTILEVEL PRECONDITIONERS 11

By the quasi-uniformity of xk , hk J2¡ a¡ is a norm which is equivalent to
IMI = (^t"> ") • This equivalence is uniform with respect to k . It immedi-
ately follows that (Gka, Gk5) is uniformly equivalent to h\ (5,5). Thus, by
(3.1),

ll"H2 ll"ll2(3.5) c "!L<(/í M>M)<CiiL"     for all u eJ?k,
kk Ak

with c0 and c, independent of k. Assumption (A.2) follows immediately
from the definition of kk .

For this problem, (A.3) will always be satisfied for some a e (0, 1] (cf. for
example, [1], [4]). The size of a depends on the elliptic regularity of Prob-
lem (1.1). Thus, in the case when Q is a convex polygonal domain and the
coefficients defining L are smooth, a = 1 and we conclude from Theorem 2
that

K(38A) < cJ.
In the case of a so-called crack problem (with smooth coefficients), the largest
interior angle is 2n and the regularity of (1.1) is such that (A.3) does not hold
for a > 1/2 . Hence Corollary 3 yields .the better estimate and shows that

K(38A) < CJ2.

Remark 3.1. It is possible to apply the theory of §2 to elliptic problems in three
or more dimensions. Many examples are possible, and we consider the simplest.
In three dimensions, we let the coarse mesh be a union of equally sized cubes.
Finer meshes are obtained by breaking each cube of a coarser mesh into eight
smaller cubes in the obvious way. The subspaces {dfk} are defined to be the
functions on Q which are continuous and piecewise trilinear with respect to
the A:th mesh and vanish on <9Q. The nodes of these spaces are the vertices of
the cubes defining the mesh. We may take

j
(3.6) ^M = 5>;'I>,¿X.

k=\     i

where {<j>k} denotes the set of nodal basis functions. We emphasize here again
that all the terms in (3.6) are independent and hence may be computed concur-
rently.

Remark 3.2. Assumption (A. 1 ) is often easier to verify than (A.3). For example,
we consider the two-dimensional problem (1.1) when the coefficients of the
operator L are discontinuous. If the jumps in the coefficients are only along the
lines of the coarse mesh, then it is possible to prove that (A.l) holds with C, <
CJ, where the constant C depends on the local variation of the coefficients
of L on the coarse grid triangles but not on the magnitude of the jumps across
triangles [19]. This leads to a conditioning result of the form

K(38A) < Cj\
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12 J. H. BRAMBLE, J. E. PASCIAK, AND J1NCHA0 XU

The dependence of constant C4 (in (A.3)) on the size of the jumps is a much
more difficult question, since it requires the knowledge of the dependence of
the elliptic regularity constants on such jumps.

In the remainder of this section, we consider computational issues involved
in implementing the above algorithm in serial and parallel computing architec-
tures. However, before proceeding, we make the following observation. Even
though we have defined 38 as an operator on J?, in a preconditioned iterative
scheme we are only required to compute 38v given the data W} = (v, <pj).
This is because when v = Afi, we always compute {(Ajd, <pj) = A(6, cf>j)}
and hence avoid the solution of the Gram matrix problem required for the
computation of AjO.

We first consider the serial version of the algorithm. Let »el be given
and define Wk = (v , cßk). Let Wk denote the vector with entries (Wk)¡ = Wk.
We need to compute the action of 38v given Wj . We define Wk_x from Wk
in a recursive manner. Note that each basis function in dik_x can be written
as a local linear combination of basis functions for Jik . Thus, each value of
YVk_x can be written as a local linear combination of values of Wk . Moreover,
the work involved in computing Wk_x from Wk is proportional to the number
of unknowns in ¿#k_x ■ Consequently, the work involved in computing the
vectors {Wk} , k = \, ... , J ,i% bounded by a constant times the number of
unknowns in J[. Once the vectors {Wk} are known, we are left to compute
the representation of 33 v in the basis for Jl. To do this, we compute the
representation of

m

^m» = Ë£(«.*L)*i.
k = \    I

in the basis for J?m , for m = 1, ... , J . The result at m = J is of course the
basis representation for 38 v . For m = 1, the representation is already given
by Wx . The representation of 38mv for m > 1 is calculated from that of
&m-\v by interpolating the 33m_xv results (i.e., expanding them in terms of
the rath basis) and adding the rath level contribution from Wm . The work of
calculating the representation of 38mv , given that for 38mXv , is on the order
of the number of unknowns in J!m , and thus the total work for this algorithm
is bounded by a constant times the number of unknowns on the finest grid.

Remark 3.3. The serial implementation of the operator 38 is closely related
to the multigrid V-cycle algorithm. The step of computing Wk_x from Wk
in 38 is nothing more than the step which "transfers the residuals" from grid
level k to k — 1 in a multigrid V-cycle algorithm. However, the multigrid
algorithm requires extra computation since it must smooth and then compute
new residuals on the klh level before transferring. The second step in the serial
algorithm for 38 is also duplicated in the "coarser to finer interpolation" step
in the multigrid V-cycle algorithm. The symmetric multigrid V-cycle requires
extra computation since it requires additional smoothing on each grid level.
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PARALLEL MULTILEVEL PRECONDITIONERS 13

Thus the serial 38 algorithm, in terms of complexity, is similar to a multigrid
V-cycle algorithm without smoothing.

We next consider parallel implementation of the preconditioner 38. The
execution of ( 1.4) can obviously be made parallel in many ways by breaking up
the terms into various numbers of parallel tasks. The optimal splitting of the
sum is clearly dependent on characteristics of the individual parallel computer,
for example, memory management considerations, task initialization overhead,
the number of parallel processors, etc. We note, however, the simplicity of the
form of (1.4) allows for almost complete freedom for parallel splitting.

It is of theoretical interest to consider the algorithm on a shared memory ma-
chine with an unlimited number of processors. As above, the implementation
38v involves two steps, the calculation of the coefficients Wk and the compu-
tation of the representation of 38v in the basis for Jü. Each coefficient can
be computed independently and involves a linear combination (not necessarily
local) of the values of Wj . With enough processors, a linear combination of
m numbers can be computed in log2 m time. Hence the coefficient vectors
{Wk} can be computed in log2 N time where N is the dimension of Jf . Each
coefficient of 38v involves a linear combination of MnJ contributions from
the J grid levels (here, Mn is the maximum number of neighbors for any given
level). Thus, computation of 38v can be done in time bounded by CJ .

4. A LOCAL REFINEMENT APPLICATION

In this section, we shall consider the application of the parallel multilevel al-
gorithm to the finite element equations corresponding to a problem with mesh
refinement. Such mesh refinements are necessary for accurate modeling of prob-
lems with various types of singular behavior. For simplicity, we shall make no
attempt at generality. Instead, we shall illustrate the technique by considering
an example from which many obvious generalizations are possible. For this
example, the domain £1 will be the unit square and we shall approximate the
solution to (1.1). The form A(-, ■) and the inner product (■, •) will be as in
§3. The sequence of grids which we shall consider will be progressively more
refined as we approach the corner (1,1). Such a mesh would be effective if, for
example, the function / in (1.1) behaved like a ¿-function distribution at the
point (1,1).

To define the mesh, we first start with a sequence of subspaces J?x, ... ,j#.

defined using uniform grids of size hk = 2~ , k = 1, ... , j', as described in
the quasi-uniform case (see §1). The (j + 1 )st triangulation is then defined by
refining only those triangles in the upper quarter, [1/2, 1] x [1/2, 1]. Similarly,
the (j + 2)nd triangulation is defined by refining only those triangles in the
(j + l)st grid which are in the region [3/4, 1] x [3/4, 1], etc. (see Figure 4.1).
The spaces Jfk for k = j+1,... , J are defined to be the continuous functions
on il which are piecewise linear with respect to the kin grid. Note that this
introduces slave nodes into the computation, i.e., the vertices of the triangles
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14 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU

on the boundary of the kth refinement region which are not nodes for the
(k - 1) st subspace (see Figure 4.1). These nodes are slaves, since the values of
functions on these nodes are determined by the values of neighboring nodes and
the continuity condition on"the subspace. Thus, they do not represent degrees
of freedom in the subspace.

Figure 4.1
A mesh with two refinement levels

We shall first show that (A. 1) is satisfied. The argument in §3 gives that (A. 1)
holds for k = 1, ... , j + 1 since this is just the quasi-uniform case. In order
to complete the proof of (A.l), we shall introduce some additional notation.

Let us first define hk = 2~ even in the case when k = j + I, ... , J , so
that hk corresponds to the size of the finest triangle in the mesh defining .£k .
In addition, let ilk = (1 - 2J~k , 1) x (1 - 2J~k , 1). Notice that the mesh size
of the triangulation defining J(k , restricted to Q.k  is hk , and the functions
in ^ with support in cl/clk  for / > k are in Jlk .  Let J?k be the space
of piecewise linear functions (which vanish on 9Q) defined from the regular
uniform triangulation of Q of size hk . Note that both ^k and J(k have the
same mesh restricted to i\k and Jfk c Jik . Finally, Qk will denote the L
projection onto j$k .

We prove (A.l) for k > j + 1. Let v e J£, I = k - 1, and consider the
function w eJf¡ defined by

f Q,v       at the nodes of .£, in the interior of Q,,
w = <

I v at the remaining nodes of .£,.
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PARALLEL MULTILEVEL PRECONDITIONERS 15

By the definitions of Q¡ and w , and the triangle inequality,

||(/-Ô,H < \\v-w\\ = \\v-w\
(4.1)

where

a,
< (I-Qi)v\\ + W,v-w a,

\a  denotes the L   norm on £2,. Clearly,

(I-Q,)v\\ < ChtA{'2(v,v) < C¿;lí2Al/2(v,v),
and hence it suffices to estimate the second term on the right-hand side of (4.1J
by the first. But by the definition of w ,

2
Q,v-w      < Ch) J2(Qiv(x¡) - v(x¡))2,

where the sum is taken over the nodes x\ on dcl¡. Clearly,

h2y£(Q,v(x¡)-v(x¡))2<C (I-Q,)v

This proves (A.l).
We next define a sequence of operators {Rk} satisfying (A.2). For k < j,

Rk is given by (3.2). Let {xk} denote the nodes of the kth grid, and let {cf>k}
denote the corresponding nodal basis functions. For each node xk with k > j
we define

K,= hk    ifx[eÇlk,

K   i{4£~ñjñm+x,j<m<k.
Note that if xk ecik/Q.k+x, then xk is a node for each finer subspace and gets
assigned the same value hk . We then define

(4.2)

We will show that

(4.3) cfl

Rku = hkY,hki(u'<t>k)(t>k-

A, < (Rku, u) < cx Â, for all u e .
"k nk

holds with c0 and cx not depending on k . We proceed as in §3. For ¡ie/t,
we define 5 by (3.3) and (Gk)lm = (tpk, <f>k). Let Dk denote the diagonal
matrix with diagonal entries {hkl}. As in §3, JZ/^/"/ = (^"> ") is a norm
which is uniformly equivalent to ||w||2 = (Gk5, 5) . It immediately follows that
there are constants c0 and cx, not depending on k , satisfying

c0 (Dk5, 5) < (D~klGk5, Gk5) < cx (Dka, 5).
Inequality (4.3) then follows from

(D~k{Gk5, Gk5) = EVA"' A)2 = hk2(Rku> ")

and (3.1). Hence (A.2) holds for Rk given by (4.2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU

We can apply Corollary 3 to show that K(38A) < CJ , where 38 is defined
by (2.13) with Rk and J(k as above. For this application, we have not been
able to prove the regularity and approximation assumption (A.3).

For the purpose of implementation, it is more efficient to reorder the terms
defining 38. For k = j, ... , J let y^ be the nodes of Jfk in Cik , and for
k < J let yfk be the nodes of J?k in Q.k/Qk+X . For a function u e ^#, it is
not difficult to see by induction on / that

7-1

(4.4)

38u = \VRkQku+  E (". W/
k=\

J-\
+ £

k=j
'»!E ^("'^)^-+  E ("'V

where y( = hk2 Ylm=k nm • Note tnat tne Rk terms m tne nTsX sum °f (4-4)
involves the same sums which appear in the uniform case of §3. In addition,
the calculation corresponding to the kth mesh in (4.4) for k = j, ... , J only
involves nodal basis functions on Qk .

Finally, we define a simpler preconditioner 38 by replacing yk  by one in
(4.4), i.e.,

(4.5) 'h = ED"'^+ E E("'^t)4f
k=J+l4eAk=\   i

Note that in (4.5), the kth refinement grid only adds a sum over the nodes in
Ü, . We note that for u e J? , by (4.4),

y-i
/ n2

k=\    I
'"» ") = EE("' h) + E("'^)

+ E
fc=7

'')'E ^(M><^)2+  E ("'^
4 e^,' 4e-^/A'

with an analogous expression for 38.  Clearly,   1 < yk < 4/3, from which it
follows that

4'u,u)< (38u, u) < 'u, u)   for all u e J!.

From the discussion in §3, it is clear that the first sum in (4.5) is a precon-
ditioner for the problem on Jf., i.e., the finest uniform grid. As we shall see,
this sum can also be replaced by any uniform preconditioner for A, without
adversely affecting the asymptotic behavior of the overall condition number.
Indeed, let the operator R. be a preconditioner for A- (satisfying (2.19) and
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the second inequality of (A.2)), and define for ueJK,
j

(4.6) Bu = RJQju+ E   E("
k=J+lx>kçjrk

Note that by Remark 2.3, the operator

>',

Ru = ERkQk"
k=j

~ 2 ~
satisfies K(BA) < C(J - j) . We will show that B is uniformly equivalent to
B . Reordering the terms as in (4.4), we have

Bu = RjQJu+  Y, (VJj-l)(u,<l>lj)<l>lj
xeA'

7-1

(4.7) +  E
k=j+\

E jí(»>l>k)<t>k +

<^kx',,eytk
l -, J

{u,(f)k)cj)k

+ J2 (u,<i>j)(i>j.
x'jeSj

It clearly follows from (4.7) and 1 < yk < 4/3 that the operator B is uniformly
equivalent to the operator

/, ,/Bu+  ¿2 (u^'jW'j
x\€Jf

But, by (3.5) and (2.19),

¿2 (u, <p)T < Ck~ \\QjU\\ < C(A-xQjU, QjU)

<C(RjQju,Qju)<C(Bu,u),

from which the equivalence of B and B follows. Thus, K(BA) < C(J - j) .

Remark 4.1. Clearly, we could generalize this example to include much more
general refinements for problems in R as well as higher-dimensional space.
Note that the refinement only changes the preconditioner 38 (resp. B ) by
adding additional terms in (4.5) (resp. (4.6)) involving nodes from the refine-
ment region. Thus, this approach is well suited to dynamic adaptive refine-
ment techniques. New refinement regions add terms to the sum, whereas the
"de-refinement" of existing regions only takes away terms from the sum. The
operator B is even more useful in this context, since it allows the easy inclusion
of this refinement preconditioner into existing large-scale uniform grid codes.
Preconditioners for the uniform grid already available in the existing code can
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be used, supplemented with additional routines implementing the terms due to
the refinement.

5. Numerical results

In this section, we provide the results of numerical examples illustrating the
theory developed in the earlier sections. To demonstrate the performance of the
proposed algorithms, we shall provide numerical results for a two-dimensional
problem with full elliptic regularity and one with less than full elliptic reg-
ularity, a two-dimensional example with a geometric mesh refinement and a
three-dimensional example. In all of the reported results, the experimentally
observed behavior of the condition number of the preconditioned system was
in agreement with the theory presented earlier. In the first example, we also
compare the results of the new method with those obtained using the hierarchi-
cal preconditioning method [20] and a classical V-cycle multigrid preconditioner
[4].

For our first example, we consider Problem (1.1) when L = -A = -d /dxx -
2 2d /dx2 and Q is the unit square. This example satisfies the regularity and

approximation assumption (A.3) for a = 1 as well as (A.Í).
We will use a finite element discretization of ( 1.1 ) and develop a sequence

of grids in a standard way. To define the coarsest grid, we start by breaking
the square into four smaller squares of side length 1/2 and then dividing each
smaller square into two triangles by connecting the lower left-hand corner with
the upper right-hand corner. Subsequently, finer grids are developed as in the
introduction, i.e., by dividing each triangle into the four triangles formed by the
edges of the original triangle and the lines connecting the centers of these edges.
The space J?l is defined to be the set of continuous functions on Q which are
piecewise linear on the z'th triangulation and vanish on dQ.

We shall compare three preconditioners for (1.2). The first preconditioner
38 is defined by the multilevel algorithm (2.13) with Rk given by (3.2) and fits
into the framework considered in §3. For comparison, we also provide results
for the hierarchical preconditioner BH [20] and a preconditioner BM defined
by a standard symmetric V-cycle of multigrid [4]. The multigrid algorithm uses
one sweep of Jacobi smoothing whenever a grid level is visited, and hence results
in two smoothing steps on each grid for each evaluation of the preconditioner.
The multigrid algorithm uses hQ = 1/4 for the coarsest grid, while both the
hierarchical and the parallel multilevel algorithms use h0= 1/2.

Table 5.1 gives the condition numbers K of the preconditioned systems
BHA, 38A, and BMA corresponding, respectively, to the hierarchical pre-
conditioner, the preconditioner defined by (2.13), and the V-cycle multigrid
preconditioner. We note that for these examples, a preconditioned conjugate
gradient algorithm using the new preconditioner would be expected to take twice
as many iterations as the corresponding algorithm using the V-cycle of multi-
grid. However, even in a serial implementation, the multigrid algorithm involves
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Table 5.1
Condition numbers when Q. is the square

K
1/16
1/32
1/64
1/128

K(BHA)

19
31
43
58

K(38A)
7.0
8.1
9.0
9.8

K(BMA)

2.3
2.4
2.4
2.4

substantially more computational effort per step. The new method outperforms
the hierarchical preconditioner.

This test problem illustrates an example where all three methods work rea-
sonably well. However, we note that 38 is preferred over standard multigrid
when the parallel aspects of the algorithm are important. In addition, 38 gen-
eralizes to higher-dimensional problems without convergence rate deterioration
(see Table 5.5) and hence would be preferred to the hierarchical method in
three-dimensional computations.

We next consider the above preconditioners on a problem with less than full
elliptic regularity. We again consider (1.1) with L given by the Laplacian and
Q equal to the "slit domain", i.e., Q is the set of points in the interior of
the unit square excluding the line {(1/2, y) \ y e [1/2, 1)}. This example
does not satisfy the a priori estimates used in the proof of the regularity and
approximation assumption (A.3) for a > 1/2. However, assumption (A.l) is
satisfied.

Table 5.2
Condition numbers when Q is the slit domain

hj
1/16
1/32
1/64

1/128

K(BHA)

14.6
25.17
38.2
53.8

K(38A)
7.9
10.0
12.6
14.9

K(BMA)

2.6
2.9
3.1
3.4

Table 5.2 gives the condition numbers K  of the preconditioned systems
38A , and BMA corresponding, respectively, to the hierarchical precon-BHA

ditioner, the preconditioner defined by (2.13), and the V-cycle multigrid pre-
conditioner. The results are in general agreement with the theoretical estimates

K(BHA) < CIn2(l/hj),

K(38A)<C\n(l/hj),
for the respective methods.
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We next provide numerical results for the refinement example of §4. We
once again consider the solution of ( 1.1 ) with L the Laplacian and Q. the unit
square.  The sequence of spaces j£x c • ■ • c J£} are as developed in §4 and
provide results for the preconditioner 38 defined by (4.5). As noted in §4,
some such refinement would be necessary if, for example, the function / had a
¿-function behavior at the point (1,1). Table 5.3 gives the condition number of
the preconditioned system 38 A as a function of the mesh size of the uniform
grid h. and the number of refinement levels /. The size of the finest triangle
can be computed by dividing the uniform mesh size by 2 . In all of the runs,
the coarsest grid level corresponded to h0 = 1/2. The numerical results seem
to indicate that an increase in the number of uniform levels has a greater effect
on the condition number than an increase in the number of refinement levels.

Table 5.3
Condition numbers for the refinement example

1=1 1 = 2 1 = 3 1 = 4

1/8
1/16
1/32
1/64

6.3
7.7
8.8
9.6

6.5
7.9
9.0
9.7

6.7
8.05
9.1
9.8

6.9
8.1
9.2
9.9

We next present results for the refinement operator defined by (4.6). The
problem and sequence of subspaces are as just described but only the subspaces
^k, k > j', are used. In (4.6), we use a multigrid preconditioner (cf. [4])
scaled by 4 to define R , the operator on the finest uniform grid. The scaling
was introduced to balance the size of the two terms in (4.6). Table 5.4 gives the
condition number of the preconditioned system BA as a function of the mesh
size of the uniform grid h- and the number of refinement levels /.

Table 5.4
Condition numbers for BA using multigrid preconditioning on level j

h> 1= 1 1 = 2 1 = 3 1 = 4

1/8
1/16
1/32
1/64

4.3
4.7
4.9
5.0

6.0
6.7
7.0
7.1

6.4
7.6
8.4
8.5

6.6
8.1
9.2
9.6

As a final example, we illustrate the preconditioning technique on a three-
dimensional problem. We consider a Galerkin approximation to the Laplace
equation

-Am = f   in Q,
u = 0   on <9Q,(5.1)
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where A = d2/dx2 + d2/dy2 + d2/dz2 and £2 is the unit cube. We define
the coarse mesh by dividing Q into eight smaller cubes of size h0 = 1/2.
Successively finer meshes are formed by dividing each cube of a coarser mesh
into eight smaller cubes. The finite element space ¿#k is defined to be the set
of continuous functions on Q. which are trilinear with respect to the kth mesh
and vanish on 90.

Table 5.5 gives the condition number K of the preconditioned system 38A
where 38 is defined by (3.6). This example satisfies full elliptic regularity, and
the regularity and approximation assumption (A. 3) holds with a = 1 . Thus,
the theory predicts only a logarithmic growth in the condition number, which
is in agreement with the reported results. Note the finite element spaces are of
rather large dimension, in fact, the h} = 1/64 example has over a quarter of a
million unknowns.

Table 5.5
Condition numbers for the three-dimensional example

K(38A)

1/8
1/16
1/32
1/64

4.1
5.2
6.0
6.6
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