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A b s t r a c t  
A class of parallel, multisplitting accelerated overrelaxation (AOR)  method is set 

up for solving large-scale system of nonlinear algebraic equations A q~( x )+B~b( x ) -~ b, 

Under certain conditions, we prove the existence and uniqueness of the solution of this 

system of  nonlinear equations and set up the global convergence theory of the new 

method. 
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I. I n t r o d u c t i o n  

Many weakly nonlinear elliptic partial differential equations such as the Stefan problem 

(see [2, 5, 6]), when being discretized by the finite element method or the difference method, 

can often generate the following large-scale nonlinear system of algebraic equations 

A c p ( x )  + B t p ( x )  = b ,  A , B E L ( R " ) ,  x ~ b E R "  (1.1) 

where 

~0 (x>-= (~0, (x , ) ) ,  ~ (x) = (~, (x,))  ER" 
r 

are continuous functions, but may have discontinuous derivativeg, x is the unknown vector 

while b is a constant vector. 
By making use of the matrix multisplitting methodology (see [1]), White.(see [2]) designed 

a kind of paralled nonlinear Gauss-Seidel method in" 1986 for solving this class of special 
problem being of important value in practice. This method has shown good numerical effect in 

concrete implementation. 
In this paper, by ihtroducing relaxation parameters in the method proposed in [2], we set 

up a class of parallel mnltisplitting accelerated overrelaxation (AOR) method for solving the 
large-scale nonlinear system of algebraic equations (1.1). Since there are two parameters can be 

arbitrarily chosen in the new method, it is then much more flexible and practical. Moreover, 

faster convergence rate can be resulted. Corresponding to particular choices of the relaxation 
parameters, the new method not only can include the parallel nonlinear Gauss-Seidel method 

given in [2], but also can generate a lot of practical and efficient parallel methods such as 

675 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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parallel multisplitt!ng extrapolated Gauss-Seidel method, pai'ailel multisplitting successive 
overrelaxation (SOR) method a n d  so on, for solving the nonlinear system of algebraic 
equations (1.1). Under suitable conditions, the existence anduniqueness of the solution o f  
nonlinear system of algebraic equations (1.1) are proven, and the global convergence theory of 
the new method is established thoroughly. 

II. Es tab l i shment  of  the  M e t h o d  

Denote 

A =  (a,), B =  (b,~), D =  d i a g ( A ) ,  E ~- d iag  (B) 

, ~,,, im;~))EL(R ") Given a positive integer a (a<-~ni, for k = 1, 2, "'" ,c t, let L , =  xl~ j ,  M~=  be 
strictly lower triangular matrices, U'~= ( u ~ ) ,  I,%= ( l,r~J ' )  EL(R ' )be  zero-diagonal matrices 

and E ~ =  d i a g  (e~ J') , e~ *) e~ *~ g L  (R" , . . . ,  ) ) be nonnegative matrices. If there h o l d  

(i) A = D - L , - U a ,  (k=  1,2, . - - ,a) ;  

(ii) B = E - M ~ - V ~  (k= 1,2,.-.,a>, 

(iii) de~(D)~0,  de~(E)~0,  

(iv) ~ Ek= I (IEL (R "a) is identity matrix ). 
k 

we call the collection (D-Lk,U~I E-Mr,, l'r~l E~) (k'= I, 2,..-,a) a multisplitting of the 

matrix pair (A; B)I 
Based on this novel concept, we presently construct the following parallel multisp]itting 

AOR (accelerated overrelaxation) method for solving the large-scale nonlinear system of 

algebraic equations (].l): 
Method Given initial vector x*~R*,for p=0, i, 2, ""; compute 

where 

x, '§ -- E ~ ( i=1(1)n)  (2.1) 

x['~=cor ~ ' ~ + ( l - - - ~ - ) x ~  

• l W , k  . ~ , l t ,  Ir ..I.. / = . ~  T t l - - r ) X ~  
( i = l ( 1 ) n t  k = l , 2 , . . - , a )  } (2.2)  

wlaile j~ , t , ( i=  l ( 1 ) n , k =  t , 2 , - . - , a )  is successively determined by the system of equations 

l .  k )  ~ t '~pg/c~  ..Li__t lO .h [ ~ap , k a . ~ , ( ~ , " b ) + b . 9 , ( ~ P  ~ ) - y 2 ,  E- .  ~ ,~ - j  / - - , , , .  ~j~-$ ) ]  
$ (f 

~ (It.) # [u. qJj(x,) +vd~?j(x~) ] =b, 
J,~f  

( i=  1 (1)n~ k =  1 ,2 , . . . , a )  (2.3) 

Here, rE(  0, Go ) is called a relaxation factor while co E (0,  oo) an acceleration one. 
Clearly, (2.2) can be equivalently expressed as 

x, ''~ = co~,"~ + ( 1  -co)x,' ( i=1 (1 )n ,k= t ,2 ,  . . .  , ~ )  
(2.4.~ 

~ p , k  . ~ , p , k  . ,  - - . ~ ,  + (1 --r) x: J 
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So the new method is practically proceeded with the formulae (2.1), (Z3) and (2.4), too. 
In the parallel method defined by (2.1), (2.3) and (2.4), corresponding to particular chqices 

(0,1) ,  (0,co),  (1 ,1) ,  (1, co) and (co,co) of the parameter pair (r,co) , practical and efficient 
parallel multisplitting relaxed methods, tlaat is, Jacobi method, extrapolated Jacobi method, 
Gauss-Seidel method (see [2]), extrapolated Gauss-Seidel method (see [2]) and SOR method, 
for solving the large-scale nonlinear system of algebraic equations (1.1) can be respectively 
obtained. Particularly, as ~o(x)=x,  B----I . the new method naturally reduces to the parallel 
multisplitting AOR method set up in [3] for solving the large-scale nonlinear system of 
algebraic equations A~'I-~p (ar = b  . 

III. Preliminary Knowledge 

In the subsequent discussions, we will carry on the notations and concepts used in [1] and 
[2]. Moreover, ( . )  and P ( . ) a r e  used to denote the comparison matrix ~nd the spectral radius 
of the corresponding matrix, respectively. Besides, the following basic assumptions on the 
nonlinear system of algebraic equations (1.'1) are necessary: 

(AI) .A~_L(R') is and H-matrix; 
(A,)  q~,lO: R*-->R" are continuously diagonal mappings, and for~/=,  yER* , there have 

{ l ~ (x )  - ~ 0 ( y ) I > ~ e l x - Y l ,  e=diag(ex ,e~ , . . . , e , , )>~O 
J 

I~(x) -,p(y) I >~rl lx-Yl ,  ~=diag(r~l,.O~,'",rl,)>~ ~ 
(As) •: =l D I e + I E I r/is a positive diagonal matrix; 

(A, )  s g n  (a,,b,) (ep, (s) - qo, (t) ) (~, (s) - qJ, (t) ) 9 0  ( V  s,  tER ' I  i = 1 (I) n); 

(A~) <A>IDI-x I E I ~ < B > j  
(As) For x , y , z E R  n, t E R  1 , there have 

I~o(tx+ (1 --t)  y )  --tp (z) I~<ltl Iq~(x) -qJ(z)  I -I- I l - t l  I ~o(y) - ~ ( z )  I { 
1~0 (tx + (1 - t )  y) -,p (z) I ~<ltl I~k (x) -10 (~-)1 + I 1 - t l  t,k (Y) - ~  (z) .  

To obtain the existence and uniqueness of the solution of the nonlinear system of 
algebraic equation (t.1), as well as to establish the global convergence theorem about the new 

method, the following lemmas are indispensable. 

Lemma 1 Let gzR~-->R" be defined by 

g t x )  ---- Dq~tx) + eq~(x) " (3.1) 

Then, 
(1) if the basic assumptions (A2) -.CA,) are satisfied, g Rn-->R" is a homomorphism and 

there holds 

Ig (x )  - - a tY) I  = IDI I ~o (-x) - q o ( y )  l + ' l E I  I,P(x) - ~ ( Y )  I 

> ~ P I x - y l ,  V x , y E R U  (3.2) 

(2) if the basic assumptions (A,) and (A6) are satisfied, there holds for any positive integer 

N. vectors x ,  xct)ER n and real numbers t~ER ~, i =  1 ( l~Ntha t  
A' "N 
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N 

provided ~ t~= 1 . 
I1=1 

Proof  Conclusion (1) can be easily got through direct deduction. Now, we verify 
conclusion (2) by the induction. 

When N = 1, (3.3) holds obviously. Suppose (3.3) be true for N=m. then as N = m +  1, by 
denoting 

rr~ ~ t  

,=, , . ,  T (m) 

and observing 
m + l  

~=1 

Ill 

we can inductively obtain 

<~1Tr r I a (Xc"~)  - a ( x )  1-1-I t,,+~ I I tT(xr - g ( x )  I 

lt, l i..q(x,' ~ - d ( x )  r - - l - l t , . . , . , t f . .q(x~-"")-g(x) l  < T"= lY-7, IT<,,, I 
i = l  

m + l  

= ~ It, I I.q(x~' ) - a ( x )  I 

This shows conclusion (3.3) holds for N = m +  1. Therefore, (3.3) is proved by the induction till 
n o w .  

L e m m a  2 lu Let A E L i R " )  be an M-matrix. 

.,~=Bk--C~.(k= 1 , 2 , . . .~a )  

be weak regular splittings of  matrix A. Then there holds 

t 

IV. Global Convergence Analysis  of  t h e  P a r a l l e l  Method 

First of  all, we prove the existence and uniqueness of  the solution of  the nonlinear system 
of  algebraic equations (1.1) in R". 

T h e o r e m  1 Assume the basic assumptions (A0- - (As )  be satisfied, then for any right- 
hand side vector bER",  the nonlinear system of algebraic equations (1.I) has unique solution 
x* in R". 

Proof  Denote 

G = D - A ,  [ f = E - B  
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As A 6 L(R") is an H-matrix. 

P(IDI-IIG])=o(I(31 ] D [ - ' ) < [  

In light of the Perron-Frobinius theorem in the nonnegative matrix theory and the continuity 

of the spectral radius, we know that .for sufficiently small ~ > 0  there holds 

pa=P(lGllDl-l+3ee~')<!, e=(1,1,...,l)~6R" (4.1) 
and there exists a positive vector x~6R" such tha, t 

P(I G I I DI -' +3ee') x , =  p ,x ,  (4. z) 
Let @sRn-~R". be defined by (3.1). For arbitrarily given initial vector xoER ", weconstruct 

an iterative sequence {xp} according to 

g(xp+l)=b. -kGq~(xp) .FHO(x  ~') ( p = 0 , 1 , 2 , . . . )  (4.3) 

Remembering Lemma I (1), it is easy to see that {x~. is uniquely determined in R" and there 

exists c ry0  such that 

I g(x') - g ( x  ~ I ~<c,x, (4.4) 

Noticing the basic assumption (A~) being also equivalent to 

IHI~<]GI ] D I - ' I E ]  (4.5) 

by making use of (3.2) and (4.2), it can be got that 

la(x '+') - a ( x ' ) I ~ < I G I  I w (x ' ) - q~ (x " - ' ) I  + IH 110 (x ' ) -O (x ' - ' )  I 
- - IGI  IO l - '  I m(xP) -g (xP- ' ) I - t - ( I  ~ I -  IGIIDI- ' IEI)I  ~ (x") -~o(x '- ' )  I 
~<IGI IDI-11 g (x ' )  - m ( x ' - ' )  I 
~<([GI IDl-'-I-cSee~')"lg(x ') - g ( x ~  I 

<~. P~Pxs, 

Hence, for any positive integer q, it holds 

I g(x,+~ +') - g ( x ' )  I < ~ ~ P ~ x ,  (4.6) 

Inequality (4.6) shows that { g ( x  p) } is a Cauchy sequence in R". By Lemma l(l) again, we see 

that g: R"--~R" is a-homomorphism. Therefore, ~x p} ls a Cauchy sequence in R", too. The 

above demonstration shows that l i m x  p exists. Write l i m x P = x *  
p - - ~  cx~ p- - ) .  o o  

Now, taking limits in both sides of (4.3), we immediately know that x* 6R" is a Solution 
of the nonlinear system of algebraic equations (l.l). 

Let y*6R*  be another solution of the nonlinear system of algebraic equations (1.l). By 
using (3.2) and (4.5), and through simple calculations, we get 

I g(x*)  - ~ ( y * )  I~<1GI I DI -' I ~(x*)  - g ( y * )  I 
or equivalently, 

( I -  I GI I D I - ' )  I g(x*) -g (Y )  I~0  (4.7) 

Considering p(  t GI I D1-1) < l ,  there holds ( I - -  I GI I D1-1) - ' />0. Combining this with 
(43) there has 
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o(x*) =a(y*)  

Now, the homomorphism property g:R~.~R "~ implies 

This shows that ~*~R ~. is the unique solution of the nonlinear system of algebraic equations 
(i.1) in R". 

Presently, we discuss the global convergence of the new method. 
T h e o r e m  2 Let the basic assumptions (A,) - (A,) and (A,) fiold, and ( D - L ,  , 

U ,  E-M~, ,  I,r~ E ~ ) t i c =  1 ,2 , . . . , a )  b e . a  multisplitting of the matrix pair (A; B) 
satisfying 

<A>=IDI-IL, I-IU~I=IDI-IGI (k=  1 , 2 , ' - ' , a )  (~1.8) 

IM, I~IL~I IDI-XlEI, IV~I<~IU~IIDI-aIEI (k-- ~,2,...,a) (4.9) 
sequence {x~} starting from any initial vector x~ and generated by the Then, the 

parallel multisplitting AOR method converges to the unique solution x*ER" of the nonlinear 
system of algebraic equations (1.1) provided the relaxation parameters r and co satisfy 

O~r~co, O<co<2/ (I +P( IDI - ' IGI )  ) (4.10) 

P r o o f  (4.9) obviously implies the validity of the basic assumption (As), so in light of 
Lemma 1 the nonlinear system of algebraic equations (1.1) has unique solution ~r in Rn. 

Noticing (2.3), x*ER" evidently obeys 

- -  Jill q)t(Xi)-I-m,$ I/).~(Xi) ] 
$r 

-- +v~r C j ( x i )  ] - b ,  
J§  

( i =  1 (1)n; k = l , 2 , . . . , a )  (4.11)  

By subtracting (4.11) from (2.3)and making use of (3.1), there has 

I g ( x ' , * ) - a ( x * ) I  ~<lLkl I ~o (~',*) --~o(x*)I + IM~I I~(~ ~,*) - r  (x*) I 
+ IU, I l~0(x') -w(x*)I  § ~11 ~ (0c~)-~ (x*) I (4.12) 

From (3.2) we have 

Iq~(~P'~)-qJ(x*)l=lDl-f~lg(~'e)-9(x*)l-lEIl~(~P'~)-O(x*)l) } (4. t3) 

I ~0(xP) -~0(x*)I---IDl-~(Igl (x~) - a ( x * ) I -  IEI I~(xp) --:.~ (x*)I) 

Substituting (4.13) into (4.12) and through simple manipulations, we obtain 

I a (xp ,~) -g(x*)I  ~<IL~I [DI-' I a(~' ,  ~) - a ( x * ) [  + IUel I D I-' I g ( x P ) - a ( x * )  I 
+ (IM, I -  IL, I IDI-'IEI) I~(~ ~,~) - ~ ( x * )  I 
+ (I I'r~l--'1 U~I IDI-~IEI)I ~(xP) - ~ ( x * )  I. 

Now, using (4.9), there immediately have 

I a(x',*) - g(x*) I ~<IL, I IDI-' I a (~ ' ,  ~) - a ( x * )  I + I U, I IDI-' I g(x ' )  - a ( x * )  I 
(4.14) 
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By (Z2) we see that 

Considering (2.4) and making use of Lemma 1(2), there hold 
^ 

I o ( x p , * ) - o ( x * ) I  ~.<co I o ( x  ~,*) - g ( x * ) I  + I x-col I a(xP) - o ( x * )  I 
7" 

Combine (4.14) and (4.16), we can get 

[gtxv,k) - . q ( x * ) [ ~ < [ D I - - r [ L k [ ) - ~ [  [ l--col IDI + ( c o - r ) [ L , I  + c o l U ,  I ] 

�9 IDI - '  1 9 ( x  ~') - . q  (x*)  I ( 4 . 1 7 )  

Write 

~ (r,co) = ~_..] E, (I D. I - r lL ,  I)-*[I x-col ID'I +(co-r ) IL,  I +colU,[ ] 
k 

From (4.17) there holds 

Y ' ]E . l# (xV ,  ~) - # ( x * ) I  ~<1 Dt.C~ (r ,co)IDI -~ O(x p) - O ( x * )  I 
i, 

Presently, for each iE{ 1,2, . . - ,n} , by Lemma 1(2) we has 

,.ql Y~ ,  e l  k) 

~ e', *) Ig , (x t  ' ~ ) - o , ( x ? )  I 
It 

Making use of (4.18), we can eventually'obtain 

Io(x p+* ) -O(x)  l<~lDl~(r,co) IDI-' Io(x p) - O (x*) I 

Let 

A(co) = l ~-(1-  I l-col) I D [ -  IGI, 

B~ (r, co) = 1 (  IDI - r lL~ l ) ,  

l C~(r,co) = ~ [ I t  -col IDI + (co--r) IL~I-t-col Uk I ], 

(4.18) 

(4.19) 

P( I Dl,~ (r ,co) IDI- t )=P(~(r ,co))< l 

(k= 1,2, "'" ,a) 
Clearly, 

A(CO) = B~ (r,co) --Ck (r,co) (k=  | , 2 , . . . , a )  

are all weak regular splittings of A(co) EL(R",  and A(co) is an M-matrix provided r,co are 
within the region determined by (4.10). According to Lemma 2, there holds 
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Therefore, 

l i m a  (x p) = g (x*) 

The homomorphism property of the mapping gsRn-->R" then guarantees 

l i m x r = x *  
p "--> O<3 

Up to now, the proof of this theorem is thoroughly fulfilled. 
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