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Abstract
A class of parallel, multisplitting accelerated overrelaxation (AOR) method is set
up for solving large-scale system of nonlinear algebraic equations Ap(x)+Byp(x)=b,
Under certain conditions, we prove the existence and uniqueness of the solution of this
system of nonlinear equations and set up the global convergence theory of the new

method.
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I. Introduction

Many weakly nonlinear elliptic partial differential equations such as the Stefan problem
(see [2, 5, 6]), when being discretized by the finite element method or the difference method,
can often generate the following large-scale nonlinear system of algebraic equations

Ap(x)+By(x)=b, A,BEL(R"), »,bER" (1.1)

where

p(xy=(g:(x:)), $x)=(¥s(x))ER" |
are continuous functions, but may have discontinuous derivatives, x is éhe unknown vector
while b is a constant vector. ‘

By making use of the matrix multisplitting methodology (see [1]), White (see [2]) designed
a kind of paralled nonlinear Gauss-Seidel method in- 1986 for solving this class of special
problem being of important value in practice. This method has shown good nurmerical effect in
concrete implementation.

In this paper, by introducing relaxation parameters in the method proposed in [2], we set
up a class of parallel multisplitting accelerated overrelaxation (AOR) method for solving the
large-scale nonlinear system of algebraic equations (1.1). Since there are two parameters can be
arbitrarily chosen in the new method, it is then much more flexible and practical. Moreover,
faster convergence rate can be resulted. Corresponding to particular choices of the relaxation
parameters, the new method not only can include the parallel nonlinear Gauss-Seidel method
giveh in [2], but also can generate a lot of practical and efficient parallel methods such as
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parallel multisplitting extrapolated. Gauss-Seidel method, parallel multisplitting successive
overrelaxation (SOR) method and so on, for solving the nonlinear system of algebréic
equations (1.1). Under suitable conditions, the existence ‘and uniqueness of the solution ‘of
nonlinear system of algebraic equations (1.1) are proven, and the global convergence theory of
the new method is established thoroughly.

II. Establishment of the Method
Denote

A=(aij), B=(b,), D=diag(4), E=diag(B)
Given a positive integer a(agn), for k=1, 2, - »a, let Ly= (I{¥), M= (m5)EL(R") be
strictly lower triangular matrices,U,= (4{¥'), V= (V{¥)EL(R")be zero-diagonal matrices
and E,=diag(e,”, ef® -, el ) EL(R") be nonnegative matrices. If there hold.-

(i) A=D—Ly=U,; (k=112,"'. ’a);

(iiy B=E-M,-V, (k=1,2,,a)

(iii) det(D)+0, det(E)+0;

(iv) Y E.=I (IEL(R*) is identity matrix ),
k

we call the collection(D—Lg,Uss E—Ms, Vis Ei)(k=1,2,+,a)a multisplitting of the
matrix pair (A4; B): ' )

Based on this novel concept, we presently construct the following parallel multisplitting
AOR (accelerated overrelaxation) method for solving the large-scale nonlinear system of
algebraic equations (i.1):

Method Given initial vector 2°&€R"for p=0, 1, 2, *; compute

x:+l ___.;egb)x:’k i=1(1)n) (2.1)

where

@ @
r = 2t (1=

(i=1Q1)ng k=1,2,-,a) } .(2,2)'

2 =r8) (1 —r)x?
while 22°*(i=1(1)n,k=1,2,-,a)is successively determined by the system of equations

Gy (5?,{”’) +bu¢t (ﬁf’h )— 2 [ 1;’,"% (55“) +m;§)¢;(i§" )]

1<

— 2 [uif os(x}) +v,5 9,5 (x2) 1=b

It
(i=1)ny k=1,2,,a) (2.3)
Here, r€(0, ©°) is called a relaxation factor while @€(0,00) an acceleration one.
Clearly, (2.2) can be equivalently expressed as
A7 = oA +(1-0) K]

(i=1(1)n,k=1,2, +,a) } (2.4)

B =rRP (1 —r)x!
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so the new method is practically proceeded with the formulae (2.1), (2..3) and (2.4), too.

In the parallel method defined by (2.1), (2.3) and (2.4), corresponding to particular chqices
(0,1), (0,w), (1,1), (1,0)and (@,w) of the parameter pair (r,e) , practical and efficient
parallel multisplitting relaxed methods, that is, Jacobi method, extrapolated Jacobi method,
Gauss-Seidel method (see [2]), extrapolated Gauss-Seidel method (see [2]) and SOR method
for solving the large-scale nonlinear system of algebraic equations (1.1) can be respectlvely
obtained. Particularly, as @(%)=x, B=1I , the new method naturally reduces to the parallel
multisplitting AOR method set up in [3] for solving the large-scale nonlinear system of
algebraic equations Aax+¢(¥) =b .

III. Preliminary Knowledge

In the subsequent discussions, we will carry on the notations and concepts used in [1] and
[2]. Moreover, {-> and ©(-)are used to denote the comparison matrix gnd the spectral radius
of the corresponding matrix, respectively. Besides, the following basic assumptions on the
nonlinear system of algebraic equations (1.1) are necessary:

(A)) AEL(R®) is and H-matrix;

(A,) @,y; R*->Rrare continuously diagonal mappings, and for ¥ &, YER" | there have

{I‘P(x) —@(y) | =elx—Y], e=diag (e1,€2.% :8a) 20
’
lp(x) —p(¥) | >nlx—y|, 1=diag(mi, 025 214) 20
(As) P:=|D|e+| E|nis a positive diagonal matrix;
(A,) sgn (aubsr) (@i (s) —@i(t)) (Ps(s) —s (1)) =0 (V' s,tERYy i=1(1)n);
(Ag) <AID|E|<KB>s
(A,) For x,y,z€R", t€R!, there have
{lco(fx+(l —1y) —o(2) |<I|t|1o(®) ~p(z) | +]1—t| |p(¥) —0(2) |

gt (1 —1)y) =9 (2) | <[t |p(x) —9p ()| +]1—t]|9(¥) —9(2).-

To obtain the existence and uniqueness of the solution of the nonlinear system of
algebraic equation (1.1), as well as to establish the global convergence theorem about the new
method; the following lemmas are indispensable.

Lemma 1 Let g:R*>R" be defined by

g(x)=De(x)+Ep(x) (3.1)

Then,
(1) if the basic assumptions (A;) —(A.) are satisfied, g R" - R"is a homomorphism and
there holds

lg(x) —g(¥)|=|D||p(x) ~p(¥) | FIE||p(x) —p(¥)|
>P|x—-y|, Vx,yER" : (3.2)

(2) if the basic assumptions (A.) and (As) are satisfied, there holds for any positivé integer
N. vectors x, x®)ERr and real numbers #ER', i=1(1\N that

‘N
oSt )= ot | <3 gty g ) (3.3)
=1

t=1
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N
provided Y '#;=1.

=1
Proof Conclusion (1) can be easily got through direct deduction. Now, we verify

conclusion (2) by the induction.
When N=1, (3.3) holds obviously. Suppose (3.3) be true for N=m. then as N=m+1, by

denoting

x4

Tm=3"t, Xm™ >—Z,‘
§=1

fml

T(m)

and observing

m+]
Z txO=Tmm X 4t am+h

f=1

T ttpa=1, }-_—: T\vn) =
we can inductively obtain
o Srw)—g(@) |=19(T® X = +tnnz®D) —g(x)|
=l

<IT™ ! g(X ™) —g(®) |+ |tms] |g(x™+D) = g() |

<iT™ 12 g ) =) |t |9 0) —g ()|

m4l
=Y 1t]lgx®)—g(x)|

This shows conclusion (3.3) holds for N=m+ 1. Therefore, (3.3) is proved by the induction till
now.
Lemma 2! Let A€EL(R"} be an M-matrix.
A=B‘,—Ck(k= 1 ,2,'"',0)

be weak regular splittings of matrix A. Then there holds

P(Zk,‘ E,,B;'C,,)<1 )

IV. Global Convergence Analysis of the Parallel Method

First of all, we prove the existence and uniqueness of the solution of the nonlinear system
of algebraic equations (1.1) in R".

Theorem 1 Assume the basic assumptions (A,) — (As) be satisfied, then for any right-
hand side vector bBER™, the nonlinear system of algebraic equations (1.1) has unique solution
x* in R".

Proof Denote

G=D—-A4, H=E—-B
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As A € L(R") is an H-matrix. '
P(IDITGN=P(|GI D)<

In light of the Perron-Frobinius theorem in the nonnegative matrix theory and the continuity
of the spectral radius, we know that for sufficiently small 8>>0 there holds

P5=P(|G[ |D|_l+6eer)<1s e= (1,19"'9])T€Rn (4.1)
and there exists a positive vector a,€R* such that
P(|G||D| " +dee™)x,=PsX, (4.2)

Let g: R*—> K" be defined by (3.1). For arbitrarily given initial vector x°€R", weconstruct
an iterative sequence {x?} according to
g(xp“)=b+G(P(xp)+H¢(xp) (p=0,1,2,+) (4,3)
Remembering Lemma 1 (1), it is easy to see that {X*} is uniquely determined in R" and there
exists >0 such that
[g(x') —g(x*) | <ox, (4.4)
Noticing the basic assumption (A being also equivalent to
|H|<I|GIID|™|E] (4.5)
by making use of (3.2) and (4.2), it can be got that
|g(x?*') —g(x?) |<|G| |o(x?) —@(x”™") |+ H|p(x?) — 9 (x?7") |
=|G||D| | g(x?)=—g(x?") |+ (|H|~ |G| DI E])|p(xP) —p(xr") |
<|G||D| | g(x?) —g(x?7")|
<(|G]|D|'+dee™)?|g(x') —g(x°) |
< PiPx,
Hence, for any positive integer ¢, it holds

| g(xrrarh) - g (x7) | ST 25— P1%,s (4.6)

Py
Inequality (4.6) shows that {g(x®)}is a Cauchy sequence in R". By Lemma 1(1) again, we see
that g: R"—>R* is a -homomorphism. Therefore, {x?} is a Cauchy sequence in R", too. The

above demonstration shows that limx? exists. Write lima?= x#*
p—>00 P—>0Q

Now, taking limits in both sides of (4.3), we immediately know that x* €R"is a solution
of the nonlinear system of algebraic equations (1.1).

Let y*€R® be another solution of the nonlinear system of algebraic equations (1.1). By
using (3.2) and (4.5), and through simple calculations, we get

|g(x*) —~g(¥*) I<IG| D] | g(x*) —g(¥*) |
or equivalently,

(I—=1GI1D]™) | g(x*) — () <0 (4.7)

Considering p(|G||D| ')<1, there holds (J—|G||D| ') '>0. Combining this with
(4.7) there has
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g(x*) =g(y*)

Now, the homomorphism property g:R®*~»R"* implies

yh=x"
This shows that x*ER" is the unique solution of the nonlinear system of algebraic equations
(1.1) in R".
Presently, we discuss the global convergence of the new method.
Theorem 2 Let the basic assumptions (A:) — (A and (A¢) hold, and (D=Ls ,
Usw E—My, Vi Ex) (k= 1,2,..,g)be_a multisplitting of the matrix pair (4; B)
satisfying
¢A>=|D| = |Ly| = |Us|= DI =G|  (k=1,2,,a) (4.8)
Myl I Ea| |DITHE, [VelI<|Uel 1D E| (k=1,2,+,a) (4.9)
Then, the sequence {X?} starting from any initial vector x°€R™ and generated by the
parallel multisplitting AOR method converges to the unique solution x*€H* of the nonlinear
system of algebraic equations (1.1) provided the relaxation parameters r and @ satisfy
<r<n, 0<ol2/(1+P(| DI G)) (4.10)

Proof (4.9) cbviously implies the validity of the basic assumption (Aj), so in light of
Lemma 1 the nonlinear system of algebraic equations (1.1) has unique solution x* in R".
Noticing (2.3), &a*€ER" evidently obeys

au@i (%) Fbiup (%) = 3 [P o5 (x¥) +miPyp,(x%) ]
rES

=3 [y @, (%) toifys(x4) 1=b
Y
(I=1(1)ny k=1,2,,Q) (4.11)
By subtracting (4.11) from (2.3) and making use of (3.1), there has
| g(xP0%) =g (%) | | Le | 1@ (R24%) —@ (%) | + | Mul |9(Z2)) = (x*) |
+ (Ul |@(xP) —@(x*) | +| V| [ (2?) =y (x%) | (4.12)
From (3.2) we have
|@(32:%) —@(x*) | = |D| " (|g(X7*) ~g(x*) | — | E| |$(XP*¥) —p(x*) )
lp(%?) —@(x*) | =|D|™'(1g] (x*) —g(x*) | — | E| |p(x?) =9 (x*)|)
Substituting (4.13) into (4.12) and through simple manipulations, we obtain
lg(:;"’")—g(x*) I<ILaf | DI7 g (%%9%) —g(x*) [ +|Us| | D{ ™| g(x?) —g(x*) |
T ([ My —|Le] | DITHE]) [ (37:%) —p(x¥) |
T (Ve —1Usl DI E]) |$(x%) —p(x*) ],
Now, using (4.9), there immediately have
[g(xP%) —g(a*) || La| D] | g(%%:%) — g (x*) |+ |Us| | D] " | g(2?) — g(2%) |
(4.14)

} @
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By (2.2) we see that

- r T ,
xp,e=-c_oxv,=(1——a)x7 (4.15)
Considering (2.4) and making use of Lemma 1(2), there hold
[g(x?:*) — g(x*) | <@l g(x7*) —g(x*) | +|1—w| | g(2?) =g(x*) |
s oo N 1 wae
|9@n4) ~g(x%) | < -lg(x**) —g(x*) | +(1—)lg(x?) —g(*%) |
Combine (4.14) and (4.16), we can get

lgtx®*) —g(x*) | Dl ~r|Le|) [ | 1=0| | D]+ (@=r) | Lel +0|Us|]

1 D] g(%P) — g (x%) | (4.17)
Write

Z(r,0)=3 Ee(|D]~r|Le]) ' [I1—0@| | D]+ (0—r) | Le| +0|Us|]

From (4.17) there holds

'
S Eslg(xmt) — g(x*) |<|D| £(r,0) | DI~ g(x?)—g(x*)] (4.18)
k

Presently, for each i€{1,2,-,n} | by Lemma 1(2) we has

FACHOEINC T EPY OREAE S EFACHY

<Y e | gi(ae?* ) —gi(x7) |
|

Making use of (4.18), we can eventually obtain

lg(%7*") —g(x) |<|D| £ (r,0) |D| | g(x?) ~g(x¥) | (4.19)
Let
A(@)=-(1=[1=0]) |D| - |Gl
Bi(r,0) =5-(ID| ~r|Lsl),
Culr,@)=-[11=0l DI+ (@=r) | Ls| +0|U4] 1,
(k=l,2,""a)
Clearly,

A(@) =B (r,0) =C(r o) (k=1,2,,a)

are all weak regular splittings of 4(w) €L(R", and A(w) is an M-matrix provided r,®» are
within the region determined by (4.10). According to Lemma 2, there holds

p(|D|E(r,0) | D ™M=pP(L(r,0))<I
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Therefore,

limg(x?) =g (x¥*)
p—>C0

The homomorphism property of the mapping gt R®—>R" then guarantees
limx?=x¥*
p—>0co

Up to now, the proof of this theorem is thoroughly fulfilled.
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