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Abstract

Slice sampling provides an easily implemented method for constructing a Markov
chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major
drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which
can make it impractical when each evaluation is expensive or as the number of eval-
uations grows (geometrically) with the dimension of the slice sampler, and (ii) since
it can be challenging to construct multivariate updates, the updates are typically
univariate, often resulting in slow mixing samplers. We propose an approach to
multivariate slice sampling that naturally lends itself to a parallel implementa-
tion. Our approach takes advantage of recent advances in computer architecture,
for instance, the newest generation of graphics cards can execute roughly 30, 000
threads simultaneously. We demonstrate that it is possible to construct a mul-
tivariate slice sampler that has good mixing properties and is efficient in terms
of computing time. The contributions of this article are therefore twofold. We
study approaches for constructing a multivariate slice sampler, and we show how
parallel computing can be useful for making MCMC algorithms computationally
efficient. We study various implementations of our algorithm in the context of real
and simulated data.
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Chapter 1
Introduction

It is well known that the Markov chain Monte Carlo (MCMC) algorithm, which is

based on the Metropolis-Hastings algorithm, provides a very general approach for

approximating integrals (expectations) with respect to a wide range of complicated

distributions. When full conditional distributions are non-standard, the process of

constructing MCMC algorithms is far from automatic and even when it is possible

to sample from the full conditionals via Gibbs updates, the resulting samplers can

exhibit poor mixing properties. It is often the case that the Metropolis-Hastings

algorithm needs to be carefully tailored to each particular distribution and the

search for an appropriate proposal distribution with good mixing properties can

be time consuming. The slice sampler (Damien et al., 1999; Mira and Tierney,

2002; Neal, 1997, 2003a) has been proposed as an easily implemented method

for constructing an MCMC algorithm and can, in many circumstances, result in

samplers with good mixing properties. Slice sampling has been used in many

contexts, for example in spatial models: (Agarwal and Gelfand, 2005; Yan et al.,

2007), in biological models: (Lewis et al., 2005; Shahbaba and Neal, 2006; Sun

et al., 2007), variable selection: (Kinney and Dunson, 2007; Nott and Leonte,

2004), and machine learning: (Andrieu et al., 2003; Kovac, 2005; Mackay, 2002).

Slice samplers can adapt to local characteristics of the distribution, which can

make them easier to tune than Metropolis-Hastings approaches. Also, by adapting

to local characteristics and by making jumps across regions of low probability, a

well constructed slice sampler can avoid the slow converging random walk behavior

that many standard Metropolis algorithms exhibit Neal (2003a).
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A slice sampler exploits the fact that sampling points uniformly from the region

under the curve of a density function is identical to drawing samples directly from

the distribution. Typically, the slice sampler is used for univariate updates (e.g.,

sampling from a full-conditional density for a single parameter) or for updates to

one variable at a time in a multivariate density. While univariate slice samplers

may improve upon standard univariate Metropolis algorithms, univariate samplers

in general can mix poorly in multivariate settings, especially when several variables

exhibit strong dependencies. In such cases, the mixing of the sampler can be greatly

improved by simultaneously updating multiple highly dependent variables at once.

But, while multivariate slice samplers have been discussed Neal (2003a), they are

rarely used in practice as they can be difficult to construct and computationally

expensive to use due to the large number of evaluations of the target distribution

required for each update.

In this article, we explore the construction of simple, automatic multivariate

slice updates, which take advantage of the latest parallel computing technology

available. Since modern computing is moving towards massively parallelized com-

putation rather than simply increasing the power of individual processors, a very

interesting and important challenge is to find ways to exploit parallel computing

power in the context of inherently sequential algorithms like MCMC. While par-

allel computing has been explored in a few other MCMC contexts, for instance

to accelerate matrix computations when evaluating the target density at a single

location Yan et al. (2007), it has yet to be applied to multivariate slice sampling.

We consider strategies for constructing efficient multivariate slice samplers that

take advantage of parallel computing.

This article makes two primary contributions: (i) we develop multivariate slice

samplers and compare their performance to univariate slice samplers, and (ii) we

explore how new developments in parallel computing can be used to make compu-

tationally expensive multivariate slice samplers fast and practical. The remainder

of the paper is organized as follows. Section 2 outlines the univariate and multivari-

ate slice sampling algorithms, Section 3 examines two different software approaches

to parallelism (OpenMP and CUDA), Section 4 examines the performance of the

various parallel sampling algorithms in the context of both simulated and real data

examples invloving a popular class of Gaussian process models, and Section 5 sum-
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marizes the effectiveness of the different algorithms and points to future avenues

for research.



Chapter 2
Slice Sampling

In this section we provide a brief overview of the basic univariate slice sampler. We

then review some of the univariate slice sampler’s drawbacks; these motivate the

exploration of multivariate slice samplers. We describe multivariate slice sampling

and explain how exploiting modern parallel processing can greatly reduce the com-

putational costs of the multivariate slice sampler, resulting in a fast mixing Markov

chain which is also computationally efficient.

2.1 Univariate Slice Sampling

The univariate slice sampler outlined here and the multivariate slice sampler out-

lined in Section 2.2 use the same basic algorithm. Both augment the parameter

space with an auxilliary variable and then appropriately construct a region or

“slice” from which one can sample uniformly. However, the univariate version

augments each parameter with its own auxilliary variable. Hence, it will sample

variable-at-a-time using Algorithm 1. For simplicity, we outline the algorithm in

the context of a one dimensional parameter β. We then examine its performance

in a simple two dimensional regression example. Note that in this section and

those that follow we will use subscripts to denote the components of a vector and

superscripts to index iterations of the algorithm.

The ith update of β is constructed according to Algorithm 1 as follows, a

sample or “height” under the distribution, hi, is drawn uniformly from the interval

( 0, f( βi−1 ) ). This height, hi, defines a horizontal slice across the target density,



5

1. Sample h ∼ Uniform{ 0, f( β ) }

2. Sample β ∼ Uniform on A =
{ β : f( β ) ≥ h }

Algorithm 1: Univariate Slice Sampling Algorithm for Parameter β

A = { β : f( β ) ≥ hi }, which is then sampled from in step 2. In the univariate

case, the slice A is the union of possibly several disjoint intervals. Neal (2003a)

suggested two methods, stepping out and doubling, to construct the set A, for the

single dimension case. In both methods, an interval is constructed to approximate

the set A. To do so, an initial interval width is randomly oriented around the

starting location βi−1. The lower bound Li and upper bound U i are examined,

and if either f(Li ) or f(U i ) is above the sampled height hi, then the interval

is extended. Once the interval is constructed, a new location βi is selected from

(Li, U i ) provided βi ∈ { β : f( β ) ≥ hi }. The sample hi is then discarded, a new

sample hi+1 is drawn, and the process repeats. The resulting Markov Chain has

the desired stationary distribution (cf. Neal (2003a)).

In the step-out method, the lower bound is examined first and extended in steps

equal to the initial interval width (ω) if it is above the sampled height hi. The

upper bound is then examined and extended. Once the interval is constructed, a

shrinkage procedure is recommended after failed proposals to maximize sampling

efficiency. When a proposed location β̃ is drawn from (Li, U i ), but falls outside

the target slice (f(β̃) < hi), the interval can be reduced in size. If β̃ < βi−1, then

set Li = β̃. Likewise, if β̃ > βi−1, set U i = β̃. In this way, the interval collapses

on failed proposals. Given that the current location must be within the slice, the

probability of drawing a point from the slice then increases after each rejected

proposal. (For details on the doubling method, see Neal (2003a))

While the univariate slice sampler is easy to implement and has many good

theoretical properties, it can perform poorly in many cases, particularly when

parameters are highly correlated. We illustrate this with the following simple two

dimensional example.

Example 1 (Linear Regression with an Intercept) Consider a simple lin-
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Figure 2.1. Joint Posterior Density of the
intercept (α) and the regression coefficient
(β) from Example 1
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Figure 2.2. Autocorrelation for intercept
parameter (α) using a Univariate Slice
Sampler from Example 1

ear regression model. We assume that the errors εi are normally distributed with

known variance of 1 and are independent:

Yi = α + βXi + εi εi ∼ N(0, 1) i = 1, . . . , N

We complete the Bayesian model specification by placing uniform priors on the

intercept α and the regression coefficient β.

Gilks et al. (1996) noted that for this example, the posterior correlation of α and

β is given by

ραβ = − x√
x2 + 1

n

∑n
i=1 (xi − x)2

Therefore, by the above formula, we can control the mean and variance of the

predictor in our simulations to arbitrarily fix the posterior correlation of the α

and β parameters. Selecting a mean of 5.0 and a variance of 0.5, we generated a

dataset with ραβ = −0.989391.

MCMC sampling methods may be compared on the basis of effective sample

size (ESS) and effective samples per second (ES/sec) as described by Kass et al.
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(1998) and Chib and Carlin (1999). ESS is defined for each parameter as the total

number of samples generated divided by the autocorrelation time τ , given by:

τ = 1 + 2
N∑
i=1

ρ(k)

where ρ(k) is the autocorrelation at lag k. The summation is usually truncated

when the autocorrelation drops below 0.1, though more sophisticated approaches

are possible (cf. Geyer (1992)). ESS is a rough estimate of the number of iid draws

that are equivalent to the samples drawn.

Table 2.1. Comparison of algorithms for α and β from
Example 1. All algorithms were run for 5, 000, 000 samples.

Intercept α Coefficient β

Algorithms ESS ES/sec ESS ES/sec

Step-out SS 53825 1231 56766 1298

Random-Walk MH 12853 932 13480 933

Multivariate SS 4312529 18400 5000000 21333

For comparison, we ran three algorithms to generate samples from the posterior

distributions of α and β. The step-out slice sampler was run with interval widths

of ω(α, β) = (0.1, 0.02). A standard univariate random-walk Metropolis Hastings

sampler was run with proposal variances: σ(α, β) = (0.0067, 0.00026). Finally, the

multivariate slice sampler, outlined in Section 2.2, is included here for comparison.

It was run with interval widths of ω(α, β) = (0.074, 0.015). The interval widths

and proposal variances were tuned to maximize ES/sec. The highly correlated

posterior distribution of α and β which we plotted using 5, 000, 000 samples of the

univariate step-out slice sampler is shown in Figure 2.1 (true parameter values are

marked by the + symbol). It is evident in the slow decay on the autocorrelation

plot (Figure 2.2) that the univariate slice sampler requires several iterations to

move from one end of the density to the other. Examining the actual draws, we
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noted that the sampler would often sit in one tail for a few hundred iterations or

more before traversing the entire way across the distribution.

In comparing the performance of the three samplers, we see that the multivari-

ate slice sampler is the clear winner in both ESS and ES/sec. This is apparent from

Table 2.1 where we compare the effective sample size(ESS) and effective samples

per second(ES/sec) for the univariate slice sampler, the univariate random-walk

Metropolis-Hastings sampler, and the multivariate slice sampler (outlined in Sec-

tion 2.2). Both univariate samplers exhibit a high autocorrelation and therefore

a low ESS. The multivariate slice sampler, with much better mixing properties,

exhibits a much lower autocorrelation and therefore a high ESS. Given the very

inexpensive likelihood evaluations, the multivariate slice sampler also posts a high

ES/sec.

In this toy example, the challenges posed by the collinearity of α and β can be

easily remedied by standardizing the predictors (Xi). However, in complex hier-

archical or non-linear models, removing this collinearity through transformations

may be very difficult or impossible. In Section 2.3, we will examine a Gaussian

process model where transformations to remove the posterior correlation between

κ, ψ, and φ are not apparent. Neal (2003a) also provided a funnel-shaped example

density where the univariate slice sampler performs poorly because the optimal

interval width changes for different regions of the density. Several other creative

univariate methods have been proposed such as the polar slice sampler of Roberts

and Rosenthal (2002). The authors present an interesting example where the

sampler’s convergence is shown to be insensitive to the dimension of the target

distribution. However, as Neal (2003b) mentions, the polar slice sampler requires

fixing an origin for the polar coordinates and this may be difficult with little or no

prior knowledge of the distribution.

The problems posed by strong dependence among parameters may be mitigated

by using a multivariate slice sampler, which is much more adept at navigating

complicated density functions. It is well established that multivariate sampling

of blocked parameters can greatly outperform intelligent component-at-a-time up-

dates (c.f. Liu et al. (1994); Roberts and Sahu (1997)). The next section will focus

on the construction of a multivariate slice sampler.
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2.2 Multivariate Slice Sampling

In contrast to the univariate slice sampler outlined in Section 2.1 which can sample

a multivariate distribution in a component-at-a-time fashion, the multivariate slice

sampler outlined below augments the multi-dimension parameter space with a

single auxilliary variable. In the multivariate case, the approximate slice A forms

a k-dimensional hypercube which bounds the target slice. Thus, the algorithm for

the multivariate slice sampler is identical to Algorithm 1, except that the parameter

β is now a vector and the interval A is now a k-dimensional hypercube A.

As we did in the one-dimensional case, approximating the sliceA = { β : f( β ) ≥ h } ∈
R1 by an interval (L, U ), we can construct a k-dimensional hypercube to bound

the slice A = { β : f( β ) ≥ h } ∈ Rk. As before, we begin by drawing a sample

hi uniformly from the interval ( 0, f( βi−1 ) ) where βi−1 is now a k-dimensional

vector. Then, an initial interval width is randomly oriented around the starting

location βi−1
j in each vector component. Then vertices of the hypercube, which

we will refer to as the lower bound vector L1 and the upper bound vector U1, are

examined. If the density evaluated at any vertices falls below the sampled height

h1, then the hypercube is expanded. Once the hypercube is constructed, a new

location β1 is sampled provided β1 ∈ { β : f( β ) ≥ h1 }. The sample h1 is then

discarded, a new sample h2 is drawn, and the process repeats.

The step-out algorithm does not generalize easily to the multivariate slice sam-

pler because, from a computational standpoint, a k-dimensional hypercube has 2k

vertices, so the work doubles for each additional dimension considered. Also, in

shrinking the hypercube in the obvious way (when proposals fall outside the slice),

shrinking all dimensions performs poorly when the density does not vary rapidly

in some dimensions (see Neal (2003a)). As the dimensionality of the target distri-

bution increases, the k-dimensional hypercube is more likely to waste space, and

consequently, the performance of rejection sampling for the proposal step will dete-

riorate. We chose to overcome this issue by parallelizing the evaluation of batches

of proposals. Other approaches for constructing multivariate slice updates have

also been proposed (see Neal (2003a)), but we find that our approach is relatively

simple and easily lends itself to parallel processing.
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2.3 Application to Gaussian Process Models

In Section 2.1, we compared the performance of univariate and multivariate sam-

pling algorithms in the context of a toy example. Example 1 was chosen to highlight

the shortcomings of a univariate sampling algorithm (slice sampler or otherwise)

when applied to a model parameterization with a highly correlated posterior dis-

tribution. However, the likelihood evaluations are computationally inexpensive,

making it far less challenging than many commonly used Bayesian models. To

examine the performance of the multivariate slice sampler within the context of a

more realistic example, we turn to the linear Gaussian process model.

Example 2 (Linear Gaussian Process Model) Consider a linear Gaussian pro-

cess model with an exponential covariance function, a very popular model for spa-

tial data (cf. Cressie (1993), Banerjee et al. (2004)). We model a spatially-

referenced response Y (si) measured at a locations si by a set of covariates X(si)

(i ∈ {1 . . . N}). The responses at the locations are correlated based on magnitude

of separation and this falls off at an exponential rate.

Y (si) = X(si)β + ε(si) ε(si) ∼ N(0,Σ(s))

where the covariance matrix Σ(si, sj) is parameterized as:

Σ(si, sj) =

 κ+ ψ i = j

κ exp
(
||si−sj ||2

φ

)
i 6= j

We place a uniform prior on β as in Example 1. We place inverse gamma (shape

= 2, scale = 1) priors on κ and ψ so that the prior means for κ and ψ are 1.0

and the prior variance is infinite. We place a uniform prior on the effective range

parameter φ with a lower bound of 0.01 and an upper bound of 5.0.

The computational complexity of this model is easily controlled by the number

of locations N included in the dataset. To compare the univariate and multivariate

samplers across a range of complexities, we generated five datasets with 100, 200,

300, 400, and 500 locations. Each dataset was generated from model outlined in

Example 2 with ψ = κ = 1.0 and φ = 0.2 as the true values. In Table 2.2, all of
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the reported effective sample sizes (and those per second) reflect a simulation of

10, 000 iterations. We found this to be sufficient in most cases to meet the minimum

benchmark of 1000 effective samples. As the comparison of the algorithms is based

on sampling efficiency, we chose to start all samples at the true values so as to avoid

questions of convergence and appropriate length of burnin period. We will address

these issues within the context of a real data set in Section 4.3.

When implementing the univariate and multivariate slice samplers, we chose

to use the step-out method for constructing the approximte slice A. Mira and

Roberts (2003) note that the step-out method is unable to move between two

disjoint modes that are separated by a region of zero probability (larger than the

step size). This implies that the sampler may not be irreducible for multimodal

distributions where the initial step size is too small; however, this problem does

not arise in any of the examples considered here.

In Table 2.2, we see that the multivariate slice sampler provides a significant

improvement in ESS over the univariate slice sampler for the parameters κ and ψ.

As the standard multivariate slice sampler we have implemented uses a rejection

sampler for the proposals, it is not surprizing that the effective sample size of φ

went down. The penalty of adding more dimensions is that those parameters which

mix well will be less able to do so with the addition of poorly mixing parameters.

2.4 Motivation for Exploring Parallelism

The multivariate slice sampler described above can make large moves across the

target density and explore it with reasonably efficiency. Under reasonably weak

conditions, Roberts and Rosenthal (1999) showed that slice sampler is nearly al-

ways geometrically ergodic - a convergence criterion that a generically applicable

random walk sampler often fails to meet. Further, Mira and Tierney (2002) provide

a sufficient condition under which they show that the slice sampler is uniformly

ergodic.

However, as in the univariate case, the real challenge is to appropriately con-

struct the slice A = {β : f(β) ≥ h}. Often, the computational challenge of evalu-

ating all boundary points of a k-dimensional hypercube may drag the performance

of the multivariate slice sampler well below the performance of the univariate meth-
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Table 2.2. Comparison of single-threaded slice samplings algorithms for κ, ψ, and φ from
Example 2. All algorithms were run for 10, 000 iterations.

Number of Locations

Slice
Sampler

Algorithm

Univariate
κ

ψ

φ

Multivariate
κ

ψ

φ

100 200 300 400 500

ESS(ES/sec) ESS(ES/sec) ESS(ES/sec) ESS(ES/sec) ESS(ES/sec)

1490 (21.21) 657 (2.07) 522 (0.59) 483 (0.29) 336 (0.10)

1552 (22.08) 644 (2.03) 516 (0.58) 490 (0.29) 338 (0.10)

3127 (44.49) 3709 (11.70) 3585 (4.02) 3295 (1.96) 5559 (1.69)

5207 (40.30) 3251 (4.80) 3051 (1.33) 3395 (0.85) 2519 (0.28)

4782 (37.02) 3374 (4.98) 3028 (1.32) 3482 (0.87) 2576 (0.29)

2160 (16.72) 3157 (4.66) 3535 (1.54) 1467 (0.37) 4657 (0.52)

Note: Here we compare the effective sample size(ESS) and effective samples per

second(ES/sec) for the univariate and multivariate slice samplers. We see that even

in analyzing the more computationally expensive linear Gaussian process model of

Example 2, the multivariate slice sampler’s ESS and ES/sec are higher than the

univariate slice sampler.

ods. For challenging density functions, each additional evaluation of the likelihood

can take several seconds, several minutes, or longer. An algorithm which requires

even a few expensive likelihood evaluations quickly becomes computationally infea-

sible. In Section 2.3, we provided simulation results for a Gaussian process model

where additional likelihood evaluations significantly slow down computation (see

Example 2). On the other hand, since the likelihood evaluations can be done in-

dependently of each other, they can easily be parallelized. In heavily parallelized

computing, all of the needed likelihood evaluations can take place in little more

than the time needed for a single evaluation in a serial environment.

Further, the benefit of using a multivariate slice sampler is that the additional

likelihood evaluations are used in an optimal way to inform the algorithm of the

multivariate shape of the target distribution, thereby constructing a sampler which

is better able to traverse quickly to all regions of the density. As we will see in

Section 4, a multivariate slice sampler can much more effectively utilize parallel

likelihood evaluations. Clearly, as the dimensionality and hierarchical complexity

of the desired model increases, the generality of the parallel multivariate slice



13

sampler will affords us an intelligent sampler, capable of providing an accurate

picture of the target density in a reasonable amount of time.



Chapter 3
Parallel Computation

In searching for ways to parallelize an MCMC sampler, we attempt to identify por-

tions of the algorithm which are independent and hence can be computed simul-

taneously. The multivariate slice sampler outlined in the previous section requires

several likelihood evaluations per iteration. The selection of an appropriate sta-

tistical model and parameterization for a given problem will have a major impact

on the ability to parallelize computations. In a Bayesian setting, examining the

full conditional distributions may lead to opportunities to parallelize the model.

Often natural groupings will arise where, for example in mixture distributions,

the coefficients for the first component can be updated independently of a second

component. Several authors have discussed the decomposition of a given parame-

terization into maximal number of sets which can be updated independently. (cf.

Whiley and Wilson (2004), Byrd et al. (2008), and Yan et al. (2007)) However,

in many statistical models, the structure of the resulting distributions may pre-

clude strategies that take advantage of conditional independence as is the case

with the linear Gaussian process model (see Example 2). In the next sections, we

will briefly describe two software packages which can be used to parallelize MCMC

algorithms. These two packages, OpenMP and CUDA, are only a small sample of

several packages available for parallel computing. We now provide a brief overview

of OpenMP and CUDA and how they can be utilized to parallelize MCMC samplers.
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3.1 OpenMP

Open Multi-Processing (OpenMP) is a specification with the basic purpose of pro-

viding a generic interface to support shared memory multiprocessing. For the

purpose of statistical computation, the power of OpenMP lies in its ease of im-

plementation. The addition of a single compiler directive will transform a non-

threaded “for loop” and separate it across several CPU cores within the same

system. The major limitation of OpenMP is not truly in the software specification,

but in the hardware for which it is designed. Current multi-core, multi-processor

shared memory systems can scale with the dimension of a given problem but only

at a huge expense. Most multi-core, multi-processor systems have only a dozen

or so CPUs which greatly limits the practical speedup one can acheive. The most

promising platform for OpenMP is Intel’s upcoming Larabee chipset, due out in

late 2009, which promises 32 and 48 cores in the first and second versions respec-

tively. Yet taking into account these limitations, OpenMP lends utility to problems

of moderate size due to the incredible ease of implementation (a single line of code)

and a reasonable improvement in speed attained through parallel computation.

OpenMP is designed for multithreaded processing within a single computer

(with one or more multicore chips). It does not support communication between

computers. A different specification known as the Message Passing Interface (MPI),

is designed to overcome this limitation. MPI allows for processing with a cluster of

computers. Parallel implementations of simple matrix algorithms (multiplication,

Cholesky decomposition, etc.) are available in PLAPACK (Using MPI) and ScaLA-

PACK(Using OpenMP or MPI). The parallel spatial models of Yan et al. (2007)

demonstrated that PLAPACK based block matrix algorithms provide similar fac-

tors of improvement to the OpenMP results described below. As the focus of this

paper is primarily on software which runs on a single physical machince (with a few

processors / cores), we have not run simulations which use MPI. However, in the

future, we envision combining these technologies where MPI is used to distribute

likelihood evaluations across several computers, each of which is equipped with

multiple graphics cards. Then OpenMP and CUDA would be used cooperatively

to evaluate a single likelihood function within each machine in the cluster using

multiple CPUs and multiple GPUs.
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3.2 CUDA

Compute Unified Device Architecture (CUDA), introduced in 2006, is a C/C++ in-

terface to the vectorized processing available on a graphics processing unit (GPU).

A GPU differs significantly from a traditional CPU in a few key ways. First, creat-

ing and destroying threads on a CPU is very expensive, often requiring thousands

of cycles or more, but on a GPU, one can create several thousand threads in less

than ten clock cycles. The second key difference is that on a CPU most instructions

work with a single set of operands: adding two numbers, multiplying two numbers,

etc. On a GPU, all instructions use vectors of operands - they add two vectors,

multiply two vectors, etc. These two differences allow a program which could only

use a few CPU threads efficiently to instead utilize 30, 000 or more GPU threads

and attain a level of parallelism which was previously unthinkable.

To briefly overview terminology, a set of instructions which CUDA executes

on a GPU is known as a kernel. When a kernel is launched from a parent CPU

program, in addition to functional inputs (e.g. parameter values), the kernel must

be specified with the number of independent blocks of parameters to process and

the number of threads which will work cooperatively on each block. In the con-

text of the multivariate slice sampler of Section 2.2, the kernel function calculates

the likelihood at a given location. The number of blocks will differ between the

slice construction step and the proposal step. (For details, see Section 4.1). The

number of threads per block will vary based on the size and complexity of the

likelihood calculation. The GPU used in Section 4, a GTX 280, is organized into

30 multiprocessors, each of which is capable of executing 1024 threads simultane-

ously (512 per block) in one, two, or three dimension grids. In Examples 2 and

3, we will never evaluate more than 60 blocks at once; hence, to maximize both

throughput and the usage of the GPU, we will allocate 512 threads per block. In

Section 4.1 we describe a small set of trial runs that were used to determine the

optimal dimensions of the thread block.

In Section 4 we return to the Gaussian process example from Section 2.3.

OpenMP proves to be quite simple to implement and tune. The CUDA based

sampler requires more tuning to acheive optimal results but this is mostly because

with greater than 30, 000 threads available we chose to parallelize the matrix com-
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putations in addition to batching the likelihood evaluations. Both OpenMP and

CUDA show utility in parallelizing the multivariate slice sampler - OpenMP for its

ease of use and CUDA for its immense processing power.



Chapter 4
A Parallel Implementation of

Multivariate Slice Samplings

In this section, we return to the spatial Gaussian process model presented in Section

2.3. As mentioned above, the multivariate slice sampler invovles multiple likelihood

evaluations at each iteration of the algorithm. Here we provide results of running

parallel multivariate slice sampler using both OpenMP and CUDA on the same

datasets generated in Section 2.3. In Section 4.1, we briefly outline the tuning

and implementation details for the OpenMP and CUDA based samplers. Then in

Section 4.2, we compare the results of the parallel samplers with the univariate

slice sampler. Finally, in Section 4.3, we turn to the analysis of a real dataset.

As we shall see in the sections that follow, the results simultaneously demonstrate

both the utility of the multivariate slice sampler and the improvement in speed

gained through parallelization.

4.1 Implementation Details

To parallelize the multivariate slice sampler for Examples 2 and 3, we focused

on three pieces of the algorithm: the slice construction, the proposals, and the

likelihood function itself. First, when constructing the approximate slice A using

a three dimensional hypercube (shown in Algorithm 2), the likelihood at each of

the 8 hypercube vertices can be evaluated independently. After evaluating the

likelihoods, should we need to step out in any dimension, we then re-evaluate the
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updated hypercube vertices in parallel. Second, when proposing a new location

(shown in Algorithm 3), we chose to use a simple rejection sampler and evaluate

batches of proposals in parallel. The first proposal to fall within the target slice is

then accepted and the parameters are updated. For the OpenMP sampler, we set

the proposal batch size equal to the number of threads (either three or four). For

the CUDA sampler, we set the proposal batch size equal to 30 (the number of blocks

that allowed for maximal throughput). Finally, in the CUDA-based multivariate

slice sampler, we also chose to parallelize the matrix operations in the likelihood

function itself.

β the current parameter
value (β ∈ Rk)

ω the initial interval widths for
constructing a hyperrectangle
in k dimensions.

L Lower bounds of hypercube

U Upper bounds of hypercube

f function proportional to the full
conditional distribution for β.

Sample h ∼ Uniform{ 0, f( β ) }

For j ∈ {1 . . . k}
u ∼ Uniform(0, 1)

Lj = βj − ωj ∗ u
Uj = Lj + ωj

Do

Construct list of k dimensional
hypercube vertices from L and U

Evaluate 2k vertices in parallel

Test each hypercube vertex, if
(h < f(vertex))

extend L and/or U by ω
as appropriate

While (L or U changed)

Algorithm 2: A parallel step-out procedure for constructing an approximate multivariate

slice for the parameter β.

OpenMP

Before we can compare the relative efficiency of the parallel multivariate slice

sampler using OpenMP with the other samplers, we must first run a short tuning

study to determine the optimal number of threads. We expect that the optimal

number of threads will depend on the number of locations in the model, as the
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β the current parameter value

L Lower bounds of hypercube

U Upper bounds of hypercube

f function proportional to the full
conditional distribution for β.

Repeat until proposal not rejected

Draw batch of N proposals uniformly
from the hypercube bounded
by L and U

Evaluate N proposals in parallel

On first proposal m such that
(h < f(proposal[m]))

Update β = proposal[m] and stop

Algorithm 3: A batched parallel rejection sampler for the multivariate slice sampler update

of the parameter β.

computational expense of the Gaussian process model likelihood function depends

directly on the Cholesky decomposition (Order N3/3). To allow the results to

be directly comparable to Section 2.3, we ran the same simulations on the same

datasets for the same number of iterations (10, 000). But in our experience, trial

runs of 400 samples or less are sufficient to determine the best threading model.

We found that for 100 to 300 locations, three OpenMP threads was optimal. For

400 to 500 locations, four OpenMP threads was optimal. Clearly the geometry

and configuration of the processor hardware will have an impact on the speed of

execution and the realized speedup (or lag) of using additional processor cores.

The simulations were run on a dual quad-core E5430 Xeon system. There is a

natural penalty in performance when moving from four threads which can run on

a single chip to five threads which must run on two chips. It is not surprising that

in our tuning study, we found that adding a fifth thread dropped the computation

efficiency by as much as 10%.

There are also a number of second order effects which will impact the speedup

of the multivariate slice sampler using OpenMP. For example, the default memory

allocation mechanism may be thread safe(depending on the choice of compiler and

hence standard C++ library), but it is often very inefficient in a multithreaded

environment. The results presented in Table 4.1 were obtained after incorporating

the NEDMalloc software of Douglas (2008). NEDMalloc is a multithreaded allo-

cator designed to reduce the mutex based locking of a single threaded (threadsafe)

allocator. As expected, the improvement in speed (30% at best) was larger as the

number of threads increased.
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In the results provided in Section 4.2, we see that paralellizing the multivari-

ate slice sampler with OpenMP attains only a marginal speedup. This is due to

the moderate expense of the Gaussian process model likelihood function for these

relatively small choices of model size. We chose 500 locations as an upper bound

due the hardware register constraints within the graphics card. Clearly as the lo-

cation count increases the workload will increase. Hence, the OpenMP threads will

be better utilized and that will yield a higher relative speedup. Finally, though

the relative speedup using OpenMP may not be large, the burden of adding one

or two additional lines of code should be weighed against the 40% performance

improvement.

CUDA

As with the OpenMP based sampler, we chose to parallelize the evaluation of the

hypercube vertices in Algorithm 2 and also the batched proposal evaluations in

Algorithm 3. But with the advantage of about 30, 000 threads to work with in the

CUDA based sampler, we also chose to parallelize the evaluation of each likelihood

computation. The evaluation of the full conditional distribution for κ, ψ, and φ,

given below in Equation (4.1), can be decomposed into five major steps, outlined

in Algorithm 4. Note that the bulk of the computational expense occurs in the the

lower triangular Cholesky factorization in step two.

π(κ, ψ, φ|−) ∝ |Σ|−1/2 exp

{
−1

2
(Y −Xβ) Σ−1 (Y −Xβ)

}
×

κ−(ακ+1) exp
−βκ
κ
ψ−(αψ+1) exp

−βψ
ψ

(4.1)

The evaluation of the full conditional distribution for κ, ψ, and φ within the

CUDA kernel can be parallelized in each step of Algorithm 4. In step one, the

construction of Σ is done column by column. By virtue of having more threads

(512) than locations (at most 500), each thread is assigned to compute a single

element in the current column of Σi,j. Then that column of Σi,j is immediately

used to compute the lower triangular Cholesky factorization via a standard block

decomposition (cf. Golub and Van Loan (1996)). Hence, storage of more than one
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1. Construct the covariance matrix Σ from the given κ, ψ, and φ values and
the list of locations si. Recall that Σ is defined as follows:

Σ(si, sj) =

 κ+ ψ i = j

κ exp
(
||si−sj ||2

φ

)
i 6= j

2. Compute the lower triangular Cholesky factorization of Σ.

3. Solve for Σ−1 (Y −Xβ) via forward and back substitution.

4. Compute the dot product of (Y −Xβ) with the results of step #3.

5. Compute the determinant of Σ and the other remaining terms.

Algorithm 4: An algorithmic representation for the evaluation of the full conditional distri-

bution of κ, ψ, and φ in Examples 2 and 3.

column of Σ is not required. In step three of Algorithm 4, both the forward and

back substitution are performed using one column and one row, respectively, at a

time and again, each element in the vector is given to a separate thread. During the

back substitution, each thread also simultaneously computes that elements contri-

bution to the dot product for step four and the diagonal element’s contribution

to the determinant in step five. Hence, upon completion of the back substitution,

steps four and five are virtually finished, leaving only the contribution of the priors

to be computed.

As CUDA thread-blocks can be allocated in two or three dimension grids,

thereby reducing the number cycles spent calculating indices, the CUDA based

sampler did require a small number of trial runs to determine the optimal layout

of the two dimensional thread-block. We used a batch of 200 likelihood evalu-

ations to test the various block dimensions. We found that a 64 × 8 block size

was optimal for all model sizes. Note that two dimensional indexing was only

used for the block Cholesky factorization. The forard and back substitution and

other matrix operations used linear thread indexing. There are other hardware

constraints (shared memory capacity, memory transfer penalties, etc.) which are

beyond the scope of the discussion here, but were taken into account in designing

the CUDA-based likelihood evaluation. However, it should be noted that nVidia



23

has provides a CUDA Occupancy calculator which, when given the shared memory

requirements and register usage of the algorithm, will provide the optimal thread

count and thereby mostly circumvent the need to run an exhaustive grid search to

tune the sampler.

As mentioned in the previous section, the current GPU hardware and software

(CUDA 2.2) limits the maximum thread block size to 512 threads. As such, we did

not test models with greater than 500 locations. As new hardware is developed

which supports larger block sizes, we hope to attain better improvements for larger

models. Future research will also focus on utilitizing multiple GPUs at a time.

Current technology limits one to using a maximum of four GPUs simultaneously,

but this would allow for 960 simultaneously likelihood evaluations.

4.2 Summary of Simulation Study

Table 4.1 contains the results of a simulation based on Example 2 using the uni-

variate slice sampler, the single-threaded multivariate slice sampler, the optimal

OpenMP multivariate slice sampler, and the optimal CUDA multivariate slice sam-

pler. In examining Table 4.1, we note first that for all of the samplers shown, the

ES/secdecreases as the number of locations increase. The ES/secof κ and ψ for

the 100 location model is roughly ten times that of the 200 location model for

all of the samplers. The dependence of κ and ψ is also fairly evident in Table

4.1. In simulating these datasets, we selected a true range parameter φ of 0.2. As

such, the spatial dependence decays fairly quickly and consequently, this induces a

strong dependence between κ and ψ because the diagonal elements of Σ are equal

to κ+ ψ.

As was discussed in Section 2.3, even the relatively slow single CPU multivariate

slice sampler does outperform the univariate slice sampler in ES/secfor κ and ψ

mainly because of a much larger ESS. However, the ES/secfor φ for the single CPU

multivariate slice sampler is much lower than that of the univariate slice sampler.

Here again, this is due to the moderate spatial depenence. By blocking the update

of φ with κ and ψ in a three dimensional sampler, the ability to mix across the

distribution of φ is greatly hampered by the strong dependence between κ and ψ.

However, the ES/secof κ and ψ is still clearly the limiting factor.
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Practically speaking, it is the smallest ES/secwhich determines the minimal

run time of a given algorithm. In other words, to produce at least 10, 000 effective

samples for κ, ψ, and φ in the 300 location model using the univariate slice sam-

pler one would need to run the sampler for 10000/0.58 = 17, 240 seconds (roughly

5 hours). To generate the same 10, 000 effective samples for κ, ψ, and φ using

the single CPU multivariate slice sampler, one would need to run the sampler

for 1000/1.32 = 7, 575 seconds (2.1 hours). However, when we examine the 400

location model, this factor of two improvement nearly vanishes because the ra-

tio of the smallest multivariate ES/sec(φ ES/sec= 0.37) to the smallest univariate

ES/sec(κ ES/sec= 0.29) is only 1.27. Hence, the net gain of using a more com-

plicated algorithm is only an improvement of 27%. However, the picture changes

quite dramatically when we examine the parallelized samplers.

The OpenMP based sampler shows a reasonable 40 to 50% improvement in

ES/secon top of the improvement that the multivariate slice sampler makes in

ES/secover the univariate slice sampler. The largest improvement occurs in the 300

location model, but even in this case, the φ ES/secis still only 57% of the univariate

slice sampler’s ES/sec. However, the ratio of the smallest OpenMP multivariate

ES/sec(φ ES/sec= 0.52) to the smallest univariate ES/sec(κ ES/sec= 0.29) is 1.79.

Hence, the speedup of the algorithm directly translates to shorter run times.

The CUDA-based multivariate slice sampler makes an even more compelling

argument. In Table 4.1, we note first that the speedup factor increases significantly

as the size of the model increases. In the 500 location model, the CUDA based

multivariate slice sampler is 5.4 faster than the single multivariate slice sampler

CPU version. When we examine the sampling times, the univariate slice sampler

would require 10000/.10 = 100, 000 seconds (roughly 28 hours) to produce 10, 000

effective samples for all paramters; whereas, the CUDA based multivariate slice

sampler would require only 10000/1.51 = 6622 seconds (or roughly 1.8 hours).

Hence, the CUDA based multivariate slice sampler improves upon the efficiency of

the univariate slice sampler by a factor of roughly 15.

After examining the results of Table 4.1, we did investigated using a two dimen-

sional multivariate slice sampler for only κ and ψ, but found that the added cost

of a univariate update for φ pulled the performance of the multivariate sampler

down dramatically, especially in the CUDA based implementation. This highlights
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Table 4.1. Comparison of effective samples per second and relative speedup for single and
multi-threaded slice samplings algorithms for κ, ψ, and φ from Example 2. All algorithms
were run for 10, 000 iterations.

Slice
Sampler

Algorithm

Number of Locations

Univariate
Single CPU

κ

ψ

φ

Multivariate
Single CPU

κ

ψ

φ

Multivariate
OpenMP

κ

ψ

φ

Multivariate
CUDA

κ

ψ

φ

100 200 300 400 500

21.21 2.07 0.59 0.29 0.10

22.08 2.03 0.58 0.29 0.10

44.49 11.70 4.02 1.96 1.69

40.30(1.90) 4.80(2.31)1.33 (2.27)0.85 (2.96)0.28 (2.73)

37.02(1.68) 4.98(2.45)1.32 (2.28)0.87 (2.99)0.29 (2.78)

16.72(0.38) 4.66(0.40)1.54 (0.38)0.37 (0.19)0.52 (0.31)

56.73(2.67) 6.83(3.30)1.96 (3.34)1.19 (4.14)0.37 (3.59)

52.10(2.36) 7.09(3.49)1.94 (3.35)1.22 (4.20)0.38 (3.65)

23.53(0.53) 6.64(0.57)2.27 (0.56)0.52 (0.26)0.68 (0.40)

116.77(5.51)19.21(9.26)6.16(10.51)3.72(12.94)1.51(14.78)

119.83(5.43)19.19(9.44)6.31(10.88)3.90(13.38)1.53(14.84)

64.56(1.45)17.57(1.50)8.61 (2.14)1.59 (0.81)2.88 (1.70)

ES/sec (speedup)

Note: Table 4.1 uses the univariate slice sampler’s run time (single-threaded CPU-based) as

the baseline for determining algorithmic speedups shown above for Example 2 (c.f. Sections

2.3 and 4)

the fact that there is a negligible difference between estimating one, two, three,

four, or five dimension multivariate slice samplers on the GPU because all will fit

within the 60 block maximum (to acheive peak performance). Further, in situ-

ations which require higher dimensional slice samplers (up to 9D), four graphics

cards could be combined using the CUDA API to compute all needed likelihood

evaluations simultaneously.

Note that we have not included a study of parallelized univariate sampling.

While it would be beneficial for both multivariate and univariate slice sampling

to speed up or parallelize each individual likelihood calculation, the univariate

slice sampler would not benefit nearly as much from the two parallelizations in
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Algorithms 2 and 3. As the univariate slice sampler usually requires only three or

four likelihood evaluations per iteration, a speedup factor of two or three gained

by evaluating these likelihoods in parallel would only place the ES/sec on par with

the single CPU multivarite slice sampler.

In the next section, we benchmark the univariate slice sampler, and the OpenMP

and CUDA based multivariate slice samplers on a surface temperature dataset. We

investigate the sample efficiency of the algorithms as well as the rate of convergence

from random starting locations to the posterior mode.

4.3 Application to Surface Temperature Data

In the this section, we apply the linear Gaussian process model from Example 2

to the analysis of the mean surface temperature over the month of January, 1995

on a 24 × 21 grid covering Central America. These data were obtained from the

NASA Langley Research Center Atmospheric Science Data Center.

Example 3 (ASDC Surface Temperature Dataset) We wish to model the

mean surface temperature Y (si) measured at 500 locations si by a set of covariates

X(si) which includes an intercept and two covariates: the latitude and longitude of

each grid point. We standardized the latitude and longitude to remove collinearity

with the intercept. We assume that the surface temperatures are correlated based on

the distance between locations and that this falls off at an exponential rate. Hence,

we fit a linear Gaussian process model with an exponential covariance function:

Y (si) = X(si)β + ε(si) ε(si) ∼ N(0,Σ(s))

where the covariance matrix Σ(si, sj) is parameterized as in Example 2. We

place a uniform prior on β as was done in Examples 1 and 2. We complete the

Bayesian model specification, by placing inverse gamma (shape = 2, scale = 1)

priors on κ and ψ and a uniform prior on φ with a lower bound of 0.1 and an

upper bound of 50.0 (which is slightly larger due to the increased separation in the

grid points).

For the analysis of the surface temperature data, we had to address the question

of starting values and appropriate length of burnin. We tried several different
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random starting values and found that all of the samplers converged incredibly

quickly for this dataset. We initialized the coefficients β to zero plus random

normal offset. We initialized ψ, κ, and φ, to a gamma(3, 1) random variable plus

1.0 (to ensure that the parameters were strictly positive). The initial interval

widths for all of the samplers were tuned in order to maximize ES/secby using a

large grid search. The multivariate slice samplers converged to the support of the

posterior densities within three samples. The univariate slice sampler took slightly

longer, but even with very extreme values it never took more than 30 samples to

reach the posterior mean. However, to virtually eliminate issues due to the choice

of starting values, we report results in Table 4.2 from 100, 000 samples having first

discarded an initial burnin run of 100, 000 samples.

In examining the posterior parameter estimates for this dataset, we have µκ =

55, µφ = 49, and µψ = 0.2. In contrast to the simulation study of Section 4, this

dataset exhibits a very strong spatial dependence. In Table 4.2 we see that the pa-

rameters κ and φ are strongly correlated; whereas κ and ψ were strongly correlated

in the simulation study. But we find, in comparing the univariate slice sampler

to the parallelized multivariate slice sampler that many of the same relationships

from simulation study hold here as well. For example, we see that the ESSfor κ

and φ of the multivariate samplers is more than ten times the ESSfor the univariate

sampler. And though the multivariate slice sampler is much more computationally

expensive, the parallelization through OpenMP and especially through CUDA is

sufficient to mitigate the increased computational burden. By comparing the min-

imum ES/sec, we see that the minimum ES/secof the CUDA based multivariate slice

sampler (κ ES/sec= 2.42) is roughly 13 times the minimum ES/secof the univariate

slice sampler (φ ES/sec= 0.18). As in the simulation study described in Section 4,

the CUDA based multivariate slice sampler provides a signficant improvement over

the univariate slice sampler.
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Table 4.2. Comparison of effective sample size (ESS), effective samples per second(ES/sec),
and relative speedup of ES/sec for κ, ψ, and φ from Example 3. All algorithms were run for
200, 000 iterations, but the first 100, 000 were discarded to allow for sampler burnin.

ψ κ φ

Algorithms ESS ES/sec
ES/sec

Speedup
ESS ES/sec

ES/sec
Speedup

ESS ES/sec
ES/sec

Speedup

Univariate
Slice Sampler

65254 2.89 4284 0.19 4147 0.18

Multivariate
Slice Sampler

(using
OpenMP)

54640 1.86 (0.64) 52324 1.79 (9.42) 55306 1.89 (10.50)

Multivariate
Slice Sampler
(using CUDA)

54794 2.59 (0.90) 51177 2.42 (12.74) 54229 2.57 (14.28)

Note: Table 4.2 uses the univariate slice sampler’s run time as the baseline for determining

algorithmic speedups shown above for Example 3 (c.f. Section 4.3)
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Discussion

We have examined the performance of the univariate and multivariate slice sam-

plers within the context of two examples and the surface temperature analysis.

In our simulations, we found that the multivariate slice sampler was much more

efficient than the univariate methods when the posterior distribution is highly cor-

related along one or more dimensions. However, the multivariate slice sampler is

very computationally expensive per iteration, expecially when likelihood evalua-

tions are expensive. But even in the context of a more expensive linear Gaussian

process model, we found that the multivariate slice sampler’s excellent mixing

properties allowed it to best the univariate slice sampler’s efficiency.

We then noted that the likelihood evaluations utilized in constructing an ap-

proximate slice could be independently evaluated; hence, hypercube vertices could

be evaluated in parallel and we investigated two different threading implementa-

tions. The OpenMP-based implementation requires a very minimal modification

to the code, but only attained a 40 to 50% improvement over the single-threaded

multivariate slice sampler. In contrast, the CUDA-based implementation was five

times faster than the single-threaded CPU-based implementation. When we com-

bined this speedup with the already superior ESS of the multivariate algorithm, we

found that the CUDA-based solution yielded a sampler which was 14 times more

efficient than the single-threaded univariate slice sampler in both the simulation

study of Section 4 and the surface temperature analysis of Section 4.3. Clearly,

after being parallelized, the multivariate slice sampler is an efficient and viable

alternative to the univariate slice sampler.
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