
Parallel Nearest Neighbors in Low Dimensions with Batch Updates

Guy E. Blelloch ∗ Magdalen Dobson †

Abstract

We present a set of parallel algorithms for computing exact

k-nearest neighbors in low dimensions. Many k-nearest

neighbor algorithms use either a kd-tree or the Morton

ordering of the point set; our algorithms combine these

approaches using a data structure we call the zd-tree. We

show that this combination is both theoretically efficient

under common assumptions, and fast in practice. For point

sets of size n with bounded expansion constant and bounded

ratio, the zd-tree can be built in O(n) work with O(nε)

span for constant ε < 1, and searching for the k-nearest

neighbors of a point takes expected O(k log k) time. We

benchmark our k-nearest neighbor algorithms against existing

parallel k-nearest neighbor algorithms, showing that our

implementations are generally faster than the state of the

art as well as achieving 75x speedup on 144 hyperthreads.

Furthermore, the zd-tree supports parallel batch-dynamic

insertions and deletions; to our knowledge, it is the first

k-nearest neighbor data structure to support such updates.

On point sets with bounded expansion constant and bounded

ratio, a batch-dynamic update of size k requires O(k logn/k)

work with O(kε + polylog(n)) span.

1 Introduction

Computing nearest neighbors is one of the most funda-
mental problems in computer science, with applications
in diverse areas ranging from graphics [19, 32, 33, 34] to
AI [31] to as far afield as particle physics [36]. Research
on nearest neighbors can be roughly divided into two ar-
eas: one area focuses on computing approximate nearest
neighbors in high dimensions, primarily with cluster-
ing as an application. The second focuses on exact (or
closer to exact) nearest neighbors in lower dimensions,
with tasks such as surface reconstruction [3, 24] as a
prominent application. This work focuses on the latter
category.

The most common method of computing nearest
neighbors in low dimensions is via a kd-tree [9], a tree
which keeps the entire bounding box of the point set
at its root, and whose children represent progressively
smaller enclosed bounding boxes. Kd-trees have many
applications in point-based graphics, and have been the

∗Carnegie Mellon University.
†Carnegie Mellon University.

data structure of choice for many graphics practition-
ers [33], even though other methods have better worst-
case guarantees. One of the best kd-tree implementations
is Arya et al’s [8], which has been used widely by re-
searchers [19, 32, 34]. Another commonly used library
of kd-trees is that of the Computational Geometry Algo-
rithms Library (CGAL) [40]. Recent work on kd-trees
has focused on better theoretical guarantees [35], and
with better performance in high dimensions [18].

Another approach for computing nearest neighbors
uses space-filling curves known as the Morton ordering,
z-ordering, or Lebesgue ordering (henceforth Morton
ordering). Recursing by splitting the Morton ordering
roughly splits space, making it possible to effectively
search for nearest neighbors. Two nearest neighbor
algorithms that make use of Morton ordering are
Chan’s minimalist nearest neighbor algorithm [16],
and Connor and Kumar’s k-nearest neighbor graph
algorithm [22]. Other approaches to computing nearest
neighbors include well-separated decompositions [15],
and Delaunay triangulation [11].

Some important considerations when choosing a k-
nearest neighbors algorithm are how it performs (theo-
retically as well as practically), does it run efficiently in
parallel (since todays machines only have multiple pro-
cessors), what kind of point sets it handles, and whether
it supports dynamic updates (since in many applications
point sets change over time [39]). Vaidya [41] and Calla-
han and Kosaraju [15] give strong bounds for general
point sets computing all nearest neighbors in O(n log n)
time using variants of kd-trees. Chan improved this
to O(n) time if the the ratio of the largest distance
to the smallest is polynomially bounded [17]. However
these results are limited to static point sets and have
not yet shown to be practical. Connor and Kumar give
bounds under the assumption of bounded expansion
constants [22] for a practical algorithm they implement.
There has also been significant interest in parallel algo-
rithms for the problem. This includes implementations
based on MapReduce [2], for GPUs [26], the STANN
library [22], and an implementation in CGAL [4]. Al-
though in principle kd-trees should be able to support
dynamic updates we know of no libraries that efficiently
support them, and few interesting theoretical bounds for
the problem in low dimensions. When considering paral-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

11
1.

04
18

2v
1

 [
cs

.D
S]

 7
 N

ov
 2

02
1

lelism and updates together one should be interested in
batches of updates that can be processed in parallel.

In this paper, we present a technique that combines
the ideas of kd-trees and Morton ordering to achieve
efficient algorithms for k-nearest neighbors in bounded
dimension. Some guiding intuition for such a combina-
tion is that Morton-based algorithms tend to have quick
preprocessing (since only a sort is required) and slower
queries; on the other hand, tree-based algorithms can
have slower building times but their additional struc-
ture leads to faster queries. Thus, combining these
approaches may allow us to achieve the advantages of
both. In particular we present a k-nearest neighbor al-
gorithm that hybridizes the kd-tree and Morton order
approaches by using a kd-tree whose splitting rule is
based on the Morton ordering; we call this tree the zd-
tree. We also present what is to our knowledge the first
parallel batch-dynamic update algorithm for a k-nearest
neighbor data structure. We prove the following theoret-
ical results in the context of a point sets with bounded
expansion constant and bounded ratio, two reasonable
and broadly used assumptions when computing nearest
neighbors [5, 6, 8, 10, 17, 22, 25, 29, 30, 37].

The first result concerns the work and span required
to build the zd-tree:

Theorem 2.1. For a point set P of size n with bounded
ratio, the zd-tree can be built using O(n) work with O(nε)
span, and the resulting tree height O(log n).

The second result bounds the work for a k-nearest
neighbor query on the zd-tree.

Theorem 2.2. For a zd-tree representing a point set P
of size n with bounded expansion, finding the k-nearest
neighbors of a point p ∈ P requires expected O(k log k)
work.

These two theorems together imply a linear-work algo-
rithm for finding the k-nearest neighbors among a set of
points (i.e. the k-nearest neighbor graph). They also im-
ply that for a point q 6∈ P , finding the nearest neighbors
requires O(log n+ k log k) work.

The third result bounds the work and span for
batches of updates.

Theorem 2.3. Let T be a pruned zd-tree representing
point set P , and let Q be a point set of size k, such that
|P |+ |Q| = n. Then if P ∪Q and Q both have bounded
expansion and bounded ratio in the same hypercube X,
Q can be inserted into T in O(k log(n/k)) work and
O(kε + polylog(n)) span.

In additional to the theoretical contributions, we
implement both our nearest neighbor searching algorithm

0 20 40 60 80 100 120 140
0

50

100

150

200

250

Number of Threads

W
or

k
=

T
h

re
ad

s
×

T
im

e

Leaf-based Root-based

Chan KNNG

ParlayKNNG CGAL

Figure 1: A figure showing the work (threads × time)
performed by various nearest neighbor algorithms as the
number of threads increases. The k-nearest neighbor graph
was computed on 10 million points from a random dataset
within a 3D cube. Ideally the line for a particular algorithm
would be both low (small total work) and straight (indicating
more threads does not change the total work).

and the batch-dynamic updates described above, and
we measure our nearest neighbor searching algorithm
against a large number of competitors. Our algorithms
are optimized for parallelism: in addition to presenting
a thread-safe data structure so that queries can be
conducted in parallel, we use parallelism when recursively
building or updating our kd-tree. A snapshot of our
practical results can be found in Figure 1, which
compares the work needed to preprocess and query a
point set across our implementation and competitors.

Our experimental results show the following:

1. Our k-nearest neighbor algorithms achieve high
parallelism. Using our basic algorithm to query
all nearest neighbors of a 3D dataset with 10 million
points achieves 75-fold speedup on a 72-core Dell
R930 with 144 hyper-threads.

2. Our algorithms are fast. Our algorithm’s speed
is robust across all the measures which we tested—
adversarial datasets, varying k, varying the size of
the dataset, and varying the number of threads. In
most cases, it beats its competitors by close to an
order of magnitude.

3. Our batch-dynamic updates drastically decrease
the cost per insertion. An insertion of one point
into a tree of 5, 000, 000 points takes about 10−5

seconds, while an insertion of 100, 000 points takes
10−7 seconds per pointelement.

1.1 Preliminaries. For the special case where we are
given a point set P and wish to calculate the k-nearest
neighbors of all points in P , we refer to the result as
the k-nearest neighbor graph of P . A query of a

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

point not in P is a dynamic query, and a query of
a point in the tree is sometimes referred to as as a
non-dynamic query. Similarly, adding a point to or
deleting a point from the tree is referred to as a dynamic
update, which is batch-dynamic if the updates are
processed in batches rather than one at a time.

Kd-trees. Many nearest neighbor algorithms use
a kd-tree as the data structure to query for nearest
neighbors. Given a set of points P in a d-dimensional
bounding box, a kd-tree splits the data into two smaller
bounding boxes at every level of the tree. Designing a
kd-tree requires making a choice of splitting rule—that
is, how the bounding box will be divided. One common
splitting rule is to divide the bounding box of points
along its largest dimension; another is to divide the space
such that equal numbers of points are on each side. A
variant of the kd-tree is the {quad,oct}-tree, where each
internal node of the tree has 2d equal sized children in
d-dimensional space.

Morton ordering. A common tool used in design-
ing k-nearest neighbor algorithms is the Morton ordering.
For a set of points whose coordinates are d-vectors of
integers (x1, x2, . . . , xd), the Morton ordering is calcu-
lated by taking each integer coordinate in binary form,
interleaving the coordinates to create one integer per
point, then sorting using the interleave integers. Near-
est neighbor algorithms take advantage of the following
property of the Morton ordering: given any two points
p and q and the rectangle defined by those points as
the corners, then all points in the rectangle must fall
between p and q in the Morton ordering. This allows
pruning regions of the ordering.

Bounded expansion constant. Several previous
works for nearest neighbors in metric spaces have
assumed a bounded expansion constant [5, 6, 10, 22,
25, 29, 30, 37], which roughly requires that the density
of points in the metric space does not change rapidly.
In the context of Euclidean space we use the following
definition. Given a point pi and a positive real r, let
box(pi, r) denote the box centered at pi with radius r
(that is, half the side length).

Definition 1. Given a point set P contained in a
bounded Euclidean space X, P has expansion constant
γ if for all x ∈ X and all positive real r, if |box(x, r)| = k
for any k > 1 then

|box(x, 2r)| ≤ γk.

The expansion constant is referred to as bounded if
γ = O(1).

Bounded Ratio. Another property that will be
needed to prove some of our theorems is that of the

point set having bounded ratio. This is a commonly
used property in problems such as nearest neighbors and
closest pair [8, 17].

Definition 2. Given a point set P of size n, let dmax

denote the maximum distance between any two points
in the set, and let dmin denote the minimum distance
between any two points in the set. Then P has bounded
ratio if

dmax

dmin
= poly(n).

Model of computation. Our results for the
parallel algorithms are given for the binary-fork-join
model [12]. In this model, a process can fork two child
processes, which work in parallel and when both com-
plete, the parent process continues. Costs are measured
in terms of the work (total number of instructions across
all processes) and span or depth (longest dependence
path among processes). Any algorithm in the binary fork-
ing model with W work and S span can be implemented
on a CRCW PRAM with P processors in O(W/P + S)
time with high probability [7, 14], so the results here are
also valid on the PRAM, maintaining work efficiency.

1.2 Related Work. Arya and Mount’s k-nearest
neighbor implementation [8] is commonly referred to
as the state-of-the-art sequential k-nearest neighbor
algorithm for low dimensions. Their implementation
uses a kd-tree known as a balanced box decomposition
(BBD) tree, whose splitting rule attempts to get the
best of both commonly used splitting rules—that is,
splitting a bounding box into approximately equal
areas which also have approximately equal numbers
of points. They show that using a BBD tree, an
approximate k-nearest neighbor query takes O(kε log n)
work. The BBD tree theoretically supports insertions,
but their given implementation does not. In [22],
Connor and Kumar parallelize Arya and Mount’s all-
nearest neighbors implementation and show that theirs
produces faster results, so we compare against Connor
and Kumar’s instead of theirs.

One nearest neighbor algorithm which uses the Mor-
ton ordering instead of a kd-tree is Chan’s “minimalist”
nearest neighbors algorithm [16], which has a theoreti-
cal guarantee of O(n log n) expected preprocessing time
and O(1ε log n) expected time per query for approximate
nearest neighbors. The algorithm is notable for both its
simple proof and strikingly minimalist implementation,
whose sequential version requires fewer than 100 lines of
code in C++. Chan’s algorithm first randomly shifts the
coordinate of each point, then sorts the points using the
Morton ordering. The algorithm then uses an implicit

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

tree, recursively dividing the sorted points and visiting
every implicit vertex which is within some radius of the
query point. An adversarial case for this algorithm is
when some query point q is in the right half of the sorted
data and its nearest neighbor p is in the left half, causing
the algorithm to search a large number of vertices. The
random shift helps avoid this case in expectation.

The k-nearest neighbor implementation that most
closely matched ours—in that it is tailored for paral-
lelism and for exact nearest neighbor searching in low
dimensions—is that of Connor and Kumar in [22], where
STANN stands for Simple Threaded Approximate Near-
est Neighbor. Their algorithm makes several improve-
ments on Chan’s algorithm, especially for the case of
computing the k-nearest neighbor graph. Their main
improvement is to search from the leaf of the implicit
tree rather than the root, which allows for the possibility
of searching only O(k) implicit nodes instead of at least
O(log n) (and this would be a best case scenario where
the tree is perfectly balanced). Indeed, they find that
if the input point set has bounded expansion constant,
their data structure uses O(n log n) work and their near-
est neighbor queries use expected O(k log k) work. Their
algorithm only works for static point sets and as our
experiments show is not as fast as ours.

Another well-known tree used for computing nearest
neighbors is Callahan and Kosaraju’s well-separated
pair decomposition [15]. For n points, they can build
their tree (similar to a kd-tree) in O(n log n) work
and polylogarithmic span (in parallel). Based on the
tree, they can build the decomposition and find nearest
neighbors in O(n) work and polylogarithmic span. The
approach is only described for the static case. Another
approach is to use the Delaunay triangulation of the set
of points [11]. Although this seems to work reasonably
well in two dimensions, in three and higher dimensions
it can be very expensive. Beyond bounded expansion
constant, another common geometric assumption used
for finding nearest neighbors or the closest pair is a
bound on the ratio of the furthest pair and the closest
pair in a dataset [8, 17, 20, 21, 23].

2 Algorithm Design and Bounds

Here we describe our algorithms for constructing a data
structure for k-nearest neighbors, querying the structure,
and batch updating it.

Data structure. The data structure we use for
nearest neighbor searching is a kd-tree whose splitting
rule uses the Morton ordering; this is what we refer to
as the zd-tree. Since the Morton ordering is just the
interleaving of the bits of each coordinate, the tree is
built by letting the root represent the entire bounding
box, and splitting the points into child nodes at level i

based on whether the bit at place i is 0 or 1. In three
dimensions, our tree is almost equivalent to an oct-tree
in which every three levels of our tree corresponds to
one level of the oct-tree; however, the leaves can be at
different levels. Each internal node of the tree stores
the two opposing corners defining its bounding box, its
two children, and its parent. Each leaf node stores its
two opposing corners, its parent, and the set of points it
contains. We bound the number of points in a leaf by
a constant, and a leaf can be empty. Note that every
point covered by the root bounding box is included in
exactly one leaf node.

Construction. Before the zd-tree can be built, we
preprocess the input. Firstly, motivated by Chan [16],
and necessary for our bounds (the proof of Theorem 2.2),
we select a random shift for each coordinate, and shift
all the coordinates by this amount. This shift is kept
throughout. We then sort the points by the Morton
order. This can use Chan’s comparison function, which
leads to an O(n log n) work sort, but as we describe
in Section 2.1 can be reduced to a linear time radix
sort with span O(nε) [28] when assuming a bounded
expansion constant. In this case the number of bits
needed for the Morton order can bounded by O(log n).

After shifting and sorting we apply a divide-and-
conquer algorithm (Algorithm 1) to build the zd-tree.
The algorithm recurses at each level of the tree on the
two sides of the cut for the given bit of the Morton
ordering. Importantly, finding the cut in the routine
splitUsingBit only requires a binary search since the
points are sorted by Morton order. This implies that
when the tree is sufficiently shallow (guaranteed by
bounded ratio) the work to build the tree is only linear,
and the parallel depth is low. Even if completely
imbalanced the work would be O(n log n).

Downward search algorithm. Our downward
search algorithm is detailed in Algorithm 2. The
algorithm maintains a current set of k nearest neighbors,
which starts empty and is improved over time by
inserting closer points. In our pseudocode, we use N
to represent the nearest neighbor candidate set. The
downward search works as follows: let r be the distance
from p to the furthest element in N if N contains at least
k elements, or infinity otherwise. Now search vertex v
only if the bounding box for v intersects a ball of radius r
around p. This is determined by the withinBox function.
If the node is a leaf, iterate through the points it contains
and update the set of nearest neighbors if necessary. If
it is not a leaf, recurse on its children, searching first the
child whose center is closest to the query point p.

Our root-based algorithm simply starts at the root
of the zd-tree with an empty N and applies searchDown,
but we also use searchDown in our upward algorithm.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Upward search algorithm. Our upward search
algorithm is detailed in Algorithm 3. It always starts
at the leaf in the tree containing the point p and works
its way up the tree. The idea is that in general, only a
small part of the tree needs to be examined. It uses the
downward search as a subroutine. As in the downward
search, it maintains a priority queue N , initially empty,
of the current estimate of the nearest k neighbors, which
is improved over time helping to prune further search.
The algorithm starts at the leaf by adding any points in
the leaf to N . Then, as with the downard version, let r
be the distance between p and k-th nearest neighbor in
N , or infinity if there are not k neighbors in N yet. Now
search the parent of the current node if and only if the
ball of radius r around p extends outside the bounding
box of the current node. Otherwise we know there are
no points not included in the current node that could be
closer than those in N . This can use the same withinBox
as used in the downward algorithm, but with a negative
r. When searching the parent we search the parent’s
other child using the downward algorithm.

Finding the leaf in which a point p belongs, which
is needed, depends on whether we are generating a k
nearest neighbor graph or using the the structure for
dynamic searches for points not in the set. In the first
case we know the leaf since each point is in a leaf.
Therefore to generate a k-nearest neighbor graph we
need just build the tree and then run searchUp on each
point in each leaf. We refer to this as the leaf-based
version of our algorithm. In the second case we have to
search down the tree from the root to find the location
of the leaf. This can use the bits of the Morton ordering
to decide left or right. We refer to this as the bit-based
version, and the downward search from the root as the
root-based version.

Batch-dynamic updates. The tree data structure
naturally lends itself to the possibility of dynamic
insertions and deletions. Insertion of a new point q
into a zd-tree T is conceptually simple: locate the leaf of
T which q should be inserted into; then either add q to
the sequence of points contained in the leaf, or if q would
cause the number of points in the leaf to exceed some
cutoff, split the leaf into two children. This concept can
be refined to a parallel batch-dynamic algorithm, which
takes a set of points and recurses in parallel down the
right and left children of the root. One small subtlety
is that to avoid cases where an insertion might require
a rebuild of the entire tree, we require a bounding box
that all data will be contained in to be specified before
building the initial tree.

As with building the tree from scratch, a batch-
dynamic insert starts by using the random shift to offset
the points and sorting the points to be added based

Algorithm 1: buildTree(P, b)

Input: A set of randomly shifted points sorted
according to their Morton ordering and an
integer b representing the bit we are working
on, starting with the highest bit.

Output: The leaf or internal node that contains P ’s
bounding box

1 if b == 0 or size(P) < sizeCutoff then
2 return createLeaf(P)
3 else
4 i = splitUsingBit(P, b) ;
5 do in parallel
6 L = buildTree(P [1 : i], b− 1) ;
7 R = buildTree(P [i : n], b− 1) ;

8 return createInternalNode(L, R) ;

on their Morton ordering. We then apply the recursive
algorithm shown in Algorithm 4. Deletions use an almost
identical algorithm.

2.1 Theoretical Results. In this section, we give
theoretical results on the performance of our algorithms
when assuming bounded expansion constant. The results
in the rest of the section assume that the point set P has
bounded expansion constant γ ≥ 2 as well as bounded
ratio, and they assume that the dimension d = O(1).
We also require that every coordinate of every point is
unique. This is a fair assumption to make in the context
of nearest neighbors, since every point set that does not
have this property can be transformed into one that does
and where each point retains the same nearest neighbors.
The presented proofs in this section assume that X is a
bounding cube, but the full version of the paper contains
the proofs of the same results where X is any convex
region. Wherever not otherwise specified, we use B to
denote the bounding box of the randomly shifted point
set; note that the side lengths of B can be at most twice
the side lengths of the smallest bounding box containing
X.

Our first theorem concerns the height and build time
of a zd-tree on a point set with bounded ratio.

Theorem 2.1. For a point set P of size n with bounded
ratio, the zd-tree can be built using O(n) work with O(nε)
span, and the resulting tree height O(log n).

Proof. For the tree depth and work bound, we need
to show that the longest path in the tree has length
O(log n). The bounding cube of X has side length within
a constant factor of dmax, and it must be divided until
the two points whose distance between them is dmin

are in separate cubes. Since dmax/dmin = poly(n), dmax

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

(a) A graphic illustrating a box situated
inside the largest possible quad-tree box
as referenced in Lemma 2.2.

(b) A figure illustrating the setup in
Lemma 2.3. Here, the empty boxes
represent empty splits, the light blue
boxes represent unbalanced splits, and
the dark blue box represents the box
containing p.

Interior

Exterior

Empty

X

B

(c) An illustration of the three types of
cuts referenced in Lemma 2.4: interior
in red, exterior in black, and empty in
blue.

Figure 2: Figures aiding with the proofs in Section 2.1.

must be halved O(log n) times to reach dmin. Thus the
tree has O(log n) depth.

For the sorting claim, we wish to show that a parallel
radix sort can be used. For the radix sort to require
O(n) work, we need to guarantee that only O(log n) bits
are required to sort the dataset. This follows directly
from the fact that the tree has depth O(log n).

Now, we work towards the theorem on the expected
time required to query the k-nearest neighbors of a point
p. Like the result from Connor and Kumar in [22], the
O(k log k) bound only applies when searching for the
nearest neighbors of a point already in the tree; for a
dynamic query, finding the leaf to start from requires
O(log n) time. The following proofs assume without loss
of generality that a leaf of the zd-tree contains no more
than k points. Furthermore, we assume that the tree is
a true quad-tree, meaning that each internal node has 2d

children; thus we use the term “quad-tree box” to refer
to the box belonging to a tree node. This will slightly
simplify the analysis, and it can only be worse than the
performance of the actual algorithm.

Theorem 2.2. For a zd-tree representing a point set P
of size n with bounded expansion, finding the k-nearest
neighbors of a point p ∈ P requires expected O(k log k)
work.

The proof of the theorem separates the work into
two parts: the work of searching through the points in a
leaf of the zd-tree, and the work of traversing the zd-tree
to get to those leaves. The first lemma concerns the
former.

Lemma 2.1. When searching for the k-nearest neighbors
of a point p, O(k) candidate points will be considered,

resulting in O(k log k) work to evaluate all the candidate
points.

Proof. The multiplicative factor of log k comes from
the fact that a priority queue is used to store nearest
neighbors, so an O(log k) cost is incurred each time the
priority queue is updated.

Consider the leaf L of the tree that would contain p.
The initial approximation is found by recursing up to L’s
ancestor until the ancestor has more than k descendants,
then adding those descendants to the priority queue. The
ancestor’s bounding box B must contain O(k) points by
the fact of bounded expansion constant, since one of its
children contains fewer than k points.

Now, let r be the side length of B. Our algorithm
will search a leaf only if the box belonging to that leaf
overlaps with box(p, r). Those neighbors are contained
within radius r of the quad-tree box containing our initial
guess.

The search algorithm evaluates every point at radius
r from p as a candidate point. If the radius r of
B is expanded twice, all the candidate points will be
contained in the resultant box; call this box of candidates
Q. If k′ = O(k) points are in B, the expansion condition
guarantees that at most γ2k′ = O(k) points are in Q.
However, the search algorithm does not directly search
each point in Q; rather, it searches every leaf whose
bounding box overlaps with Q. This means that if a
leaf L’s bounding box were to fall partially inside Q and
partially outside, all the points in L would be counted.
Since B is a quad-tree box, this could only occur if the
leaf L were to have a bounding box with radius larger
than r. Since the radius is larger than r and d = O(1),
there can only be a constant number of such leaves. Since

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2: searchDown(T, p,N)
needed subroutines:
distance(p,N, k) returns infinity if N has fewer
than k points and otherwise returns the distance
from p to the furthest point in N ; k = 1 if not
specified.
insert(N, p, k) adds p to the set N keeping only
the k closest points to p.
withinBox(T, p, r) returns true if p is within a
distance r of the bounding box for T .

Input: A pointer to a tree node T , the query point p,
and a current set of up to k nearest neighbors
N .

Output: The k-nearest neighbors of p.
1 r ← distance(p,N, k) ;
2 if withinBox(T, p, r) then
3 if T = Leaf then
4 Q← set of points contained in T ;
5 for q ∈ Q do
6 if q 6= p then
7 if distance(q, p) < distance(p,N, k)

then
8 insert(N, p, k);

9 else
10 R← T .Right() ;
11 L← T .Left() ;
12 `← distance(p, L.center());
13 r ← distance(p,R.center()) ;
14 if ` < r then
15 N ’ = searchDown(L, p,N);
16 return searchDown(R, p,N ′);

17 else
18 N’ = searchDown(R, p,N);
19 return searchDown(L, p,N ′);

each leaf has at most k points, the original bound still
holds.

Now, we move on to considering the expected work
required to traverse the zd-tree to access the leaves.
The probability calculation given here can also be found
in [22].

Lemma 2.2. When traversing the zd-tree, the expected
number of tree edges traversed to find all the nearest
neighbors is O(k).

Proof. The worst case for the cost of the search algorithm
is when the search space described in Lemma 2.1 is only
contained in the bounding box containing all of P , as
illustrated in Figure 2(a). First, we show that the length
of the traversal is bounded by the longest path between
two leaves in the search space; all other searches can be
charged to the O(k) points that are searched. We will

Algorithm 3: searchUp(C, p)
withinBox(T, p, r) with negative r returns true
if p is in within the bounding box of T and at
least r from the boundary.

Input: A leaf C of the kd-tree and a point p within
the bounding box of C.

1 N = ∅
2 Q← set of points contained in C ;
3 for q ∈ Q do
4 if q 6= p then
5 if d(q, p) < distance(p,N, k) then
6 insert(N, p, k);

7 r ← distance(p,N, k);
8 P ← C.Parent() ;
9 while not withinBox(C, p,−r) and P 6= > do

10 if P.Left() = C then
11 N = searchDown(P.Right(), p,N);
12 else
13 N = searchDown(P.Left(), p,N);
14 C = P ;
15 r ← distance(p,N, k);
16 P ← C.Parent() ;

17 return N

Algorithm 4: batchInsert(T, P)

Input: A pointer to a node T of the kd-tree and a
set of points P contained in its bounding box
and sorted according to their Morton order

1 if T = Leaf then
2 if size(P) + size(T) ¡ leafCutoff then
3 Insert p ∈ P into T ;
4 else
5 Split T into multiple leaf nodes ;

6 else
7 b = T →bit ;
8 i = splitUsingBit(P, b) ;
9 do in parallel

10 batchInsert(T → Right, P [1 : i]) ;
11 batchInsert(T → Left, P [i : n]) ;

use the box B to refer to the search space. The largest
cut of B divides B into 2d quad-tree boxes. Each of these
boxes must be contained within a quad-tree box Qi of at
most twice the side length of B. Thus, traversing every
leaf in Qi incurs cost at most O(k); since d is constant,
the claim follows.

All that remains is compute the expectation of the
length of the longest path in the zd-tree. Without loss
of generality, assume that the search space is a box with
side length 2h. Then the probability that the search
space is contained within a box of side length 2h+j is(

2j−1
2j

)
, since the box must have its upper left corner in

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

one of 2j − 1 grid squares along each dimension. Thus,
due to the random shift, the probability that the search
space is NOT contained within a box of side length 2h+j

is 1−
(
1− 1

2j

)d
. From the perspective of traversing the

zd-tree, this is the event that the path between two leaves
in the search space is length j. Thus its expectation can
be upper bounded by the following summation, which
charges a cost of one for each box the search space is
not contained in:

∞∑
j=1

(
1−

(
1− 1

2j

)d)
= O(1)

and the result follows.

Lemmas 2.1 and 2.2 together compose the proof of
Theorem 2.2.

Now we move on to batch-dynamic updates. In
a weight-balanced tree, the argument for the desired
O(k log(n/k)) bound would be as follows: when a batch
of points is inserted into the tree, the work required to
insert them into log k levels can be no more than the
work that would be required to build them into their
own tree. Thus insertion into the first O(log k) levels
of the tree uses O(k) work, and the work bound on an
insertion is O(k(log n− log k)) = O(log(n/k)).

Hence the goal of Theorem 2.3 is to show that in
addition to the traditional notion of balance, the zd-
tree also obeys some notion of weight balance—that is,
that each split of a point set must produce two halves
where each contains a constant fraction of the points.
Unfortunately, this is not strictly true, since a set of
points with bounded expansion may, for example, have
only one element with a 1 at the largest bit if that
element is very close to the rest of the elements. However,
we will be able to show a slightly weaker notion than
weight balance: that enough nodes in the tree are weight-
balanced that the same work bound still applies.

One more piece of terminology is needed before
the theorem statement. When building the zd-tree by
successively splitting the bounding box of the input, a
split may have no points in X on one side. During the
tree building phase, we face a choice regarding empty
cuts: when the algorithm makes an empty cut, we
could either fork off two child nodes where one is a
leaf containing no points, or we could simply not fork
off an empty node, and divide the other node using the
next bit. Since it is strictly cheaper, we choose the latter.
Thus the following analysis will not deal with empty
cuts; in particular, Lemmas 2.4 and 2.5 do not consider
empty cuts in their analysis, since empty cuts do not
affect the length of paths in the tree.

Theorem 2.3. Let T be a pruned zd-tree representing
point set P , and let Q be a point set of size k, such that
|P |+ |Q| = n. Then if P ∪Q and Q both have bounded
expansion and bounded ratio in the same hypercube X,
Q can be inserted into T in O(k log(n/k)) work and
O(kε + polylog(n)) span.

When X in its bounding box B is being recursively
divided using Algorithm 1, it will be useful to separate
the divisions or cuts into several categories. A cut along
dimension d divides some sub-cube S of B in two with
cutting plane `. The cut is either empty, meaning that
` does not touch any points in X; or it is exterior,
meaning it touches the boundary of X; or it is interior,
meaning that within S, ` does not touch any points on
the boundary of X. See Figure 2(c) for an illustration.

The first step towards Theorem 2.3 is to show that
interior cuts are weight balanced.

Lemma 2.3. One out of every d interior cuts must be
weight balanced; that is, it must split its bounding box
into sets of size αn and (α− 1)n for constant α ∈ (0, 1).

Proof. Consider a point p ∈ P . As the zd-tree is built,
the point set P is split into smaller pieces along each
dimension. Call a split unbalanced if it splits P into
pieces of size n1, n2 such that one of n1, n2 <

1
2(1+γ)n.

Refer to a split as “involving” p if it splits a box
containing p. We will show that after d− 1 unbalanced
splits involving p, the next split must be balanced.

Assume for contradiction that there are d consecu-
tive unbalanced splits involving p. Let B be the quad-
tree box containing p after those splits, and let the length
of B’s longest side be 2j . By the assumption that d con-
secutive unbalanced splits have already happened, there
must be some side of B where the most recent split on
that side was of a region with maximum side length
2j+1; call the hyperrectangle resulting from that split Q.
Let q ∈ B be the unique closest point to Q, as shown
in Figure 2(b). Then, consider any x ∈ Q such that
Bq = box(x, 2j) contains q and no other point in B,
and overlaps only B and Q. Due to its proximity to B,
box(x, 2j+1) must completely contain B. By our assump-
tion, Bq contains fewer than 1

2(γ+1)n + 1 points, since

it contains one point from B and otherwise only points
from Q, which has at most 1

2(γ+1)n + 1 points by our as-

sumption. The box B contains at least
(

1− 1
2(1+γ)

)d
n

points, so since d ≥ 2, the expansion constant is violated
and we reach a contradiction.

While interior cuts are easily shown to be balanced,
the same argument does not hold for a sequence of
exterior cuts, since Lemma 2.3 relies on being able to

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

choose a certain point x as the center of a box, and
this point might not be included in X if some of the d
unbalanced cuts were exterior. Since an arbitrarily long
sequence of nodes formed from exterior cuts might not be
weight-balanced, we take a different approach: showing
that even if we have to pay the maximum possible cost
for each unbalanced path, the number of points on such
an unbalanced path is small enough that the overall
bound is unchanged.

The first step towards this goal is to quantify, for a
given point p ∈ P , how many exterior cuts involving p
must be made before the first interior cut involving p.

Lemma 2.4. Normalize the length of B to n. Then for
every point p ∈ P , let f(p) denote the minimum distance
from p to the boundary of X, perpendicular to some side

of the bounding box B. Then O
(

log n
f(p)

)
cuts will be

made before the next cut containing p is interior.

Proof. A cut involving p is guaranteed to be interior
when the quad-tree box containing p has radius less than
f(p). Since the radius of the quad-tree box is halved
every d cuts and side length of B is n, the aforementioned
condition is met after d · log(n/f(p)) cuts.

Lemma 2.4 gives us a way to bound the number of
exterior cuts along the path to p. The next step is to
bound the number of points that can be a given distance
or closer to the boundary of one of the faces.

Lemma 2.5. Normalize the side of B to n. Let S be
a subset of B formed by cutting B parallel to one of
its faces at distance r away from the face. Then at

most a
(

γ2

γ2+1

)logn/r
fraction of the total points in B

are contained in S.

Proof. One way of upper bounding the number of points
in S is as follows: S can be formed by dividing the
bounding box in half along one dimension log(n/r) times.
On each division, at most how many points can be in
the resultant rectangle? Consider the first cut which
divides the bounding cube in half; the goal is to maximize
the number of points in one half without violating the
expansion constant. The “sparse” half can be separated
into 2d−1 hypercubes of radius n/2, each of which is
expanded twice before the whole space X is encompassed.
Note that it is optimal for all the “sparse” sub-cubes to
contain the same amount of points since each must be
able to expand a box around its center. The following
equation solves for the largest fraction f of the total
points that can be in any one sub-cube without violating

the expansion constant.

γ2
1− f

2d−1 − 1
≥ x+ (2d−1 − 2)

1− f
2d−1 − 1

=⇒ f ≤ γ2 − 2d−1 + 2

γ2 + 1
.

The following cuts need to be upper bounded in a slightly
different way, since they are cutting a hyperrectangle
with d − 1 sides of length n and one side of length
s. Thus the area can be decomposed into 2n/s boxes
of side length s/2. Half the boxes will receive the
maximum number of points possible; both halves will
evenly distribute their points across the boxes. Each
“sparse” hypercube of side length s/2 must be expanded
twice before it contains a cube C of side length s that is
completely contained within the region. For that cube
C, the same equations as before can be written to bound

the number of points in the dense half of C to a
γ2−2d−1

2

γ2+1
fraction of the total points in C. The total number of

points in C is upper bounded by
(
γ2−2d−1

2

γ2+1

)k
where k is

the total number of cuts that have occurred, assuming
that the maximum possible fraction is on one side each
time. The overall bound follows.

Now, we can put all these pieces together to prove
the theorem.

Proof. [Proof of Theorem 2.3]
The sorting cost bound follows directly from Theo-

rem 2.1.
For the update bound, we know that over all weight-

balanced paths in the tree, the cost of insertion the k
points down those paths is O(k log(n/k)). Thus our
task is to account for the paths in the tree that are not
weight-balanced. In the worst case, for every non-weight-
balanced path of length `, we incur an O(`) cost for each
point that traverses it. We will show that the number of
points in Q that are distributed among the unbalanced
parts of the tree is small enough that the overall bound
is unchanged. Consider one face S of X. For a point
p at a given length r away from the boundary of x
perpendicular to S, the path traveled from the root to p
can encounter O(log(n/r)) unbalanced nodes. Consider
all points at a distance r or closer to S. Lemma 2.5

shows that there are at most k ·
(

γ2

γ2+1

)log(n/r)
such

points. The cost incurred for each depth is also log(n/r).
Thus, the maximum cost for all the points at depth

f(n) or smaller is k
(

γ2

γ2+1

)log(n/r)
log(n/r). Renaming

log(n/r) as the variable x and integrating over values of

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

x from 0 to n/2 gives:

k

∫ n/2

0

(
γ2

γ2 + 1

)x
x dx

< k

∫ ∞
0

(
γ2

γ2 + 1

)x
x dx

= O(k).

Since the number of faces is constant, the overall bound
follows. This shows that even in the worst case where
every exterior cut is unbalanced and the maximum
number of points are distributed in nodes formed from
exterior cuts, the extra work incurred does not change
the overall bound.

We conclude the section with a note on the tradeoff
between work and span. The versions of the theorems
given in this section have a span that is greater
than polylogarithmic due to the radix sort. If the
algorithms used a comparison sort, they could run in
polylogarithmic span at the cost of needing O(n log n)
work for the sort.

3 Implementation Details

In this section we give more details on the practical
implementation of both our algorithms and the other
algorithms we use to benchmark our code.

3.1 Our Algorithms. We implemented our algo-
rithms in C++ using the parallel primitives from Par-
layLib [13]. Our search implementation closely matches
the algorithms shown in Section 2, so here we focus
mostly on implementation details and other optimiza-
tions.

Numerical details. We work with double-
precision floats, which we round to 64-bit integers for
building the tree and computing the Morton ordering.

Miscellaneous optimizations. We mention a few
optimizations that made significant differences in our
runtime. Whenever possible, we used squared distances
instead of Euclidian distances in our computations,
which made our code about 10% faster. To store the
current k-nearest neighbors when traversing the tree we
use a vector for small k and the C++ STL priority queue
for larger k. The overhead of the vector was significantly
less for small k, but the linear instead of logarithmic cost
dominates for k > 40 or so. A third optimization was to
sort the sequence of queries using their Morton ordering
so that nearby queries in this order access nearby nodes
in the tree, thus reducing cache misses. The savings
from reducing cache misses more than compensates for
the cost of the sort, in some cases decreasing runtime
by a factor of two. This is useful even when querying in

parallel since the parallel scheduler processes chunks of
the iteration space on the same core.

3.2 Other Implementations. For the purpose of
comparison we use three existing implementations of
nearest neighbor search: CGAL [4], STANN [22], and
Chan [16]. Here we describe some performance issues
with their code, and some modifications we made to
improve the performance of their code to ensure a fair
comparison. An extended version of this discussion can
be found in the full version of this paper.

Chan. Chan’s code was fully sequential so we
needed to parallelize it. Conceptually this is relatively
straightforward since the algorithm just requires using a
parallel sort instead of a sequential one, and then running
the queries in parallel. Chan’s code only searches from
the root of his implicit tree. We note that the root-based
implementation of our code is significantly faster than
Chan’s.

STANN. STANN includes both a k-nearest neigh-
bor graph (KNNG) function and a k-nearest neighbor
(KNN) function. The first finds the k nearest neigh-
bors among a set of points, and the second supports
a function to build a tree and a separate function to
query a point for its k nearest neighbors. They supply
a parallel version of KNNG, that was parallelized with
OpenMP, and only a sequential version of KNN. Their
algorithm did not scale well beyond 16 threads, since it
left some components sequential. We therefore updated
their code to use the parallel primitives and built-in
functions from ParlayLib [13]; this drastically improved
their performance.

CGAL. CGAL implements a parallel version of
their k-nearest neighbor code using the threading build-
ing blocks (TBB) [27]. We use their code directly with
no modifications. We note that their code does not scale
well past 16 or so threads. Furthermore, although the
code appears to be thread safe, there seems to be con-
tention when there are many threads, thereby slowing
them all down. Due to the particularly bad performance
beyond 36 threads (which all are on one chip), we only
report numbers up to 36 threads. Furthermore, since
we observed wildly varying times with higher k, we only
included times for k < 10 in our experiments.

4 Experiments

In this section, we provide experimental results which
show that 1) our algorithms perform well under many
types of scaling and across different architectures, and
2) our algorithms outperform every implementation we
test against.

4.1 Experimental Setup.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

2D
inC

ube

2D
kuzm

in

3D
onSphere

3D
inC

ube

3D
plum

m
er

0

0.5

1

1.5

T
im

e
(s

ec
on

d
s)

Leaf-based
Bit-based

Root-based

Figure 3: A bar chart showing the performance of our
three k-nearest neighbor algorithms on different datasets. All
datasets are 10 million points, and times reported are for
k = 1.

Machines. We ran most all of our experiments on
a 72-core Dell R930 with 4x Intel(®) Xeon(®) E7-8867
v4 (18 cores, 2.4GHz and 45MB L3 cache), and 1Tbyte
memory. With hyperthreading the total number of
threads is 144. To check whether the results were robust
across machines, we also ran one set of experiments on
a 4-socket AMD machine with 32 physical cores in total,
each running at 2.4 GHz, with 2-way hyperthreading, a
6MB L3 cache per socket, and 200 GB of main memory.

Test data. After testing our algorithms on some
real-world image data, we discovered, similarly to Connor
and Kumar [22], that uniformly random points perform
very similarly to real-world datasets. To facilitate testing
at various sizes we therefore use a few distributions
of random points in 2 and 3 dimensions, on sizes up
to 100 million points. The point sets we used are
listed in Figure 3. The 2D and 3DinCube datasets
are points picked uniformly at random in a square and
cube, respectively. The points in the 3DonSphere dataset
are selected on the 2D surface of a sphere in 3 space.
This is meant to represent various graphics applications
where the point sets are on a 2D surface embedded
in 3D. The 3Dplummer distribution uses the Plummer
model [1], which is based on the study of galaxies, and
highly dense in at the center, becoming very sparse on
the outside. The 2Dkuzmin distribution is a similarly
skewed distribution in two dimensions.

As can be seen from the various statistics, the Plum-
mer and Kuzmin distributions are significantly more
skewed than the others. Indeed. these distributions do
not have bounded expansion constant. The performance
is slower due to the fact that a few small points are
extremely far away from most of the points, which are
in a dense cluster at the center. This causes the tree to
be unbalanced and the searches for the nearest neigh-
bors of these far points to be expensive. However the
overall time is hardly affected by the skewed distribution

for our leaf and bit-based implementations (Figure 3)
showing the algorithms are robust under quite skewed
distributions. As expected, the depth of the trees for the
uniform distributions in a cube are just the logarithm of
the number of points.

Algorithms tested. We ran three classes of exper-
iments: (1) generating a k-nearest neighbor graph on a
set of n points, (2) building a k-nearest neighbor query
structure on n points followed by dynamic queries on a
different set of n points, and (3) batch insertions for a
total of n points (after the insertion). The results from
(2) can be found in the full version of our paper; they
are not significantly different from building the k-nearest
neighbor graph.

Altogether we tested 9 variants of the algorithms:
our parallelized version of Chan’s algorithm, the CGAL
algorithm, four variants of STANN (KNN, KNNG,
parlayKNN and parlayKNNG), and three variants of our
algorithm (leaf-based, root-based, and bit-based). The
parlayKNN and parlayKNNG are our modified versions
of Connor and Kumar’s algorithms. Since our modified
versions are always significantly faster, we only report
numbers for our versions.

For all implementations, we sort by Morton order
before querying. This is to ensure that all algorithms
are getting the same benefit of locality in the tree when
querying. The experiments on batch insertion only use
our algorithm since the others do not support dynamic
updates.

4.2 Leaf vs. Root Based. In Figure 3, we show the
performance of our three search algorithms for finding
the k-nearest neighbor graph on varying datasets and
k = 1. Figure 3 shows the same result using a different
measurement: the average and maximum number of
nodes visited during a query. One takeaway from the
figures is that even though the leaf-based method takes
O(n) work, and the bit-based method takes O(n log n)
work, the prior is only slightly faster. This is because
the constant in the O(k log k) term for a search from
the leaf is much larger than the constant in the O(log n)
search from the root. Another takeaway is that for the
Kuzmin and Plummer distributions, when starting from
the leaf using the root-based algorithm (Algorithm 2)
makes an enormous difference.

4.3 k-Nearest Neighbor Graphs. The results of
our experiments for generating the k-nearest neighbor
graph can be found in Figure 4.

Varying dataset size. (Figure 4(a) and (b).) We
measured the total time per point (that is, to build the
tree and perform the query) by dividing the total time to
build and search by the number of points. As discussed

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

102 103 104 105 106 107 108
10−8

10−7

10−6

Size of Dataset

T
im

e
p

er
p

o
in

t
(s

ec
o
n
d
s)

Leaf-based

Root-based

Chan

ParlayKNNG

CGAL (36 threads)

(a) Time required to calculate nearest neigh-

bors as the size of the dataset increases. Cal-
culated by dividing the total time by the

number of points queried.

102 103 104 105 106 107 108

10−8

10−7

10−6

Size of Dataset

T
im

e
p

er
p

oi
n
t

(s
ec

o
n
d
s)

Leaf-based

Root-based

Chan

ParlayKNNG

CGAL (36 threads)

(b) The same as (a) but with a 2D dataset
drawn randomly from a square instead of a

3D dataset.

0 20 40 60 80 100 120 140
0

50

100

150

200

Number of Threads

W
o
rk

=
T

h
re

a
d
s
×

T
im

e

Leaf-based

Root-based

Chan

ParlayKNNG

CGAL

(c) Total work (threads × time) required to

build a tree of 10 million points, then build

the nearest neighbor graph of the point set.
Shown as the number of threads vary.

0 10 20 30 40 50 60

25

50

100

200

300

Number of Threads

W
or

k
=

T
h
re

ad
s
×

T
im

e

Leaf-based

Root-based

Chan

ParlayKNNG

(d) The same measurements as (c), but on
the 32-core AMD machine.

0 20 40 60 80 100

10−8

10−7

k (number of nearest neighbors)

T
im

e
p

er
n
ei

gh
b

or
(s

ec
on

d
s)

Leaf-based

Root-based

ParlayKNNG

CGAL (36 threads)

(e) Time required to calculate a neighbor
as the number of neighbors k increases.
Calculated by dividing the total time by

k times the number of queries.

zd-tree

parlayK
N
N

C
han05

C
G
A
L

10−1

100

101

T
im

e(
se

co
n
d
s)

3DinCube
3Dplummer

(f) The bars represent the total time each
algorithm takes to build the data structure,

for points drawn randomly from a 3D
cube, and points drawn from a Plummer
distribution.

Figure 4: Statistics related to non-dynamic queries. Unless otherwise stated, the size of the dataset is 10 million, the
number of nearest neighbors k = 1, experiments were performed on 144 threads on a 72-core Dell R930, and data points are
drawn randomly from a 3D cube.

in Section 3, we took measures to limit the number of
cache misses where possible.

Work efficiency. (Figure 4(c) and (d).) Exper-
iments showed that our algorithms performed signifi-
cantly less work than our competitors as the number
of threads increased to 144. To show that we maintain
work efficiency on different architectures, we also ran the
same experiments on a 32-core AMD machine.

Varying k. (Figure 4(e).) Our results on varying
numbers of neighbors show that our algorithms remain
fast and scalable.

Tree building. (Figure 4(f).) To illustrate that
the tree-building step itself is efficient (except in the
case of CGAL as explained in Section 3.2), we show time
required to build the data structure for the 3DinCube
and 3Dplummer distributions.

4.4 Dynamic Updates. We test the efficiency of our
batch-dynamic updates by measuring the time required
per update as the number of updates in the batch
increases. Figure 5 shows the time taken per point
as the size of the batch increases, with both insertions
and deletions shown. The figure shows a drastic change
in time, spanning almost four orders of magnitude from
10−4 seconds for a single update to 10−8 seconds per
update for a batch of 5 million. The first period of
decrease as the batch size increases to 104 or 105 can
be explained by parallelism—this is the point at which
the parallel sort and the parallel recursion down the
tree begin to save significant time. The fact that time
continues to decrease even after the size grows large
enough to see the full effects of parallelism can be
attributed to the work efficiency of the batch-dynamic
updates, as shown in Theorem 2.3.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

100 101 102 103 104 105 106 107 108

10−8

10−7

10−6

10−5

10−4

Number of points added dynamically

T
im

e
p

er
p

oi
n
t

(s
ec

o
n

d
s)

Insertions
Deletions

Figure 5: Time required per point as the number of points
in the batch increases. Updates performed on a dataset of
10 million random points inside a 2D cube.

4.5 Code availability. Our implementation is part
of the publicly available Problem-Based Benchmark
Suite [38].

5 Conclusion

In this work, we presented the zd-tree, a data structure
for k-nearest neighbors that combines the ideas of kd-
trees and Morton ordering and supports batch-dynamic
updates. We showed that the zd-tree is both theoretically
efficient and fast in practice, performing well even on
data sets which do not have bounded ratio or bounded
expansion. One future experimental direction is to
experiment with datasets with higher dimensions, or with
using our algorithms as a sub-step in calculating nearest
neighbors in high dimensions. Another direction worth
exploring is to use the zd-tree or a similar data structure
for other problems in low-dimensional geometry, such as
closest pair or n-body interactions.

Acknowledgments

We thank the anonymous referees for their comments
and suggestions. This research was supported by NSF
grants CCF-1901381, CCF-1910030, and CCF-1919223,
and the NSF GRFP.

References

[1] Aarseth, S.J., Henon, M., & Wielen, R. 1974. Numerical
methods for the study of star cluster dynamics. Astronomy
and Astrophysics, 37(2), 183–187.

[2] Agarwal, Pankaj K., Fox, Kyle, Munagala, Kamesh,
& Nath, Abhinandan. 2016. Parallel Algorithms for
Constructing Range and Nearest-Neighbor Searching Data
Structures. Pages 429–440 of: Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2016, San Francisco, CA,
USA, June 26 - July 01, 2016. ACM.

[3] Alexa, Marc, Behr, Johannes, Cohen-Or, Daniel, Fleish-
man, Shachar, Levin, David, & Silva, Cláudio T. 2001.
Point Set Surfaces. Pages 21–28 of: 12th IEEE Visualiza-
tion Conference, IEEE Vis 2001, San Diego, CA, USA,
October 24-26, 2001, Proceedings. IEEE Computer Society.

[4] Alliez, Pierre, & Fabri, Andreas. 2016. CGAL: the
computational geometry algorithms library. Pages 8:1–
8:8 of: Special Interest Group on Computer Graphics
and Interactive Techniques Conference, SIGGRAPH ’16,
Anaheim, CA, USA, July 24-28, 2016, Courses. ACM.

[5] Anagnostopoulos, Evangelos, Emiris, Ioannis Z., &
Psarros, Ioannis. 2015. Low-Quality Dimension Reduction
and High-Dimensional Approximate Nearest Neighbor.
Pages 436–450 of: 31st International Symposium on
Computational Geometry, SoCG 2015, June 22-25, 2015,
Eindhoven, The Netherlands. LIPIcs, vol. 34. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[6] Anagnostopoulos, Evangelos, Emiris, Ioannis Z., & Psar-
ros, Ioannis. 2018. Randomized Embeddings with Slack
and High-Dimensional Approximate Nearest Neighbor.
ACM Trans. Algorithms, 14(2), 18:1–18:21.

[7] Arora, N. S., Blumofe, R. D., & Plaxton, C. G. 2001.
Thread Scheduling for Multiprogrammed Multiprocessors.
Theory of Computing Systems (TOCS), 34(2).

[8] Arya, Sunil, Mount, David M., Netanyahu, Nathan S.,
Silverman, Ruth, & Wu, Angela Y. 1994. An Optimal
Algorithm for Approximate Nearest Neighbor Searching.
Pages 573–582 of: Proceedings of the Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms. 23-25 January
1994, Arlington, Virginia, USA. ACM/SIAM.

[9] Bentley, Jon Louis. 1975. Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9).

[10] Beygelzimer, Alina, Kakade, Sham M., & Langford,
John. 2006. Cover trees for nearest neighbor. Pages
97–104 of: Cohen, William W., & Moore, Andrew W.
(eds), Machine Learning, Proceedings of the Twenty-
Third International Conference (ICML 2006), Pittsburgh,
Pennsylvania, USA, June 25-29, 2006. ACM International
Conference Proceeding Series, vol. 148. ACM.

[11] Birn, Marcel, Holtgrewe, Manuel, Sanders, Peter, &
Singler, Johannes. 2010. Simple and Fast Nearest Neighbor
Search. Pages 43–54 of: Proceedings of the Twelfth
Workshop on Algorithm Engineering and Experiments,
ALENEX 2010, Austin, Texas, USA, January 16, 2010.
SIAM.

[12] Blelloch, Guy E., Fineman, Jeremy T., Gu, Yan, & Sun,
Yihan. 2020a. Optimal Parallel Algorithms in the Binary-
Forking Model. In: ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

[13] Blelloch, Guy E., Anderson, Daniel, & Dhulipala, Lax-
man. 2020b. ParlayLib - A Toolkit for Parallel Algorithms
on Shared-Memory Multicore Machines. In: ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA).

[14] Blumofe, Robert D., & Leiserson, Charles E. 1999.
Scheduling multithreaded computations by work stealing.
J. ACM, 46(5), 720–748.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

[15] Callahan, Paul B, & Kosaraju, S Rao. 1995. A decompo-
sition of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J. ACM,
42(1).

[16] Chan, Timothy. 2006. A minimalist’s implementation
of an approximate nearest neighbor algorithm in fixed
dimensions.

[17] Chan, Timothy M. 2008. Well-separated pair decompo-
sition in linear time? Inf. Process. Lett., 107(5), 138–141.

[18] Chen, Yewang, Zhou, Lida, Tang, Yi, Singh, Jai Puneet,
Bouguila, Nizar, Wang, Cheng, Wang, Hua-zhen, & Du,
Ji-Xiang. 2019. Fast neighbor search by using revised k -d
tree. Inf. Sci., 472, 145–162.

[19] Clarenz, Ulrich, Rumpf, Martin, & Telea, Alexandru.
2004. Finite Elements on Point Based Surfaces. Pages 201–
211 of: 1st Symposium on Point Based Graphics, PBG
2004, Zurich, Switzerland, June 2-4, 2004. Eurographics
Association.

[20] Clarkson, Kenneth L. 1994. An Algorithm for Approxi-
mate Closest-Point Queries. Pages 160–164 of: Proceed-
ings of the Tenth Annual Symposium on Computational
Geometry, Stony Brook, New York, USA, June 6-8, 1994.
ACM.

[21] Clarkson, Kenneth L. 1999. Nearest Neighbor Queries
in Metric Spaces. Discret. Comput. Geom., 22(1), 63–93.

[22] Connor, Michael, & Kumar, Piyush. 2010. Fast
Construction of k-Nearest Neighbor Graphs for Point
Clouds. IEEE Trans. Vis. Comput. Graph., 16(4), 599–
608.

[23] Erickson, Jeff. 2003. Nice Point Sets Can Have Nasty
Delaunay Triangulations. Discret. Comput. Geom., 30(1),
109–132.

[24] Fleishman, Shachar, Cohen-Or, Daniel, & Silva,
Cláudio T. 2005. Robust moving least-squares fitting
with sharp features. ACM Trans. Graph., 24(3), 544–552.

[25] Gago, Silvia, Schlatter, & Dirk. 2009. Bounded
expansion in web graphs. Commentationes Mathematicae
Universitatis Carolinae, 50(2), 181–190.

[26] Hu, Linjia, Nooshabadi, Saeid, & Ahmadi, Majid.
2015. Massively parallel KD-tree construction and nearest
neighbor search algorithms. Pages 2752–2755 of: 2015
IEEE International Symposium on Circuits and Systems,
ISCAS 2015, Lisbon, Portugal, May 24-27, 2015. IEEE.

[27] Intel Threading Building Blocks.
https://www.threadingbuildingblocks.org.

[28] JáJá, Joseph. 1992. An Introduction to Parallel Algo-
rithms. USA: Addison Wesley Longman Publishing Co.,
Inc.

[29] Karger, David R., & Ruhl, Matthias. 2002. Finding
nearest neighbors in growth-restricted metrics. Pages 741–
750 of: Proceedings on 34th Annual ACM Symposium on
Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada. ACM.

[30] Kazana, Wojciech, & Segoufin, Luc. 2013. Enumeration
of first-order queries on classes of structures with bounded
expansion. Pages 297–308 of: Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, PODS 2013, New York, NY,
USA - June 22 - 27, 2013. ACM.

[31] López-Sastre, Roberto Javier, Oñoro-Rubio, Daniel,
Gil-Jiménez, Pedro, & Maldonado-Bascón, Saturnino.
2012. Fast reciprocal nearest neighbors clustering. Signal
Process., 92(1), 270–275.

[32] Mitra, Niloy J., Nguyen, An Thanh, & Guibas,
Leonidas J. 2004. Estimating surface normals in noisy
point cloud data. Int. J. Comput. Geom. Appl., 14(4-5),
261–276.

[33] Pajarola, Renato. 2005. Stream-Processing Points.
Pages 239–246 of: 16th IEEE Visualization Conference,
IEEE Vis 2005, Minneapolis, MN, USA, October 23-28,
2005, Proceedings. IEEE Computer Society.

[34] Pauly, Mark, Keiser, Richard, Kobbelt, Leif, & Gross,
Markus H. 2003. Shape modeling with point-sampled
geometry. ACM Trans. Graph., 22(3), 641–650.

[35] Ram, Parikshit, & Sinha, Kaushik. 2019. Revisiting
kd-tree for Nearest Neighbor Search. Pages 1378–1388
of: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019. ACM.

[36] Salam, Gavin, & Cacciari, Matteo. 2006. Jet clustering
in particle physics, via a dynamic nearest neighbour graph
implemented with CGAL. 04.

[37] Segoufin, Luc, & Vigny, Alexandre. 2017. Constant
Delay Enumeration for FO Queries over Databases with
Local Bounded Expansion. Pages 20:1–20:16 of: 20th
International Conference on Database Theory, ICDT 2017,
March 21-24, 2017, Venice, Italy. LIPIcs, vol. 68. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[38] Shun, Julian, Blelloch, Guy E., Fineman, Jeremy T.,
Gibbons, Phillip B., Kyrola, Aapo, Simhadri, Harsha Vard-
han, & Tangwongsan, Kanat. 2012. Brief announcement:
the problem based benchmark suite. Pages 68–70 of: 24th
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA ’12, Pittsburgh, PA, USA, June 25-27,
2012. ACM.

[39] Singh, Aditi, Subramanya, Suhas Jayaram, Krish-
naswamy, Ravishankar, & Simhadri, Harsha Vardhan.
2021. FreshDiskANN: A Fast and Accurate Graph-Based
ANN Index for Streaming Similarity Search. CoRR,
abs/2105.09613.

[40] Tangelder, Hans, & Fabri, Andreas. 2020. dD Spatial
Searching. In: CGAL User and Reference Manual, 5.2
edn. CGAL Editorial Board.

[41] Vaidya, Pravin M. 1986. An optimal algorithm for the
All-Nearest-Neighbors Problem. Pages 117–122 of: 27th
Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986. IEEE Computer
Society.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

A Other Nearest Neighbor Implementations

For the purpose of comparison we use three existing implemen-
tations of nearest neighbor search: CGAL [4], STANN [22],
and Chan [16]. Here we describe some performance issues
with their code, and some modifications we made to improve
the performance of their code.

Furthermore, we give a brief explanation for why we do
not benchmark Delaunay triangulation based methods, since
those are sometimes used for computing nearest neighbors
in low dimensions. Firstly, the existing implementations for
finding Delaunay triangulations were very slow: on 10 million
points, the ParlayLib built-in function takes a few seconds,
compared to less than .05 seconds to build the kd-tree.
Secondly, the literature we found on Delaunay triangulations
focused on the 2D case [11], while our experiments focused
on the 3D case.

Chan. Chan’s code was fully sequential so we needed to
parallelize it. Conceptually this is relatively straightforward
since the algorithm just requires using a parallel sort instead
of a sequential one, and then running the queries in parallel.
Indeed the first step of using a parallel sort was easy and we
just replaced the C++ STL sort with the ParlayLib sort. The
second step was required some work since the code was not
thread safe. However, once modified and using the parallel
loop from ParlayLib the code achieves very good speedup—
about 75-fold speedup on 72 cores with 144 threads (see
Section 4 for the full details).

Chan’s algorithm only describes how to search from the
root, and correspondingly his code only searches from the
root. There seems to be no inherent reason that it would not
be possible to start at the leaves when generating a nearest
neighbor graph, but we did not implement such a variant.
We note that even the root-based implementation of our code
is significantly faster than Chan’s. Chan’s code uses arrays
to store the points and therefore does not support dynamic
updates. In his paper he mentions that his algorithm could
support dynamic updates by storing the points in a balanced
binary search tree in Morton order. This would require
completely rewriting their code. Experiments with Chan’s
code only deal with the k = 1 case since his algorithms did
not provide support for higher k.

STANN. STANN includes both a k-nearest neighbor
graph (KNNG) function and a k-nearest neighbor (KNN)
function. The first finds the k nearest neighbors among a set
of points, and the second supports a function to build a tree
and a separate function to query a point for its k-nearest
neighbors. They supply a parallel version of KNNG, that
was parallelized with OpenMP, and only a sequential version
of KNN. On our initial tests we were able to get performance
on the parallel KNNG that closely match what they report.
However, their algorithm did not scale well beyond 16 threads
(their numbers agree with this). The main issues is that the
algorithm left some components sequential, including the
Morton order sort, and initializing various standard template
library (STL) vectors. For a larger number of cores this
became the bottleneck. We therefore updated their code
to use ParlayLib using a parallel sort and replacing uses of
STL vectors with ParlayLib sequences, which are initialized

in parallel. We also made a couple other optimizations,
including changing the size of the base case of the recursive
query from 4 to 10, and using vectors instead of a priority
queues to store the nearest neighbors for a point when k
is small. These changes made a significant improvement
in performance, especially at a larger number of cores, as
indicated in Figure ??.

The STANN KNN code was fully sequential. We
therefore parallelized this as well, which required much the
same changes as we made to the parallel code (using a parallel
sort, making all loops parallel, and using parlay sequences
instead of STL vectors). We also run the queries in parallel,
which required some minor changes to make their code thread
safe. As with Chan’s algorithm, STANN stores the points
in an array (STL vector) and therefore does not support
dynamic updates.

CGAL. CGAL implements a parallel version of their
k-nearest neighbor code using the threading building blocks
(TBB) [27]. We use their code directly with no modifications.
We note that as with the original version of STANN KNNG,
their code does not scale well past 16 or so threads. We
looked into this and there are several reasons. Perhaps
most fundamentally, although in their recursive routine for
building the kd-tree they invoke the two recursive calls in
parallel, they do the splitting within each node completely
sequentially. At the root of the tree this means they do linear
work completely sequentially. Indeed from a theoretical
point of view their algorithm does a total of O(n logn) work
(assuming uniform input) and has O(n) span, meaning it
only has O(logn) parallelism. Fixing this problem would
require a major rewrite of their code.

A second issue is that they allocate their tree nodes by
pushing onto the back of a TBB concurrent vector. Although
this is thread safe, it requires a lock and becomes a bottleneck
on a large number of threads. A similar issue appears to be
true in the query. In particular although the code appears to
be thread safe giving correct answers when run in parallel,
there seems to be contention when there are many threads
slowing them all down. This is often caused by some form of
memory allocation, as with the build tree, but in this case
we were not able to track down the source of the problem.
Due to the particularly bad performance beyond 36 threads
(which all are on one chip), we only report numbers up to
36 threads. Furthermore, since we observed wildly varying
times with higher k, we only included times for k < 10 in
our experiments.

B Dynamic Queries

In this appendix, we provide data and commentary on our
experimental results for non-dynamic queries. The results
are presented graphically in Figure 4.

Varying k, work efficiency. (Figure 5(a) and (b).)
All the algorithms we tested had similar performance for work
efficiency and scalability of the number of nearest neighbors
as they did in the k-nearest neighbor graph building case.

Scaling size of dataset. (Figure 5(c).) Our algo-
rithms are particularly robust compared to others when

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

scaling the size of the dataset. One thing to notice in the
relevant panel (c) of Figure 6 is that with the exception of
CGAL, all algorithms experience a local minima when the
size of the dataset reaches 105. While Chan, ParlayKNN,
and CGAL’s performances begin to slowly increase after this
point, our algorithms’ do not. The dataset of size 105 is ap-
proximately where we expect cache misses to start affecting
the performance; as explained in Section 3, pre-sorting the
data for dynamic queries helps alleviate this problem.

Other datasets. Since the bit-based and root-based
algorithms performed very similarly on the random distribu-
tion for dynamic queries, we refer to Figure 4(f) for evidence
that the bit-based algorithm outperforms the root-based for
some distributions.

C Full Proof of Theorem 2.3

Here we extend the results in the main body where X is a
general convex space rather than a bounding cube. This is
only a concern for Theorem 2.3; Theorems 2.1 and 2.2 did
not actually use the assumption on X.

Theorem 2.3 works by giving an upper bound on the
number of points in an update that can be inserted into an
unbalanced path of length `. To generalize it to arbitrary
convex spaces, we need to show that the upper bound a) still
holds when the bounding box B of X is not a hypercube
and b) when X is not a hypercube or hyperrectangle. The
following lemma concerns the former property.

Lemma C.1. The number of points in X which can be part
of an unbalanced path of length ` in T is maximized when the
bounding box B of X is a hypercube.

Proof. This follows from noting that the proof of Theorem 2.1
treated a split of X as a split of an oct- or quad-tree—that
is, each split is a d-dimensional split of a bounding cube
into 2d boxes. Thus, if the longest length in the bounding
hyperrectangle B of X is normalized to n and another side
of B has length r << n, there will only be log r nonempty
cuts of X perpendicular to that side. Thus the length of
an unbalanced path in T will always be dominated by the
length of the longest edge, and B being a bounding rectangle
can only result in fewer points in an update traversing an
unbalanced chain than if B were a hypercube.

The second piece needed to apply Theorem 2.3 to general
convex spaces X is to verify that the number of points near
the boundary of X is still upper bounded when X is not a
hyperrectangle.

Lemma C.2. Let X be convex with bounded expansion. Con-
sider a subset of X with volume V such that volume V
is a fraction f of X’s volume. Then V contains at most(

γ2

γ2+1

)log 1/f

n points.

Proof. O(log 1/f) divisions of X in half are needed to
produce a shape of volume V . To maximize the number
of points in V , we need to minimize the number of points
that can be in the “sparse” half of each cut. The number of

points in the sparse half is dictated by how many individual
boxes can be packed into the sparse area and then expanded
twice to reach the boundary of the dense area. Thus, the
number of points in the dense area is maximized when there
is only one such box, i.e. when d = 1. This implies that we
can upper bound the number of points in V by its upper

bound when d = 1, i.e. a
(

γ2

γ2+1

)log 1/f

fraction of the total

points. This bound will be sufficient to finish the proof of
Theorem 2.3.

Now we are ready to prove the extended version of
Theorem 2.3.

Proof. [Proof of Theorem 2.3] Fix a bounding box B. Now,
for all convex shapes with bounding box B and more
sides than a hyperrectangle, the surface-area-to-volume ratio
decreases from that of a hyperrectangle. Thus, for a given
distance to the boundary of X, the volume in X that can be
at that distance or closer is only smaller when X has more
sides than a hyperrectangle. Since Lemma C.2 tells us that
the upper bound given in Lemma 2.5 applies no matter how
the volume is arranged, the number of points in an update
that can travel down an unbalanced path is no more than
it would be if X were a hyperrectangle. Thus, we can take
the number of points (and their corresponding cost) in an
update to a hyperrectangle as an upper bound for this case.

However, triangles, tetrahedra, and their higher-
dimensional counterparts have a higher surface-area-to-
volume ratio than the hyperrectangle. Since the dimension
is constant and the bounding box B is assumed to be the
smallest possible, the surface-area-to-volume ratio of the
tetrahedron is only a constant factor larger than that of the
hypercube, and thus the result still holds.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

0 20 40 60 80 100

10−8

10−7

k (number of nearest neighbors)

T
im

e
p

er
n
ei

gh
b

or
(s

ec
on

d
s)

Bit-based

Root-based

ParlayKNN

CGAL (36 threads)

(a) Time required to calculate a neighbor
as k increases. Calculated by dividing the
total time by k times the number of queries.

0 20 40 60 80 100 120 140
0

50

100

150

200

250

Number of Threads

W
or

k
=

T
h
re

ad
s
×

T
im

e

Bit-based

Root-based

Chan

ParlayKNN

CGAL

(b) Total work (threads × time) required
to build a tree of 10 million points, then
dynamically query the same number of

points, on varying numbers of threads.

102 103 104 105 106 107 108

10−7

10−6

Size of Dataset

T
im

e
p

er
p

oi
n
t

(s
ec

on
d
s)

Bit-based

Root-based

Chan

ParlayKNN

CGAL (36 threads)

(c) Time required to calculate nearest neigh-

bors as the size of the dataset increases. Cal-
culated by dividing the total time by the
number of points queried.

Figure 6: Statistics related to dynamic queries. Unless otherwise stated, the size of the dataset is 10 million, 10 million
dynamic queries were performed, the number of nearest neighbors k = 1, experiments were performed on 144 threads on a
72-core Dell R930, and data points are drawn randomly from a 3D cube.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	1.1 Preliminaries.
	1.2 Related Work.

	2 Algorithm Design and Bounds
	2.1 Theoretical Results.

	3 Implementation Details
	3.1 Our Algorithms.
	3.2 Other Implementations.

	4 Experiments
	4.1 Experimental Setup.
	4.2 Leaf vs. Root Based.
	4.3 k-Nearest Neighbor Graphs.
	4.4 Dynamic Updates.
	4.5 Code availability.

	5 Conclusion
	A Other Nearest Neighbor Implementations
	B Dynamic Queries
	C Full Proof of Theorem 2.3

