
Parallel Parsing for Unif icat ion Grammars

Andrew Haas
BBN Labs Inc.

10 Moulton Street
Cambridge, Massachusetts

Abstract

The parsing problem for a rb i t r a ry un i f icat ion
grammars is unsolvable We present a class of
un i f i ca t ion grammars for whcih the parsing problem is
solvable and a para l le l parsing algori thm for th is class
of grammars

1. In t roduc t ion
Uni f icat ion grammars have the power of a Turing

machine, and one can easily prove this by showing that
a un i f i ca t ion grammar can simulate any Prolog program
It follows that the problem of f inding all possible
parses of a sentence in a given un i f icat ion grammar is
unsolvable The best we can do is an algori thm that
sometimes finds a set of parses and sometimes goes
in to an in f in i te loop The t op -down , l e f t - t o - r i g h t
parser used with def in i te clause grammars is of th is
k ind - if the grammar contains left recurs ion the
parser may run forever If we want to wr i te a paral le l
parsing algori thm for un i f ica t ion grammar, we f i rs t need
to f ind a subset of un i f i ca t ion grammar for which the
parsing problem is solvable Indeed th is is the hard
par t of the problem We shall see that once we have a
parsing algor i thm, f inding the paral lel ism is
s t ra igh t fo rward

Part 1 reviews the algor i thm of Cocke. Kasami and
Younger for parsing c o n t e x t - f r e e grammars in Chomsky
normal form This a lgor i thm is beaut i fu l ly simple and
easily extends to a parsing algori thm for uni f icat ion
grammars in Chomsky normal form Therefore the
parsing problem is solvable for un i f ica t ion grammars in
Chomsky normal form Unfor tunate ly th is subset of
un i f i ca t ion grammar is too res t r i c ted to describe human
language Part 2 there fore considers an extension of
Chomsky Normal Form which allows chain rules - rules
having one non - t e rm ina l symbol on the r igh t side We
general ize the CKY algor i thm to handle con tex t - f r ee
grammars with chain ru les, and extend th is algorithm
to un i f ica t ion grammars. The extension works only if
one places a res t r i c t i on on the use of chain rules in a
un i f i ca t ion grammar, and tha t res t r i c t i on is one main
point of the paper Once we have the pars ing algorithm
for un i f ica t ion grammars wi th chain rules, we can easily
extend it to un i f ica t ion grammars wi th any number of
symbols on the r ight side of a ru le Final ly we consider
the possibi l i t ies of paral lel ism in the new parsing
algor i thm

2. Parsing in Choaaky Normal Form
A c o n t e x t - f r e e grammar in Chomsky normal form

contains two kinds of rules. Terminal rules have a
single terminal on the r igh t side, branching rules have
exact ly two non - t e rm ina l symbols on the r ight side

Since no ru le has an empty r igh t side, no symbol can
generate the empty s t r ing We use the capi ta l le t ters
A.B.C as var iables ranging over n o n - t e r m i n a l symbols
To describe the substr ings of an input sentence we
number the spaces between words - 0 is the space
before the f i rs t word and n is the space after the n - t h
word If I < j. i npu t [i j] is the s t r ing of words between
space i and space j The CKY algori thm bui lds a matr ix
M such that

M[i j] - | A | A »>• i n p u t [i j] |

Str ic t ly speaking th is is a recognizer not a parser, but
it is easily extended to a parser, and the same is t rue
for the other algori thms in this paper

If SI and S2 are sets of non - te rm ina l symbols define
the product of SI and S2. Si * S2, by

S1 • S2 -
|A | (t x i s t B in S I . C in S2 (A -> B C) is o r u l «) |

The fol lowing lemma shows why th is product is useful
Basic Parsing Lemma Suppose that i <. k and for all j

such that i <; j < k, M[i j] = J A | A =>• inpu t [i j] { and
M[j k] = | A | A = > • inpu t [j k] j Then for all A. A =>»
inpu t j i k] iff A is in M[i j] • M[j k] for some j with i < j
< k

All proofs are omitted for lfack of space

If i < j < k, M[i j] and M[j k] are shorter than M[i k]
Thus the Basic Parsing Lemma allows us to f ind all
possible parses of inpu t [i k] , given all possible parses
for str ings shor ter than inpu t [i k] This is the key to
wr i t ing parsing algori thms that are guaranteed to halt

The CKY algori thm has two par ts First the algori thm
finds all possible parses for st r ings of length 1, using
the termina l rules Next i t considers str ings longer
than 1 in order of length, it f inds all possible parses
for i npu t [i k] by applying the Basic Parsing Lemma for
all choices of j

Here is a version of the CKY algor i thm for a sentence
of length N

AI go r i t h«n 1 .

fo r i from e to (N - 1) do
M[i i +1] : -

| A | (A -> i n p u t [i i + 1]) i t o r u l « | ;
f o r L : - 2 t o N do

fo r o i l i . k such tha t i -f L • k do
M[i k] • - un ion M[• j] • M [j k]

i < j < k

Theorem 1 (Correctness of CKY) When the CKY
algori thm hal ts , M[i k] = |A | A = > ' input f i k]{

We t u r n to un i f ica t ion grammar Consider a f i r s t -
order language wi th a simple type system each variable
and func t ion le t te r is assigned a type, and each
argument posi t ion of each func t ion le t ter is assigned a

Haas 615

type A t e r n is we l l - fo rmed if every argument of each
func t ion le t ter has the cor rec t type fo r i ts pos i t ion We
use the capi tal le t ters X.Y.Z.W. sometimes wi th prime
marks, as variables ranging over we l l - fo rmed terras of
a un i f icat ion grammar A un i f i ca t ion grammar is a
f in i te set of rules of the form (X -> Yl Yn). where
X is a we l l - fo rmed term and Yl th rough Yn are e i ther
terms or terminal symbols If G is a un i f i ca t ion
grammar, the ground grammar G derived from G is the
set of we l l - fo rmed ground instances of rules in G To
define the language generated by a ground grammar we
use the s tandard de f in i t ion of the language generated
by a c o n t e x t - f r e e grammar, assuming that the s ta r t
symbol is always S. It is possible tha t the ground
grammar is in f in i te , and therefore is not a c o n t e x t -
free grammar. This does not create a problem, because
the def in i t ion of the language generated by a c o n t e x t -
f ree grammar does not re ly on the f imteness of the
grammar in any way. Final ly we define the language
generated by a un i f i ca t ion grammar G to be the
language generated by the ground grammar der ived
from G.

Consider a t r i v ia l example Let the type Person
conta in the var iable p and the constants 1st, 2nd and
3rd Let the type Number conta in the variable n and
the constants Singular and Plura l Suppose NP and VP
are funct ion le t ters wi th two arguments, a person and
a number Then the ru le

says that a sentence may consist of a noun phrase and
a verb phrase that agree in person and number This
ru le has 6 ground instances, as follows

In th is case the ground grammar is f in i te , so th is rule
is only an abbreviat ion for a c o n t e x t - f r e e grammar It
appears that most of the syntax of na tu ra l language is
c o n t e x t - f r e e , therefore un i f i ca t ion grammars wi th f in i te
g round grammars have almost the formal power needed
to describe na tu ra l language Sti l l there are
const ruct ions tha t cannot be described by c o n t e x t - f r e e
grammar The crossed ser ia l dependencies in Dutch and
Swiss German are examples (Bresnan 1982) We can
describe these const ruc t ions using a un i f i ca t ion
grammar whose ground grammar is in f in i te As an
i l l us t ra t i on of the technique we give a grammar for the
language (a tn) (b tn) (c tn) . which no c o n t e x t - f r e e
grammar can generate. The func t ion le t te rs A, B and C
each take a single argument of type Integer. The
var iable n. the funct ion le t te r s (for "successor") and
the constant 0 are of type Integer, s takes a single
argument of type Integer The rules are

(A n) represents a s t r ing of n a s , (B n) a s t r i ng of n
b's, and (C n) a s t r ing of n C'J The f i r s t ru le says
tha t a sentence consists of n a s , n b's, and n c's

I t is important to unders tand tha t our pars ing
a lgor i thm does not cons t ruc t the ground grammar, nor
does i t const ruct the set of ground n o n - t e r m i n a l s tha t
generate inpu t [i k] Instead i t represents sets of
g round non- te rmina ls ind i rec t ly . If SI is a set of terms

in a un i f i ca t ion grammar, let (g round S I ; be the set of
ground instances of terms in Si The parser sets M[i k]
to a set of terms so t ha t (ground M[i k]) « | A | A = > •
i npu t [i k] | .

A un i f i ca t ion grammar in Chomsky normal form has
two kinds of ru les Terminal ru les have a single
te rmina l symbol on the r ight side, branching rules have
two we l l - f o rmed terms on the r i gh t side. Uni f icat ion is
def ined for pa i rs of terms as well as ind iv idual terms -
the most general un i f ie r of [X Y] and [X Y] is the most
general subs t i t u t i on tha t uni f ies X wi th X' and Y wi th
Y . As usual it is neccesary to rename var iables before
un i fy ing. For th is purpose assume that for any term X
and integer n, (rename X n) is an alphabet ic var ian t of
X, and if m is not equal to n then (rename X n) and
(rename Y m) have no var iables in common Note tha t
renaming a term or ru le does not change i ts set of
g round instances. For th is reason we use the term
" r u l e " for any alphabet ic var ian t of a ru le in G

If SI and S2 are sets of terms in a un i f i ca t ion
grammar, the p roduc t of SI and S2, Si •' S2, is defined
as follows.

i

Loosely speaking, th is p roduc t is l ike the p roduc t used
in the CKY algor i thm except tha t instead of test ing
symbols for equal i ty, it makes the symbols equal by
subs t i tu t ion - if possible

Uni f icat ion Parsing Lemma Suppose tha t I < k and
for all j such that i < j < k, (ground M[i j]) = | A | A
= >♦ i npu t [i j] j, and (ground M[j k]) = J A I A = >•
i npu t [j k] j . Then A =>♦ inpu t [i k] iff for some j such
tha t l < j < k. A is in (ground M[i j] •' M[j k])

The parser for un i f i ca t ion grammars in Chomsky
normal form is then as follows

Theorem. When the un i f i ca t ion parser hal ts, (ground M[
k]) ■ |A | A -> m p u t f i k] j .

Un i f ica t ion grammars in Chomsky normal form are
more powerfu l than c o n t e x t - f r e e grammars, they can
generate languages tha t no c o n t e x t - f r e e grammar can
generate, and they can capture general izat ions tha t
cannot be captured with c o n t e x t - f r e e grammars
Despite th i s d i f ference in the power of the two
formalisms, one can parse these un i f i ca t ion grammars
using a very s t ra igh t fo rward genera l izat ion of the CKY
algor i thm. This is a good example of the power and
s impl ic i ty of un i f i ca t ion .

3. Parting with Chain Rules
Unfortunately one cannot describe natural language

syntax with a unification grammar in Chomsky normal
form. For example, any intransitive verb can form a
sentence by itself - "Run!" and "Stop!" are such
sentences. If we restrict ourselves to grammars in
Chomsky normal form we must have a rule for each of
these sentences - (S -> run), (S -> stop), and so on.
The rule we really want is something like (S -> (Vp
(2nd) .n)) - a verb phrase that agrees with a second

616 NATURAL LANGUAGE

person subject can form a sentence by i tself As a
second example, many theor ies hold tha t in "Who did
Mary l i k e 9 " there is a t race after " l i ke " - a noun
phrase w i th no words under it (NP ->) is not allowed
in Chomsky normal form We therefore consider the
problem of pars ing a un i f i ca t ion grammar that allows
chain ru les - rules wi th exact ly one n o n - t e r m i n a l on
the r i gh t side The solut ion of this problem includes
the essential ideas needed to parse grammars wi th any
number of symbols on the r igh t sides of the i r rules

Let us f i r s t consider the c o n t e x t - f r e e case How can
we parse a grammar that allows chain ru les, branch ing
rules, and termina l ru les 7 We stressed above that the
Basic Parsing Lemma is useful because it allows us to
f ind al l possible parses of a substr ing if we are given
all possible parses of shor ter substr ings This allows us
to look at substr ings in order of length, knowing tha t
at each stage we have the in format ion we need The
chain ru le (A -> B) tel ls us t ha t if B = > * inpu t [i k] , so
does A i npu t [i k] is not shor ter than itself, so we
could repeat th is process indef in i te ly wi thout ever
get t ing to a longer substr ing Then what guarantees
t e rm ina t i on 9

In the case of c o n t e x t - f r e e grammar, we can easily
bu i ld a table of al l pairs [A B] such that A =>♦ B This
table is f in i te because the set of non - te rm ina l s is
f in i te Define (close S) to be the set of al l n o n ­
terminals A such that A -> B for some B in S Since A
= >* A, (close S) contains S

Second Parsing Lemma Let G be a c o n t e x t - f r e e
grammar conta in ing only termina l ru les, branch ing
rules, and chain rules Suppose that 1 <. k and for all
j such tha t i < j < k. M[i j] =-) A | A = > * i npu t [i j] {
and M[j k] = { A | A = >. i npu t [j k] j Then for all A, A
= >* i n p u t [i k] iff A is in (close M[i j] * M[j k]) for some
j wi th 1 < j < k

Using th is observat ion we extend the CKY algor i thm to
handle grammars w i th chain rules

AIgor i thro 2.
C o n t e x t - f r e e p o r t e r w i t h cha in t o b l e

f o r i froro 0 to (N - 1) do
M[i I + 1] • « (c l o s e i n p u t [i i + 1]) .

f o r L > 2 to N do
f o r a l l i . k such tho t i + L ■ k do

M[i k] : - un ion (c l ose M[i j] * M[j k])
i < j < k

Theorem 3 Suppose the grammar G contains only
termina l rules, branching rules and chain rules After
a lgor i thm 2 hal ts , M[i k] =)A | A =>. i npu t [i k](

I f one t r ies to general ize th is algor i thm to un i f i ca t ion
grammars with chain rules, a serious problem appears
The argument above rel ies cruc ia l ly on the f in i te
number of non - te rm ina l s in the c o n t e x t - f r e e grammar
A un i f i ca t ion grammar may generate an in f in i te ground
grammar, so the chain table for a un i f icat ion grammar
might be in f in i te For example, suppose (f x) -> (f (f
.x)) is a rule Then the sequence (f x) -> (f (f x)) ->
(f (f (f x))) is an in f in i te der ivat ion using only chain
rules We propose a s t ra igh t fo rward solut ion, we
requ i re tha t for every un i f i ca t ion grammar G there is
an in teger n such that every chain der ivat ion in G is
shor te r than n

Does th is r es t r i c t i on stop us from describing na tu ra l
languages9 We claim the answer is no This claim is
based on experience - we have wr i t ten a grammar tha t
is not t r i v i a l and contains no chain longer than 4 If
th is r es t r i c t i on holds, a simple algor i thm wil l generate
a chain table for a un i f i ca t ion grammar That is. it wi l l
generate a f in i te set C of pai rs of terms such tha t A
= >* B in the ground grammar iff [A B] is in (ground C)
The method is to cons t ruc t a series of sets C(k) such

tha t (ground C(k)) ^) [A B] I A = >• B in exactly k
steps | Clearly C(l) is the set of pairs [X Y) such that
(X -> Y) is a ru le If we can const ruc t C(k+1) from
C(k), we can bui ld the chain table by cons t ruc t ing C(k)
for successive values of k un t i l we f ind a C(k) that is
empty If the grammar contains unbounded chains this
algor i thm wil l run forever, and it is up to the grammar
wr i te r to f ix th is In pract ice this is not l ikely to be a
problem In any case it is better t han having the
parser go in to an inf in i te loop - which can happen
wi th the d e p t h - f i r s t , l e f t - t o - r i g h t parser used wi th
def ini te clause grammars

In order to const ruc t C(k) from C(k+1) we define a
new product Let SI and S2 be sets of pairs of terms
Define

S1 • • S2 -
I (■ [* Z]) | (e x i s t [X Y] in (renome S1 1) .

[Y* Z] in (renome S2 2) .
s is the most genero l u n i f i e r
of Y and Y ')

I
Lemma (ground SI *• S2) = {[A B] | (exist C [A C] is in
(ground SI) and [C B] is in (ground S2)){

Lemma If (ground C(k)) = J[A B]| A = > * B in exact ly k
steps!, then C(k) •♦ |[X Y] | (X -> Y) is a ru le j = }[A B]
| A => • B in exact ly k + 1 steps|

In order to extend our second c o n t e x t - f r e e parser to
a un i f icat ion parser, we now define

(c l ose * S) ■
\ (s X) | [X Y] is in (renome Choin 1) ,

Y* is in (rename S 2) , and s is the mgu of Y and Y' |.

We then rewri te the parser by adding " c l o s e " , just as
we did for the CKY algorithm

A l g o r i t h m 4

f o r i f rom 0 to (N - 1) do
M[i i +1] -

(c l ose * \ X | (X -> i n p u t [i i + 1])
i s a ru le |) .

f o r L : - 2 to N do
f o r a l l i . k such t ha t i + L - k do

M[i k] -
union (c l ose* M[i j] • ' M[j k])
i < j < k

Once again, the proof of soundness and completeness
requires only a proof for the corresponding c o n t e x t -
free algor i thm along with the basic propert ies of
un i f ica t ion

The parser tha t was actual ly implemented allows any
number of symbols on the r igh t side of a ru le. In order
to handle rules w i th an empty r ight side, we must make
another res t r i c t i on similar to the f i r s t one for every
grammar G there is an integer n such tha t every
der ivat ion of the empty s t r ing in G is shor te r than n.
In order to handle rules wi th more than two symbols on
the r igh t side, we use dot ted rules as described in
(Graham 1984) Indeed our parser was insp i red by the
c o n t e x t - f r e e parser of Graham, Harr ison and Ruzzo
The implemented parser also uses lef t contex t to reject
some of the hypotheses that are generated bo t tom-up ,
the technique is similar to Sh iebers not ion of
res t r i c t i on (Shieber 1985)

4. Paral le l Par t ing
We claim that in pract ice, the time for a uni f icat ion

or a subs t i tu t ion is dependent on the grammar but not
on the sentence If the ground grammar is f in i te , there
is a f in i te bound on the largest term that can be
const ruc ted by the parser - it is no larger than the

HMI 617

largest term in the ground grammar Sometimes a
grammar wil l include features that take on an in f in i te
set of values, but these features are few and the i r
values do not get very large for o rd inary sentences
So to a good approx imat ion, the size of the terms
const ruc ted dur ing a parse is independent of the
sentence. Therefore the t ime taken for a un i f i ca t ion or
a subs t i tu t ion is independent of the sentence

Therefore let U be the maximum time for a un i f i ca t ion
or subs t i tu t ion Assume tha t an unl imi ted number of
processors are available and the time to set up tasks
for para l le l execut ion is negligible In comput ing a
product SI * S2, we can consider each combinat ion of
an X' in S I . a Y' in S2 and a ru le (X -> Y Z) in
para l le l This allows us to compute the product in time
3U, regardless of the size of SI or S2 or the number of
branch ing rules in the grammar. By similar reasoning
we can compute (close SI) in time 2U, regardless of the
size of SI Then we can compute M[i l + l] for a l l i in
time 2U Suppose we have computed M[i k] fo r al l
substr ings shor te r than L To compute M[i k] for a
subst r ing of length L, we can compute M[i j] * M[j k] in
para l le l for all j such tha t i < j < k, and then compute
the closure This gives a to ta l t ime of 5U for each
length from 1 to the length of the sentence, thus the
parser should be able to run in t ime l inear in the
length of the sentence

In pract ice it is essential to remove from M[i k] any
terms tha t are subs t i tu t ion instances of other terms in
M[i k] In pars ing cera in cons t ruc t ions (for example,
sequences of noun modif iers or preposi t ional phrases),
th is makes the di f ference between a matr ix of size
polynomial in the inpu t , and a matr ix of size
exponent ia l in the input A simple para l le l a lgor i thm
wil l do th is in time 2U, the number of processors
needed is the square of the number of elements in M[i
k] Note that if X is the f i rs t term in M[i k] to be
computed, it might be a subs t i tu t ion instance of the
last term to be computed Thus one cannot be cer ta in
tha t X belongs in M[i k] un t i l all the potent ia l elements
of M[i k] have been computed This l imi ts the
paral lel ism in the a lgor i thm There is no such l im i ta t ion
in the case of a c o n t e x t - f r e e parser because an
occurence of a n o n - t e r m i n a l A in M[i k] is redundant
only if there is another occurence of A in M[i k] When
the algor i thm f inds the f i r s t occurence of A, it can
keep tha t one and throw away al l l a te r occurences

This algor i thm achieves speed by wasting processors
In many cases we can use left context to show tha t
even though A = > • m p u t [i k] , there is no der iva t ion of
the whole sentence in which A is the i n t e r p r e t a t i o n for
U[\ k] For example, suppose our grammar inc ludes a
ru le (Trace ->) A simple b o t t o m - u p parser wi l l
conclude that Trace = >• i npu t [i 1] for each 1, bu t left
contex t wi l l el iminate most of these hypotheses An
algor i thm that uses left contex t may therefore manage
wi th fewer processors, but i t wi l l not r u n in l inear time
in the worst case It must work from lef t to r igh t , af ter
reading the n - t h word it computes M[i n] for al l 1 < n
If i < j it must compute M[i n] before M[j n] because
M[j n] is a proper subs t r ing of U[\ n] Then the time
to read the n - t h word is p ropor t i ona l to n, and the
to ta l time is 0 (n t2)

Of course th is wo rs t - case time may not be real ized
for na tu ra l grammars and na tu ra l sentences This
raises the quest ion of tes t ing the implemented parser .
Our cu r ren t grammar concent ra tes on c lause- leve l
phenomena. There is a large set of subcategor izat ion
frames for verbs, and the grammar describes ra is ing,
con t ro l , passive, s u b j e c t - a u x invers ion and w h -
movement Noun phrases, adject ive phrases and
prepos i t iona l phrases are descr ibed only as much as
needed to i l l us t ra te the c lause- leve l phenomena. The

program was f i r s t tested wi th a Bu t te r f l y s imulator
runn ing on a VAX, it was then moved to a rea l Bu t te r f l y
and ran the f i r s t t ime. Tests have shown t h a t the
program is re l iable but slow, we have not yet a t tempted
to speed it up or to measure the gain from paral le l ism.

5. Conclusion
We propose to r es t r i c t un i f i ca t ion grammars by

requ i r ing tha t for each grammar G there is a constant
N such tha t every der iva t ion of a s t r i ng of leng th 0 or
1 is shor ter t han N. Essent ial ly th is says tha t the size
of a parse t ree is bounded by the size of the sentence;
one cannot bu i ld a r b i t r a r i l y large s t ruc tu res t ha t are
not real ized in the surface s t r i ng . Given th is
requirement one can parse un i f i ca t ion grammars by an
algor i thm re la ted to the CKY algor i thm. In pr inc ip le
such an a lgor i thm should be able to parse in l inear
t ime on an ideal para l le l machine. In p rac t ice i t is
probably desirable to use lef t context , ra is ing the
worst case t ime to 0 (n t2) In any case it should be
possible to parse in time independent of the size of the
grammar Natura l sentences are seldom over 50 words,
whi le na tu ra l grammars are l ike ly to conta in many
hundreds of ru les, so th is is an encouraging resu l t .

references

Bresnan, Joan, Kaplan. Ronald U., Peters, Stanley,
and Zaenen, Annie. Crossed Serial
Dependencies in Dutch. Linguist ic Inqu i ry ,
volume 13, number 4, pp 613-635

Graham. Susan L., Harr ison, Michael A . and Ruzzo,
Walter L An Improved Contex t -F ree
Recognizer Transact ions on Programming
Languages and Systems, volume 2, number 3,
pp 4 1 5 - 4 6 1 .

Shieber, Stuar t . Using Rest r ic t ion to Extend
Parsing Algori thms fo r Complex-Feature-Based
Formalisms Proceedings of the 23rd Annual
Meeting of the Associat ion for Computat ional
Linguist ics, pp 145-152

618 NATURAL LANGUAGE

