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Abstract

The parsing problem for arbitrary unification
grammars is unsolvable We present a class of
unification grammars for whcih the parsing problem is
solvable and a parallel parsing algorithm for this class
of grammars

1. Introduction

Unification grammars have the power of a Turing
machine, and one can easily prove this by showing that
a unification grammar can simulate any Prolog program
It follows that the problem of finding all possible
parses of a sentence in a given unification grammar is
unsolvable The best we can do is an algorithm that
sometimes finds a set of parses and sometimes goes
into an infinite loop The top-down, left-to-right
parser used with definite clause grammars is of this
kind - if the grammar contains left recursion the
parser may run forever If we want to write a parallel
parsing algorithm for unification grammar, we first need
to find a subset of unification grammar for which the
parsing problem is solvable Indeed this is the hard
part of the problem We shall see that once we have a
parsing algorithm, finding the parallelism is
straightforward

Part 1 reviews the algorithm of Cocke. Kasami and
Younger for parsing context-free grammars in Chomsky
normal form This algorithm is beautifully simple and
easily extends to a parsing algorithm for unification
grammars in  Chomsky normal form Therefore the
parsing problem is solvable for unification grammars in
Chomsky normal form Unfortunately this subset of
unification grammar is too restricted to describe human
language Part 2 therefore considers an extension of
Chomsky Normal Form which allows chain rules - rules
having one non-terminal symbol on the right side We
generalize the CKY algorithm to handle context-free
grammars with chain rules, and extend this algorithm
to unification grammars. The extension works only if
one places a restriction on the use of chain rules in a
unification grammar, and that restriction is one main
point of the paper Once we have the parsing algorithm
for unification grammars with chain rules, we can easily
extend it to unification grammars with any number of
symbols on the right side of a rule Finally we consider
the possibilities of parallelism in the new parsing
algorithm

2. Parsing in Choaaky Normal Form

A context-free grammar in Chomsky normal form
contains two kinds of rules. Terminal rules have a
single terminal on the right side, branching rules have
exactly two non-terminal symbols on the right side

Since no rule has an empty right side, no symbol can
generate the empty string We use the capital letters
AB.C as variables ranging over non-terminal symbols
To describe the substrings of an input sentence we
number the spaces between words - 0 is the space
before the first word and n is the space after the n-th
word If | < j. input[i j] is the string of words between
space i and space j The CKY algorithm builds a matrix
M such that

M[i j1 - | A | A »> input[i j] |

Strictly speaking this is a recognizer not a parser, but
it is easily extended to a parser, and the same is true
for the other algorithms in this paper

If SI and S2 are sets of non-terminal symbols define
the product of SI and S2. Si * S2, by

S1 « 82 -
|IA | (txist B in SI. C in 82 (A ->B C) is o rul«)]|

The following lemma shows why this product is useful

Basic Parsing Lemma Suppose that i <. k and for all j
such that i <; j <k, M[ij] =J A | A =>«input[ij] { and
M[j k] = | A | A =>« input[j k] j Then for all A. A =>»
inputji k] iff A is in M[i j] « M[j k] for some j with i < j
< k

All proofs are omitted for Ifack of space

If i <j < k, M[ij] and M[j k] are shorter than M[i k]
Thus the Basic Parsing Lemma allows us to find all
possible parses of input[i k], given all possible parses
for strings shorter than input[i k] This is the key to
writing parsing algorithms that are guaranteed to halt

The CKY algorithm has two parts First the algorithm
finds all possible parses for strings of length 1, using
the terminal rules Next it considers strings longer
than 1 in order of length, it finds all possible parses
for input[i k] by applying the Basic Parsing Lemma for
all choices of j

Here is a version of the CKY algorithm for a sentence
of length N

Algorithnt.

for i from e to (N - 1) do

ML i+1] -

| A | (A -> input[i i+1]) it o rul« [;
for L - 2 to N do
for oil i.k such that i -f L « k do
M[i k] - union M[* jl * M[j k]
i< j<k

Theorem 1 (Correctness of CKY ) When the CKY
algorithm halts, M[i k] = |A | A =>" inputfi k|{

We turn to wunification grammar Consider a first-
order language with a simple type system each variable
and function letter is assigned a type, and each
argument position of each function letter is assigned a
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type A tern is well-formed if every argument of each
function letter has the correct type for its position We
use the capital letters X.Y.ZW. sometimes with prime
marks, as variables ranging over well-formed terras of
a unification grammar A unification grammar is a
finite set of rules of the form (X -> YI Yn). where
X is a well-formed term and Yl through Yn are either
terms or terminal symbols If G is a wunification
grammar, the ground grammar G derived from G is the
set of well-formed ground instances of rules in G To
define the language generated by a ground grammar we
use the standard definition of the language generated
by a context-free grammar, assuming that the start
symbol is always S. It is possible that the ground
grammar is infinite, and therefore is not a context-
free grammar. This does not create a problem, because
the definition of the language generated by a context-
free grammar does not rely on the fimteness of the
grammar in any way. Finally we define the language
generated by a unification grammar G to be the
language generated by the ground grammar derived
from G.

Consider a trivial example Let the type Person
contain the variable p and the constants 1st, 2nd and
3rd Let the type Number contain the variable n and
the constants Singular and Plural Suppose NP and VP
are function letters with two arguments, a person and
a number Then the rule

(8) > {NP :p :n) {¥P :p :n)

says that a sentence may consist of a noun phrase and
a verb phrase that agree in person and number This
rule has 6 ground instances, as follows

(S) —> (NP 18t Singulor) (YP 1at Singular)
{S) —> (NP 2nd Singulor) (VP 2nd Singuler)
{5) —=» (NP 3rd Singuiar} (VP 3rd Singular)
{5) —> (WP 18t Plurgl) {VF 1t Plural)
{$) -> (NP 2rnd Plural) {W 2nd Plural)
{%) —> (WP 3rd Plurgl) (W 3rd Plurgl)

In this case the ground grammar is finite, so this rule
is only an abbreviation for a context-free grammar It
appears that most of the syntax of natural language is
context-free, therefore unification grammars with finite
ground grammars have almost the formal power needed
to describe natural language Still there are
constructions that cannot be described by context-free
grammar The crossed serial dependencies in Dutch and
Swiss German are examples (Bresnan 1982) We can
describe these constructions using a unification
grammar whose ground grammar is infinite As an
illustration of the technique we give a grammar for the
language (atn)(btn)(ctn). which no context-free
grammar can generate. The function letters A, B and C
each take a single argument of type Integer. The
variable n. the function letter s (for "successor") and
the constant 0 are of type Integer, s takes a single
argument of type Integer The rules are

{5) =» (A& :n) (B :n) (€ :n)
(A 8) >

{A {9 .n)) ~» 0 (A :n)

(8 8} —»

(B (s n)) >b (B :n)

c &) >

(C (v .n)) => ¢ (C.0)

(A n) represents a string of n as, (B n) a string of n
b's, and (C n) a string of n C'J The first rule says
that a sentence consists of n as, n b's, and n c's

It is important to wunderstand that our parsing
algorithm does not construct the ground grammar, nor
does it construct the set of ground non-terminals that
generate input[i k] Instead it represents sets of
ground non-terminals indirectly. If Sl is a set of terms
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in a unification grammar, let (ground SI; be the set of
ground instances of terms in Si The parser sets M[i k]
to a set of terms so that (ground MJ[i k]) « | A | A =>¢
input[i k] |.

A unification grammar in Chomsky normal form has
two kinds of rules Terminal rules have a single
terminal symbol on the right side, branching rules have
two well-formed terms on the right side. Unification is
defined for pairs of terms as well as individual terms -
the most general unifier of [X Y] and [X Y] is the most
general substitution that unifies X with X' and Y with
Y . As usual it is neccesary to rename variables before
unifying. For this purpose assume that for any term X
and integer n, (rename X n) is an alphabetic variant of
X, and if m is not equal to n then (rename X n) and
(rename Y m) have no variables in common Note that
renaming a term or rule does not change its set of
ground instances. For this reason we use the term
"rule" for any alphabetic variant of a rule in G

If SI and S2 are sets of terms in a unification
grammar, the product of SI and S2, Si ¢ S2, is defined
as follows.

51 ' 82 m
1 (o X) | Coxiot Y* in {renome S1 1),

L' in {renoms S2 2},

(X =>Y 2) in {(tenome G 3).

a in the most genercol unifiar of

. the pairs [Y Z] and [Y* 2°]
Loosely speaking, this product is like the product used
in the CKY algorithm except that instead of testing
symbols for equality, it makes the symbols equal by
substitution - if possible

Unification Parsing Lemma Suppose that | < k and
for all j such that i < j < k, (ground MJ[i j]) = | A | A
=>¢ input[i j] j, and (ground M[j k]) = J A | A =>-
input[j k] j. Then A =>e¢ input[i k] iff for some j such
that | < j < k. A is in (ground MI[i j] «" M[j k])

The parser for unification grammars in Chomsky
normal form is then as follows

for + From & te (N — 1) de
M1 1] -
P x4 (X => Input[i 1#1]) is g rule {.
for L := 2 to N do
for oll i,k such thal | + L = & do
MLi k] = umion WI3 ] o W[ &)
i€l <k

Theorem. When the unification parser halts, (ground M][
kl) m |A | A -> mputfi k]j.

Unification grammars in Chomsky normal form are
more powerful than context-free grammars, they can
generate languages that no context-free grammar can
generate, and they can capture generalizations that
cannot be captured with context-free grammars
Despite this difference in the power of the two
formalisms, one can parse these unification grammars
using a very straightforward generalization of the CKY
algorithm. This is a good example of the power and
simplicity of unification.

3. Parting with Chain Rules

Unfortunately one cannot describe natural language
syntax with a unification grammar in Chomsky normal
form. For example, any intransitive verb can form a
sentence by itself - "Run!" and "Stop!" are such
sentences. If we restrict ourselves to grammars in
Chomsky normal form we must have a rule for each of
these sentences - (S -> run), (S -> stop), and so on.
The rule we really want is something like (S -> (Vp
(2nd) .n)) - a verb phrase that agrees with a second



person subject can form a sentence by itself As a
second example, many theories hold that in "Who did
Mary like®" there is a trace after "like" - a noun
phrase with no words under it (NP -> ) is not allowed
in Chomsky normal form We therefore consider the
problem of parsing a unification grammar that allows
chain rules - rules with exactly one non-terminal on
the right side The solution of this problem includes
the essential ideas needed to parse grammars with any
number of symbols on the right sides of their rules

Let us first consider the context-free case How can
we parse a grammar that allows chain rules, branching
rules, and terminal rules’ We stressed above that the
Basic Parsing Lemma is useful because it allows us to
find all possible parses of a substring if we are given
all possible parses of shorter substrings This allows us
to look at substrings in order of length, knowing that
at each stage we have the information we need The
chain rule (A -> B) tells us that if B =>* input[i k], so
does A input[i k] is not shorter than itself, so we
could repeat this process indefinitely without ever
getting to a longer substring Then what guarantees
termination®

In the case of context-free grammar, we can easily
build a table of all pairs [A B] such that A =>¢ B This
table is finite because the set of non-terminals is
finite Define (close S) to be the set of all non-
terminals A such that A -> B for some B in S Since A
=>* A, (close S) contains S

Second Parsing Lemma Let G be a context-free
grammar containing only terminal rules, branching
rules, and chain rules Suppose that 1 <. k and for all
j such that i < j < k. M[i j] == ) A | A =>* input[i j] {
and M[j k] = { A | A => input[j kIl j Then for all A, A
=>* input[i k] iff A is in (close M[i j] * M[j k]) for some
j with 1 <j < k

Using this observation we extend the CKY algorithm to
handle grammars with chain rules

Algori thro 2.
Context-free porter with chain toble

for i froro 0 to (N - 1) do

M[i 1+1] e+« (close input[i i+1]).
for L > 2 to N do
for all i.k such thot i + L m k do
M[i k] :- union (close M[i j] * M[j Kk])
i <j <k

Theorem 3 Suppose the grammar G contains only
terminal rules, branching rules and chain rules After
algorithm 2 halts, M[i k] = )A | A =>. input[i k](

If one tries to generalize this algorithm to unification
grammars with chain rules, a serious problem appears
The argument above relies crucially on the finite
number of non-terminals in the context-free grammar
A unification grammar may generate an infinite ground
grammar, so the chain table for a unification grammar
might be infinite For example, suppose (f x) -> (f (f
X)) is a rule Then the sequence (f x) -> (f (f x)) ->
(f (f (f x))) is an infinite derivation using only chain
rules We propose a straightforward solution, we
require that for every unification grammar G there is
an integer n such that every chain derivation in G is
shorter than n

Does this restriction stop us from describing natural
Ianguagesg We claim the answer is no This claim is
based on experience - we have written a grammar that
is not trivial and contains no chain longer than 4 If
this restriction holds, a simple algorithm will generate
a chain table for a unification grammar That is. it will
generate a finite set C of pairs of terms such that A
=>* B in the ground grammar iff [A B] is in (ground C)
The method is to construct a series of sets C(k) such

that (ground C(k)) »~ ) [A B] | A => B in exactly k
steps | Clearly C(l) is the set of pairs [X Y) such that
(X -> Y) is a rule If we can construct C(k+1) from
C(k), we can build the chain table by constructing C(k)
for successive values of k until we find a C(k) that is
empty If the grammar contains unbounded chains this
algorithm will run forever, and it is up to the grammar
writer to fix this In practice this is not likely to be a
problem In any case it is better than having the
parser go into an infinite loop - which can happen
with the depth-first, left-to-right parser used with
definite clause grammars

In order to construct C(k) from C(k+1) we define a
new product Let SI and S2 be sets of pairs of terms
Define

S1 «+ S2 -
I (m [* Z]) | (exist [X Y] in (renome S1 1).
[Y* Z] in (renome S2 2).
s is the most generol unifier
of Y and Y')

Lemma (ground SI *» S2) = {[A B] | (exist C [A C] is in
(ground Sl) and [C B] is in (ground S2)){

Lemma If (ground C(k)) = JJA B]] A =>* B in exactly k
steps!, then C(k) ¢ [[X Y] | (X -> Y) is a rulej = }[A B]
| A =>+« B in exactly k + 1 steps]|

In order to extend our second context-free parser to
a unification parser, we now define

(close* S) m
\' (s X) | [X Y] is in (renome Choin 1),
Y* is in (rename S 2), and s is the mgu of Y and Y' |.

We then rewrite the parser by adding "close", just as
we did for the CKY algorithm

Algorithm 4
for i from 0 to (N - 1) do
M[i i+1] -
(close* |\ X | (X -> input[i i+1])
is a rule |).
for L :- 2 to N do
for all i.k such that i + L - k do
M[i k] -
union (close* MJ[i j] " M[j k])
i <j<k

Once again, the proof of soundness and completeness
requires only a proof for the corresponding context-
free algorithm along with the basic properties of
unification

The parser that was actually implemented allows any
number of symbols on the right side of a rule. In order
to handle rules with an empty right side, we must make
another restriction similar to the first one for every
grammar G there is an integer n such that every
derivation of the empty string in G is shorter than n.
In order to handle rules with more than two symbols on
the right side, we use dotted rules as described in
(Graham 1984) Indeed our parser was inspired by the
context-free parser of Graham, Harrison and Ruzzo
The implemented parser also uses left context to reject
some of the hypotheses that are generated bottom-up,
the technique is similar to Shiebers notion of
restriction (Shieber 1985)

4. Parallel Parting

We claim that in practice, the time for a unification
or a substitution is dependent on the grammar but not
on the sentence |If the ground grammar is finite, there
is a finite bound on the largest term that can be
constructed by the parser - it is no larger than the
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largest term in the ground grammar Sometimes a
grammar will include features that take on an infinite
set of values, but these features are few and their
values do not get very large for ordinary sentences
So to a good approximation, the size of the terms
constructed during a parse is independent of the
sentence. Therefore the time taken for a unification or
a substitution is independent of the sentence

Therefore let U be the maximum time for a unification
or substitution Assume that an unlimited number of
processors are available and the time to set up tasks
for parallel execution is negligible In computing a
product SI * S2, we can consider each combination of
an X' in SI. a Y' in S2 and a rule (X -=> Y Z) in
parallel This allows us to compute the product in time
3U, regardless of the size of Sl or S2 or the number of
branching rules in the grammar. By similar reasoning
we can compute (close Sl) in time 2U, regardless of the
size of SI Then we can compute M[i I+I] for all i in
time 2U Suppose we have computed M[i k] for all
substrings shorter than L To compute M[i k] for a
substring of length L, we can compute M[i j] * M[j k] in
parallel for all j such that i < j < k, and then compute
the closure This gives a total time of 5U for each
length from 1 to the length of the sentence, thus the
parser should be able to run in time linear in the
length of the sentence

In practice it is essential to remove from MI[i k] any
terms that are substitution instances of other terms in
M[i k] In parsing cerain constructions (for example,
sequences of noun modifiers or prepositional phrases),
this makes the difference between a matrix of size
polynomial in the input, and a matrix of size
exponential in the input A simple parallel algorithm
will do this in time 2U, the number of processors
needed is the square of the number of elements in MIi
k] Note that if X is the first term in M[i k] to be
computed, it might be a substitution instance of the
last term to be computed Thus one cannot be certain
that X belongs in M[i k] until all the potential elements
of MI[i k] have been computed This limits the
parallelism in the algorithm There is no such limitation
in the case of a context-free parser because an
occurence of a non-terminal A in M[i k] is redundant
only if there is another occurence of A in M[i k] When
the algorithm finds the first occurence of A, it can
keep that one and throw away all later occurences

This algorithm achieves speed by wasting processors
In many cases we can use left context to show that
even though A =>¢ mput[i k], there is no derivation of
the whole sentence in which A is the interpretation for
UM k] For example, suppose our grammar includes a
rule (Trace -> ) A simple bottom-up parser will
conclude that Trace =>< input[i 1] for each 1, but left
context will eliminate most of these hypotheses An
algorithm that uses left context may therefore manage
with fewer processors, but it will not run in linear time
in the worst case It must work from left to right, after
reading the n-th word it computes M[i n] for all 1 < n
If i < j it must compute M[i n] before M[j n] because
M[j n] is a proper substring of UM\ n] Then the time
to read the n-th word is proportional to n, and the
total time is 0(nt2)

Of course this worst-case time may not be realized
for natural grammars and natural sentences This
raises the question of testing the implemented parser.
Our current grammar concentrates on clause-level
phenomena. There is a large set of subcategorization
frames for verbs, and the grammar describes raising,
control, passive, subject-aux inversion and wh-
movement Noun phrases, adjective phrases and
prepositional phrases are described only as much as
needed to illustrate the clause-level phenomena. The
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program was first tested with a Butterfly simulator
running on a VAX, it was then moved to a real Butterfly
and ran the first time. Tests have shown that the
program is reliable but slow, we have not yet attempted
to speed it up or to measure the gain from parallelism.

5. Conclusion

We propose to restrict wunification grammars by
requiring that for each grammar G there is a constant
N such that every derivation of a string of length 0 or
1 is shorter than N. Essentially this says that the size
of a parse tree is bounded by the size of the sentence;
one cannot build arbitrarily large structures that are
not realized in the surface string. Given this
requirement one can parse unification grammars by an
algorithm related to the CKY algorithm. In principle
such an algorithm should be able to parse in linear
time on an ideal parallel machine. In practice it is
probably desirable to wuse left context, raising the
worst case time to 0(nt2) In any case it should be
possible to parse in time independent of the size of the
grammar Natural sentences are seldom over 50 words,
while natural grammars are likely to contain many
hundreds of rules, so this is an encouraging result.
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