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Summary. The complexity of parallel PDE-based simulations continues to increasaltis
model, multiphysics, and multi-institutional projects become widespreadafaj component-
based software engineering in such large-scale simulations is to helgetigcomplexity
by enabling better interoperability among various codes that have beepeindently devel-
oped by different groups. The Common Component ArchitectureA)drum is defining a
component architecture specification to address the challenges gbéifgirmance scientific
computing. In addition, several execution frameworks, supportinrgstiucture, and general-
purpose components are being developed. Furthermore, this groalfalsorating with others
in the high-performance computing community to design suites of donp&icifec component
interface specifications and underlying implementations.

This chapter discusses recent work on leveraging these CCA effqsaiiel PDE-based
simulations involving accelerator design, climate modeling, combustionaecidental fires
and explosions. We explain how component technology helps to adtieskfferent chal-
lenges posed by each of these applications, and we highlight how cemipaterfaces built
on existing parallel toolkits facilitate the reuse of software for parallel rmeahipulation,
discretization, linear algebra, integration, optimization, and parallel ddiatribution. We
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also present performance data to demonstrate the suitability of this ahpesal we discuss
strategies for applying component technologies to both new and exisitigatjons.

1 Introduction

The complexity of parallel simulations based on partididéntial equations (PDES)
continues to increase as multimodel, multiphysics, miskiglinary, and multi-
institutional projects are becoming widespread. Couptireglels and different types
of science increases the complexity of the simulation co@e#laboration across
disciplines and institutions, while increasingly necegsatroduces new social intri-
cacies into the software development process, such asatiffprogramming styles
and different ways of thinking about problems. Added to ¢helsallenges, the soft-
ware must cope with the multilevel memory hierarchies commoomodern parallel
computers where there may be three to five levels of dataitypcal

These challenges make it clear that the high-performanieatsfic computing
community needs an approach to software development fallpaPDEs that fa-
cilitates managing such complexity while maintaining abé and efficient parallel
performance. Rather than being overwhelmed by the tedietaslsl of parallel com-
puting, computational scientists must be able to focus enpiduticular part of a
simulation that is of primary interest to them (e.g., the by of combustion) and
employ well-tested and optimized code developed by expedther facets of a sim-
ulation (e.g., parallel linear algebra and visualizatidraditional approaches, such
as the widespread use of software libraries, have histiyrioaen valuable, but these
approaches are being severely strained by this new corplexi

One goal of component-based software engineering (CBSEB) ésable inter-
operability among software modules that have been develimplependently by dif-
ferent groups. CBSE treats applications as assembliesftafase componentshat
interact with each other only through well-definaterfaceswithin a particular exe-
cution environment, dramework Components are a logical means of encapsulating
knowledge from one scientific domain for use by those in athtbereby facilitating
multidisciplinary interactions. The complexity of a giveimulation is decomposed
into bite-sized components that one or a few investigatangdevelop independently,
thus enabling the collaboration of scores of researcheéheidevelopment of a single
simulation. The glue that binds the components togethesét af common, agreed-
upon interfaces. Multiple component implementations ooming to the same ex-
ternal interface standard should be interoperable, whibeiging flexibility to ac-
commodate different aspects such as algorithms, perfarenaharacteristics, and
coding styles. At the same time, the use of common interfeammbtates the reuse
of components across multiple applications. Even thouggildeliffer widely, many
PDE-based simulations share the same overall softwaretsteu Such applications
could employ similar sets of components, which might camftw many of the same
interfaces but differ in implementation details. This kioidsoftware reuse enables
the cross-pollination of both components and conceptssaa@applications, projects,
and problem domains.
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Fig. 1.Complete parallel PDE-based applications can be built by combiningtrieLsaentific
components with application-specific components; both can employ dBre $ervices to
manage inter-component interactions.

The Common Component Architecture (CCA) [8,21,28] is destyspecifically
for the needs of parallel, scientific high-performance cotimg (HPC) in response
to limitations in the general HPC domain of other, more wydesed component
approaches (see Section 3). The general-purpose desiga 6fQA is intended for
use in a wide range of scientific domains for both PDE-baseldnam-PDE-based
simulations.

As depicted in Figure 1, complete parallel PDE-based agiatins can be built
in a CCA environment by combining various reusable scientiimponents with
application-specific components. In keeping with the ersjshef this book, we ex-
plain (1) how component software can help manage the corityplekPDE-based
simulations and (2) how the CCA, in particular, facilitapegallel scientific compu-
tations. We do this in the context of four motivating PDEdshspplication areas,
which are introduced in Section 2. After presenting the dasncepts of the CCA
in Section 3, we provide an overview of some reusable siedmponents and
explain how component interfaces built on existing patabelkits facilitate the
reuse of software for parallel mesh manipulation, diseagiton, linear algebra, inte-
gration, optimization, and parallel data redistributi®ection 5 discusses strategies
for applying component technologies to both new and exjstipplications, with an
emphasis on approaches for the decomposition of PDE-basbtems, including
considerations for how to move from particular implemeota to more general
abstractions. Section 6 integrates these ideas throughstadies that illustrate the
application of component technologies and reusable coamierin the four motivat-
ing applications. Section 7 discusses conclusions and afdature work.
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2 Motivating Parallel PDE-Based Simulations

This section introduces four PDE-based application ategtstotivate our work: ac-
celerator design, climate modeling, combustion, and acdal fires and explosions.

2.1 Accelerator Modeling

Accelerators produce high-energy, high-speed
beams of charged subatomic particles for re-
search in high-energy and nuclear physics,
synchrotron radiation research, medical ther-
apies, and industrial applications. The design
of next-generation accelerator facilities, such
as the Positron-Electron Project (PEP)-Il and
Rare Isotope Accelerator (RIA), relies heav-
ily on a suite of software tools that can be
used to simulate many different accelerator
experiments. Two of the codes used by ac-
celerator scientists at the Stanford Linear Ac-
celerator Center (SLAC) are Omega3P [120] /
and Tau3P [137]. Omega3P is an extensi-
ble, parallel, finite element-based code for theg. 2. State-of-the-art simulation tools
eigenmode modeling of large, complex threere used to help design the next gen-
dimensional electromagnetic structures in theation of accelerator facilitiegLeft).
frequency domain, while Tau3P provides sdvesh generated for the PEP-II interac-
lutions to electromagnetics problems in th#on region using the CUBIT mesh gen-
time domain. Both codes make extensive uggtion package. Image courtesy of Tim
of unstructured mesh infrastructures to adautges of Sandia National Laborato-
commodate the complex geometries assofgS: (Right) Excited fields computed
ated with accelerator models. In order to ovef> 9 Tau3P. Image courtesy of the nu-
. . . merics team at SLAC.

come barriers to computation and to improve

functionality, both codes are being evaluated

for possible extension.

For Tau3P, different discretization strategies are bexmjoeed to address long-
time instabilities on certain types of meshes. Tau3P isdasea modified Yee
algorithm formulated on an unstructured grid and uses aatscurface integral
(DSI) method to solve Maxwell’'s equations. Since the DSksoh is known to have
potential instabilities on nonorthogonal meshes, saentre using a time filtering
technique that maintains stability in most cases, but agaifgiantly higher com-
putational cost. Unfortunately, integrating new dis@atiion techniques is costly;
and, because of resource constraints, several potentiséfful methods cannot be
investigated. A component-based approach that allowstistie to easily prototype
different discretization and meshing strategies in a @od-play fashion would be
useful in overcoming this obstacle.
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For Omega3P, solutions are being explored that yield marerate results with-
out increasing the computational cost. That is, scierdistssatisfied with the finite-
element-based solver but cannot increase mesh resolotiealtice the large errors
that occur in small regions of the computational domain. feroome this barrier,
SLAC scientists are working with researchers at RenseRadytechnic Institute
(RPI) to develop an adaptive mesh refinement (AMR) capgblilespite initially
using a file-based information transfer mechanism, thigrefias clearly demon-
strated the advantage of AMR techniques to compute signtficanore accurate
solutions at a reduced computational cost. As describecatich 6.1, current ef-
forts are centered on directly deploying these advancedhilies in the Omega3P
code by using a component approach. This approach has madadeavor more
tractable and has given scientists the flexibility of latgeximenting with different
underlying AMR infrastructures at little additional cost.

In order to facilitate the use of different discretizatiomdameshing strategies,
there is a need for a set of common interfaces that providesado mesh and ge-
ometry information. A community effort to specify such irfeeces is described in
Section 4.1, and results of a performance study using a sabwse interfaces are
discussed in Section 4.8.

2.2 Climate Modeling

Climate is the overall product of the mutual interaction lvé Earth’s atmosphere,
oceans, biosphere, and cryosphere. These systems irligragchanging energy,
momentum, moisture, chemical fluxes, etc. The inherentmeatity of each subsys-
tem’s equations of evolution makes direct modeling ofdlimate—which is the set

of statistical moments sampled over a large time scale—almgessible. Instead,
climate modeling is accomplished through integrations mfpded climate system
models for extended periods, ranging from the century ttemiiial time scales, log-
ging of model history output sampled at short time scaled,subsequent off-line
analysis to compute climate statistics.

PDEs arise in many places in the climate system, most significin the dy-
namics of the atmosphere, ocean, and sea-ice. The oceannaosphere are both
modeled as thin spherical shells of fluid in a rotating refeesframe, using in each
case a system of coupled PDEs governing mass, energy, anémhamconserva-
tion, calledthe primitive equationsModern sea-ice models simulate the formation
and melting of ice (thé¢hermodynamicsf the problem), how the ice pack is forced
by surface winds and ocean currents, and how it behaves aseaiahéits dynam-
ics andrheology. Schemes such as the elastic-viscous plastic (EVP) sck&bhe
involve the solution of PDEs.

Climate modeling is a grand challenge high-performancepuding applica-
tion, requiring highly efficient and scalable algorithmgahble of providing the high
throughput needed for long-term integrations. To illugtthe high simulation costs,
we consider the NASA finite-volume General Circulation Mode500-model-day
simulation using this model, with a horizontal resolutidr0d° latitude by0.625°
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longitude and 32 vertical layers, takes a wall-clock dayuto on a 1.25-GHz Com-
paq AlphaServer SC45 with 250 CPUs [83].

The requirements for coping with multi-
ple, coupled physical processes as well the
requirements for parallel computing make
software development even more challeng =8
ing. The traditional development process fo B Y
these models was the creation of highly en i
tangled applications that made little reus
of code and made the interchange of func :
tional units difficult. In recent years, the cli- §ii: e
mate/weather/ocean (CWO) community ha S
embarked on an effort to increase modular L it
ity and interoperability, the main motivation S
being a desire to accelerate the development,
testing, and validation cycle. This effort is po-
sitioning the community for the introductionFig. 3. Displaced pole grid on which
of software component technology, and thetee Parallel Ocean Program ocean
is now an emerging community wide applicamodel [104] solves its primitive equa-

tion framework, the Earth System Modelingions. The polar region is displaced to lie
Framework [67]. over land, thereby minimizing the prob-

In Section 4.7 we discuss the use of CC§MS éncountered at high latitudes by
inite-difference schemes. Image cour-

components for cllmat.e model Coqpllng. Irt]esy of Phillip Jones and Richard Smith,
Section 6.2 we d_escrlbe the multiple so L 0s Alamos National Laboratory.

ware scales at which component technology

is appropriate in climate system models. We

briefly describe the ESMF and its relationship to the CCA, wrgrovide an exam-
ple of CWO code refactoring to to make it component frientlg also describe a
prototype component-based advection model that combieemteroperable com-
ponent paradigms of the CCA and ESMF.

2.3 Combustion

The study of flames, experimentally and computationallguies the resolution of
a wide range of length and time scales arising from the intena of chemistry,
radiation, and transport (diffusive and convective). Theplexity and expense in-
volved in the experimental study of flames were recognizedd®ecades ago, and the
Combustion Research Facility [37] was created as a “uséityagvhose equipment
and expertise would be freely available to industry and ecad. Today a similar
challenge is being faced in the high-fidelity numerical dettions of flames [105].
Existing simulations employ a variety of numerical and fafraZzomputing strate-
gies to achieve an accurate resolution of physics and soaigsthe unfortunate
side effect of producing large, complex and ultimately ugtdy codes. Their lack of
extensibility and difficulty of maintenance have been amerimpediment and were
the prime motive for establishing in 2001 the Computatidreatility for Reacting
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Flow Science (CFRFS) [93], a “simulation facility” whereri@us numerical algo-
rithms, physical and chemical models, meshing strategied,domain partitioners
may be tested in flame simulations.

In the CFRFS project, flames are solved
by using the low Mach number form of the
Navier-Stokes equation [92, 133], augmented
by evolution equations for the various chem-
ical species and an energy equation with g
source term to incorporate the contribution
from chemical reactions. The objective of the
project is to simulate laboratory-sized flames
with detailed chemistry, a problem that ex- _
hibits a wide spectrum of length and time : HHHEEH
scales. Block-structured adaptive meshes [18 . P | HEEEmE :
are used to limit fine meshes only where (and T SilNEEsEee.
when) required; operator-splitting [68,117] is
used to treat stiff chemical terms implicitly inFig. 4. A 10-cm-high pulsating
time, while the convective and diffusive termsnethane-air jet flame, computed on
are advanced explicitly. In many cases, th&h adaptive mesh. On the left is the
stiff chemical system can be rendered nontgmperature field with a black contour
tiff (without any appreciable loss of fidelity)Showing regions of high heat release

by projection onto a lower-dimensional manates- On the right is the adaptive mesh,

ifold. The identification of this manifold and™™ "/NiCh régions corresponding to the
L . . et shear layer are refined the most.

the projection onto it are achieved by compd-

tational singular perturbation (CSP) [70, 75],

a multiscale asymptotic method that holds the promise afifsogntly reducing the

cost of solving the chemical system.

Given the scope of the simulation facility, the requisitgre of flexibility and
extensibility clearly could not be achieved without a ladggree of modulariza-
tion and without liberating the users (with widely varyirgyéls of computational
expertise) from the strait jacket imposed by global dataestires and models. Mod-
ularization was achieved by adopting a component-basditecture, and the mul-
tidimensional Fortran array was adopted as the basic urdat# exchange among
scientific components. The simulation facility can thus ewved as a toolkit of
components, each embodying a certain numerical or phykioationality, mostly
implemented in Fortran 77, with thin C++ “wrappers” arouhdrn.

In Section 4.2 we discuss SAMR components used in this agfit, and in
Section 5 we detail the strategy we adopted to decomposeematftal and simu-
lation requirements into modules, while preserving a ctaseespondence between
the software components and identifiable physics in thergavg equations. In Sec-
tion 6.3 we demonstrate the payoffs of adopting suphysics-basedpproach.
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2.4 Accidental Fires and Explosions

In 1997 the University of Utah created an alliance with th& WDepartment of En-
ergy (DOE) Accelerated Strategic Computing Initiative Ipto form the Center
for the Simulation of Accidental Fires and Explosions (CFE [55]. C-SAFE fo-
cuses on providing state-of-the-art, science-based foothe numerical simulation
of accidental fires and explosions, especially within thetext of handling and stor-
ing highly flammable materials. The primary objective of B8FF is to provide a
software system in which fundamental chemistry and engingghysics are fully
coupled with nonlinear solvers, optimization, computadibsteering, visualization,
and experimental data verification, thereby integratingeetise from a wide variety
of disciplines. Simulations using this system will help tetter evaluate the risks
and safety issues associated with fires and explosions idests involving both
hydrocarbon and energetic materials. A typical C-SAFE fawmbis shown in Fig-
ure 5. Section 6.4 discusses the use of component concetiis iapplication and
demonstrates scalable performance on a variety of pasatibitectures.

Fig. 5. A typical C-SAFE problem involving
hydrocarbon fires and explosions of energeti
materials. This simulation involves fluid dy-
namics, structural mechanics, and chemici
reactions in both the flame and the explosive
Accurate simulations of these events can lea
to a better understanding of high-energy ex
plosives, can help evaluate the design of shig
ping and storage containers for these me
terials, and can help officials determine ¢
response to various accident scenarios. Tt
fire image is courtesy of Schonbucher Insti §
tut for Technische Chemie | der Universitat
Stuttgart, and the images of the container an
explosion are courtesy of Eric Eddings of the
University of Utah.

3 High-Performance Components

High-performance components offer a means to deal with\teeiacreasing com-
plexity of scientific software, including the four applitats introduced in Section 2.
We first introduce general component concepts, discuss ¢menton Component
Architecture (CCA), and then introduce two simple PDE-llasgamples to help
illustrate CCA principles and components.
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3.1 Component-Based Software Engineering

In addition to the advantages of component-based softweyi@eering (CBSE; see,
e.g., [121]) discussed in Section 1, component-based appes offer additional
benefits, including the following:

e Plug-and-play assemblimproves productivity, especially when a significant
number of components can be used without customization sanglifies the
evolution of applications to meet new requirements or agkinew problems.

e Clearinterfaces and boundariesound components simplify the composition of
multiple componentized libraries in ways that may be diffionimpossible with
software libraries in their traditional forms. This appchalso helps researchers
to focus on the particular aspects of the problem correspgrid their interests
and expertise.

e Components enable adaptatiah applications in ways that traditional design
cannot. For example, interface standards facilitate simgppf components to
modify behavior or performance; such changes can even be madmatically
without user intervention [96].

As implied above and in Section 1, CBSE can be thought of, inymaspects,
as an extension and refinement of the use of software lilsraréepopular and ef-
fective approach in modern scientific computing. Componeme also related to
“domain-specific computational frameworks” or “applicatiframeworks,” which
have become popular in recent years (e.g., Cactus [6], ESV]Fdnd PRISM [53]).
Typically, such environments provide deep computationglpsrt for applications
in a given domain, and applications are constructed at siveljahigh level. Many
application frameworks even have a componentlike streatithe high level, allow-
ing arbitrary code to be plugged in to the framework. Applma frameworks are
more constrained than general component environmentsibedthe ability to reuse
components across scientific domains is quite limited, aedtamework tends to
embody assumptions about the workflow of the problem don@émeral compo-
nent models do not impose such constraints or assumptiahgraide broader op-
portunities for reuse. Domain-specific frameworks can bestracted within general
component environments by casting the domain-specifiastfucture and workflow
as components.

A number of component models have attained widespread usginstream
computing, especially Enterprise JavaBeans [44,112];ddmft's COM/DCOM [26,
88, 89], and the Object Management Group’s CORBA and the COR8mponent
Model [97]. Despite its advantages, however, CBSE has fantg limited adop-
tion in the scientific computing community to date [64, 842[LWnfortunately, the
commodity component models tend to emphasize distribudgetpating while more
or less ignoring parallel computing, impose significantfgenance overheads, or
require significant changes to existing code to enable ipeyate within the compo-
nent environment. Additional concerns with many compomeatlels include sup-
port for programming languages important to scientific cotimy, such as Fortran;
support for data types, such as complex numbers and arragisperating sys-
tem support. The Common Component Architecture has beesiafmd in direct
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response to the need for a component environment targett toeeds of high-
performance scientific computing.

3.2 The Common Component Architecture

The Common Component Architecture [28] is the core of anresite research and
development program focused on understanding how besitlittcewand implement
component-based software engineering practices in thegegformance scientific
computing area, and on developing the specifications arld tbat will lead to a
broad spectrum of CCA-based scientific applications. A aahensive description
of the CCA, including more detailed presentations of marpeats of the environ-
ment is available [21]; here we present a brief overview ef @CA environment,
focusing on the aspects most relevant to parallel PDE-bsisadations.

The specification of the Common Component Architecture [@8fines the
rights, responsibilities, and relationships among théouarelements of the model.
Briefly, the elements of the CCA model are as follows:

e Componentare units of software functionality that can be composectogy
to form applications. Components encapsulate much of theptxity of the
software inside a black box and expose only well-definedfates.

e Portsare the abstract interfaces through which componentsaictte® pecifically,
CCA ports provide procedural interfaces that can be thoafjht a class or an
interface in object-oriented languages, or a collectiosutfroutines, or a module
in a language such as Fortran 90. Components may providg, poeganing that
they implement the functionality expressed in a port (chfieovides port} or
they may use ports, meaning that they make calls on a poridadby another
component (calledises ports The notion of CCA ports is less restrictive than
hardware ports: ports are not assumed to be persistentaeagable throughout
an application’s lifetime, and each port can have diffeegrtiess attributes, such
as the number of simultaneous connections.

e Frameworksmanage CCA components as they are assembled into appi€atio
and executed. The framework is responsible for conneats®gand provides
ports without exposing the components’ implementatiomitketThe framework
also provides a small set of standard services that arehlaio all components.

Several frameworks that implement the CCA specification supgbort various
computing environments have been developed. Ccaffeinari] SCIRun2 [138],
used by the applications in this chapter, focus on higheperdnce parallel com-
puting, while XCAT [52,61] primarily supports distributedmputing applications;
several other frameworks are being used as research tools.

The importance of efficient and scalable performance imsifie computing is
reflected in both the design of the CCA specification and th&ufes of the various
framework implementations. The CCAlses/providedesign pattern allows compo-
nents in the same process address space to be invokedydiwgttibut intervention
by the framework, and with data passed by reference if dit¢aiso referred to as
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“direct connect,” “in-process,” or “co-located” componghn In most CCA frame-
works, this approach makes local method calls between coemis equivalent to
C++ virtual function calls, an overhead of roughly 50 ns on0@ $1Hz Pentium
system (compared to 17 ns for a subroutine call in a non-tbjeéented language
such as C or Fortran) [20].

The CCA approach to parallelism. For parallel computing, the CCA has cho-
sen not to specify a particular parallel programming modetather to allow frame-
work and application developers to use the programming fedtley prefer. This
approach has several advantages, the most significant ofivghihat it allows com-
ponent developers to use the model that best suits theisngeghatly facilitating
the incorporation of existing parallel software into the A£€énvironment. Figure 6
shows schematically a typical configuration for a compoitested parallel appli-
cation in the Ccaffeine framework. For a single-programtipld-data (SPMD) ap-
plication, each parallel process would be loaded with theesaet of components,
with their ports connected in the same way. Interactioitkin a given parallel pro-
cessoccur through normal CCA mechanisms, getting and relegsimty on other
components and invoking methods on them. These would ggnese the local
direct connect approach mentioned above, to minimize thA-@lated overhead.
Interactions within the parallel cohort of a given compdree free to use the par-
allel programming model they prefer, for example MPI1 [91YNP [48], or Global
Arrays [94, 98]. Different sets of components may even ufferént programming
models, an approach that facilitates the assembly of agifwits from components
derived from software developed for different programmingdels. This approach
imposes no CCA-specific overhead on the application’s [guaerformance. Such
mixing of programming models can occur for components thizract at relatively
coarse grained levels with loose coupling (for example, pads of a multi-model
physics application, such as the climate models discussgddation 6.2). In contrast,
sets of relatively fine grain and tightly coupled componégfds example, the mesh
and discretization components shown in Figure 7) must eynpbonpatible paral-
lel programming models. Multiple-program multiple-dakdRMD) applications are
also supported through a straightforward generalizatioth® SPMD model. It is
also possible for a particular CCA framework implementatio provide its own
parallel programming model, as is the case with the Uintaméwork discussed in
Section 6.4.

Language interoperability. A feature of many component models, including
the CCA, is that components may be composed together to faplications
regardless of the programming language in which they haen lmplemented.
The CCA provides this capability through the Scientific tfaee Definition Lan-
guage (SIDL) [38], which component developers can emplogxXpress compo-
nent interfaces. SIDL works in conjunction with the Babeidaage interoperabil-
ity tool [38, 74], which currently supports C, C++, Fortrai, Fortran 90/95, and
Python, with work under way on Java. SIDL files are procesgeth® Babel com-
piler, which generates the glue code necessary to enablmatlee and callee to be
in any supported language. The generated glue code hahdlémnslation of argu-
ments and method calls between languages. Babel also psogitiobject-oriented
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Fig. 6. A schematic representation of PO P1 P2 P3
the CCA parallel programming environ-
ment in the single component/multiple date <« (D « (D « (D
(SCMD) paradigm. Parallel processes, la
beled PO,...,P3, are loaded with the sam
set of three components. Components in th
same process (vertical dashed box) intera
using standard CCA port-based mechanism
while parallel components of the same typt
(horizontal dotted box) interact using their
preferred parallel programming model.

(O0) model, which can be used even in non-O0 languages suchaas Fortran.
On the other hand, neither Babel nor the CCA requires thatfates be strongly
object-oriented; such design decisions are left to the comapt and interface de-
signers.

The developers of Babel are also sensitive to concerns glediarmance. Where
Babel must translate arguments for method calls (becaut#faring representations
in the underlying languages), there will clearly be soméguarance penalty. Since
most numerical types do not require translation, howevemany cases Babel can
provide language interoperability with no additional peniance cost [20]. In gen-
eral, the best strategy is for designers and developersawaee of translation costs,
and take them into account when designing interfaces, sowtharever possible
enough work is done within the methods so that the translatists are amortized;
see Section 4.8 for performance overhead studies.

Incorporating components. The CCA employs a minimalist design philosophy
to simplify the task of incorporating existing softwaredrthe CCA environment.
Generally, as discussed in Section 3.3, one needs to add éxisting software
module just a single method that informs the framework whpohts the compo-
nent will provide for use by other components and which pibggpects to use from
others. Within a component, calls to ports on other comptneray have slightly
different syntax, and calls must be inserted to obtain alehse the handle for the
port. Experience has shown that componentization of exjstoftware in the CCA
environment is straightforward when starting from weliianized code [5, 79, 95].
Moreover, the componentization can be done incrementhyting with a coarse-
grained decomposition (possibly even an entire simulafiothe goal is coupled
simulations) and successively refining the decompositibemopportunities arise
to replace functionality with a better-performing compone

Common interfaces.Interfaces are clearly a key element of the CCA and of the
general concept of component-based software engine¢hiegare central to the in-
teroperability and reuse of components. We note that exXoeptvery small number
of interfaces in the CCA specification, typically assodiatgth framework services,
the CCA doesiot dictate “standard” interfaces—application and componentH
opers are free to define and use whatever interfaces workfdresteir purposes.
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However, we do strongly encourage groups of domain expengtk together to
develop interfaces that can be used across a variety of aeeng®and applications.
Numerous such efforts are under way, including mesh managgtinear algebra,
and parallel data redistribution, all of which are relatedhe applications described
in this chapter and are discussed in Section 4. Anyone stexten these efforts, or
in launching other standardization efforts, is encouragembntact the authors.

3.3 Simple PDE Examples

We next introduce two simple PDE examples to help illust@@A principles and

components. While we have deliberately chosen these exanplbe relatively

simple and thus straightforward to explain, they incorporaumerical kernels and
phases of solution that commonly arise in the more compglitatientific applica-

tions that motivate our work, as introduced in Section 2.

Steady-State PDE Example

The first example is Laplace’s equation on a two-dimensioeeangular domain:
v%gx y) =0, x € [0,1], y € [0,1], with ¢(0,y) = 0, ¢(1,y) = sin(2my),
and - (a: 0) = 8¢’ o(z,1) = 0. ThIS system can be discretized by using a number
of dlfferent methods including finite difference, finiteeglent, and finite volume
techniques on either a structured or an unstructured méss.ekample has char-
acteristics of the large, sparse linear systems that atedtdart of many scientific
simulations, yet it is sufficiently compact to enable the destration of CCA con-
cepts and code.

The composition of this CCA application is shown by a compavering dia-
gram in the upper portion of Figure 7; the graphical intezfa€ the Ccaffeine [3]
framework enables similar displays of component intecasti This example em-
ploys components (as represented by large gray boxes) $truatured mesh man-
agement, discretization, and linear solution, which arth&r discussed in Section 4,
as well as an application-specific driver component, whictiscussed below. The
lines in the diagram between components represent connedtietweenisesand
providesports, which are denoted by rectangular boxes that are \ahitecheck-
ered, respectively. For example, the discretization carepts “Mesh”usesport is
connected to the unstructured mesh component’s “Mestvidesport, so that the
discretization component can invoke the mesh interfac@odstthat the mesh com-
ponent has implemented. The spe@alPort(named “Go” in this application driver)
starts the execution of the application.

The application scientist’'s perspective.The application-specific driver com-
ponent plays the role of a user-definehin program in traditional library-based
applications. CCA frameworks do not require that an appboecontain a definition
of amain subroutine. In fact, in many casesain is not defined by the user; in-
stead, a definition in the framework is used. In that casdyardtomponent partially
fulfills the role of coordinating some of the application@neponents; the actual in-
stantiation and port connections can be part of the driverdis or these tasks can be
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accomplished via a user-defined script or through a graphsea interface. A CCA
framework can support multiple levels of user control ov@nponent instantiation
and connection; here we present only one of the higher lewélsre the user takes
advantage of a framework-suppliedain program, as well as framework-specific
concise mechanisms for application composition. In thizngple, the application
could be composed by using a graphical user interface, sutihaa provided with
the Ccaffeine [3] framework, by selecting and dragging congmt classes to instan-
tiate them, and then clicking on pairs of correspondinggpmrestablish connections.
Alternatively, the application could be composed with artdefined script.

In addition to writing a driver component, typical applicat scientists would
also write custom components for the other parts of the sitimnl that are of
direct interest to their research, for example the diszatitin of a PDE model
(see Section 6.3 for a discussion of the approach used byusiiob researchers).
These application-specific components can then be usedjaradion with external
component-based libraries for other facets of the simaratior example, unstruc-
tured mesh management (see Section 4.1) and linear sobagsSgction 4.4). As
discussed in detail in Section 4.1, if multiple componenplementations of a given
functionality adhere to common port specifications, théfedint implementations,
which have been independently developed by different ggpopn be seamlessly
substituted at runtime to facilitate experimentation véthariety of algorithms and
data structures.

| Disc | Disc || Mesh Mesh |

Discretization UnstructuredMesh
{ Solve

Driver for Ux=0
Solve Uxx=0 LinearSolver

{ Disc H Mesh 4 Mesh ‘
Discretization UnstructuredMesh

J(
A ‘
| Integrate|| Solve | Solve
Integrator LinearSolver

Viz }—
Driver for U: = Ux @ XN
Mesh }‘—] MxN

Solve Ut = Uxx
and visualize

Visualization
Legend
Provides Port 1] | Uses Port 2 | Provides Port 2
Connection between
Component A p Component B
uses and provides ports

Fig. 7. Two component wiring diagrams fotop) a steady-state PDE example ahdtton)
a time-dependent PDE example demonstrate the reuse of componmanesfo management,
discretization, and linear solvers in two different applications.
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package laplace version 1.0 {
class Driver implements gov.cca.Component,
gov.cca.ports.GoPort
{

/I The only method required to be a CCA component.
void setServices(in gov.cca.Services services);
/I The GoPort method that returns O if successful.
int go();
}
}

Fig. 8. SIDL definition of the driver component for the steady-state PDE elamp

A closer look at the application-specific driver componentFigure 8 shows
the SIDL definition of the driver component for the solutiohtbe steady-state
PDE example in Figure 7. As discussed in Section 3.2, the &L for the
component interface enables the component to interaclyesih other compo-
nents that may be written in a variety of programming langsag heDriver
SIDL class must implement treetServices  andgo methods, which are part of
the gov.cca.Component  andgov.cca.ports.GoPort interfaces, respec-
tively [29]. For this example, we used Babel to generate a @rplementation
skeleton, to which we then added the application-specifjglémentation details,
portions of which are discussed next.

Figure 9 shows the implementation of etServices  method, which is gen-
erally used by components to save a reference to the frarkeéSewices object
and to registeprovidesandusesorts with the framework. ThieameworkServices
user-defined data member in tBeiver _impl class stores the reference to the
services object, which can be used subsequently to obtainredease ports from
the framework and for other services. To provide the “Go"tpthre driver compo-
nent'sself data member (a Babel-generated reference similar tthtke pointer
in C++) is first cast as gov::cca::Port in the assignment dfelf to port ;
then theaddProvidesPort services method is used to register phevidesport
of typegov.cca.ports.GoPort with the framework, giving it the name “Go”.
A gov.cca.TypeMap object,tm, is created and passed to each call that registers
providesand usesports; in larger applications, these name-value-typadtieties
can be used for storing problem and other application-fipgErameters.

Figure 10 shows an abbreviated version ofgbemethod implementation for the
simple steady-state PDE example. First, we obtain a referamthe discretization
port “Disc” from the framework services objeftameworkServices . Note that
in Babel-generated C++ code, the casting ofgbe::cca::Port object returned
by getPort  to typedisc::Discretization is performed automatically. The
discretization component uses finite elements to asserblénear system in the
implementation of thereateFESystem  method, which includes information ex-
change with the unstructured mesh component through thetMeort. The linear
system is then solved by invoking tapply method on the linear solver component.
Finally, all ports obtained in thgo method are released via theleasePort
framework services method.
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The linear algebra interfaces in this example are basedeoh@PS solver inter-
faces [114] (also see Section 4.4). The matrix and vectarotdjn this example are
not components themselves, but are created as regulat®bjethe driver compo-
nent and then modified and used in the mesh, discretizatimhsaver components.
While such linear algebra objects could be implemented apoosnts themselves,
we chose to use a slightly more lightweight approach (angidine layer of abstrac-
tion) because they have relatively fine-grain interfacesg, setting individual vector
and matrix elements. In contrast, the solver componengxXample, provides a port
whose methods perform enough computation to make the aagrbeport-based
method invocation negligible (see, e.g., [95]).

Time-Dependent PDE Example

The second PDE that we consider is the heat equation, giv%@ by V2¢(x,y,t),

z € [0,1], y € [0,1], with ¢(0,y,t) = 0, ¢(1,y,t) = & sin(2ry) cogt/2),
S2(2,0,t) = $2(x,1,t) = 0. The initial condition is¢(z,y,0) = sin(3ma)
sin(2my). As shown by the component wiring diagram in the lower portd Fig-
ure 7, this application reuses the unstructured mesh,edization, and linear alge-
bra components employed by the steady-state PDE examplimt@aoduces a time
integration component as well as components for paralkal gadistribution and vi-
sualization. These reusable scientific components areisiied in further detail in
Section 4.

Another component-based solution of the heat equationobua structured
mesh can be found at [109]. This approach employs differentrdiszation and
mesh components from those discussed above but reusesiikdrgagrator. This
CCA example is freely downloadable from [109], includingigts for running the
code.

void laplace::Driver_impl::setServices (
/*in*/ ::gov::cca::Services services )
throw ( ::gov::cca::CCAException)
{
/I frameworkServices is a programmer-defined private data member of
/I the Driver_impl class, declared as
I ::gov::cca::Services frameworkServices
/I in the Babel-generated laplace_Driver_impl.hh file
frameworkServices = services;

/I Provide a Go port; the following statement performs an imp licit cast
gov::cca::Port port = self;

gov::icca:TypeMap tm = frameworkServices.createTypeMap 0;
frameworkServices.addProvidesPort(port, "Go", "gov.cc a.ports.GoPort",tm);

/I Use Discretization and Solver ports
frameworkServices.registerUsesPort("Disc", "disc.Dis cretization",tm);
frameworkServices.registerUsesPort("Solver", "solver s.LinearSolver",tm);

}

Fig. 9. Laplace application driver code fragment showing the C++ implementatidhe
setServices  method of thegov.cca.Component  interface.
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More detailed CCA tutorial materials, including additibsample component
codes as well as the Ccaffeine framework and Babel languatgeoperability
tool, are available vidnttp://www.cca-forum.org/tutorials . We rec-
ommend this site as a starting point for individuals who ames@dering the use of
CCA tools and components.

These examples illustrate one of the ways that componentpandicipate in a
scientific application. In larger applications, such assthmtroduced in Section 2,
different components are typically developed by differesatms, often at different
sites and times. Some of these components are thin wrapgarexisting numeri-
cal libraries, while others are implemented from scratghetdorm some application-
specific computation, such as the discretization compeaniarfigure 7. The CCA
component model, like other component models, providesaifigation and tools
that facilitate the development of complex, multi-projectulti-institutional soft-
ware. In addition to helping manage software developmentpdexity, the simple
port abstraction (1) enables the definition of explicit iatgion points between parts

int32_t laplace::Driver_impl::go() throw () {

disc::Discretization discPort;
solvers::Solver linearSolverPort;
try {
/I Get the discretization port.
discPort = frameworkServices.getPort("Disc");

/I The layout object of type solvers::Layout_Rn is a data mem ber
/I of the Driver_impl class describing how vector and matrix
/I data is laid out across processors; it also provides a fact ory

/I interface for creating parallel vectors and matrices.

/I Create the matrix, A, and right-hand-side vector, b
solvers::Vector_Rn b = layout.createGlobalVectors(1)[0 1;
solvers::Matrix_Rn A = layout.createOperator(layout);

/Il Assemble A and b to define the linear system, Ax=b
discPort.createFESystem(A, b);

/I Get the solver port
linearSolverPort = frameworkServices.getPort("Solver" )

/I Create the solution vector, x
solvers::Vector_Rn x = layout.createGlobalVectors(1)[0 1;

/I Initialize and solve the linear system
linearSolverPort.setOperator(A);
linearSolverPort.apply(b, x);

/I Release ports
frameworkServices.releasePort("Disc");
frameworkServices.releasePort("Solver");
return O;

} catch ( gov:icca::CCAException& e) { return -1; }

Fig. 10. Laplace application driver code fragment showing the C++ implementafidhe
go method from theyov.cca.ports.GoPort interface. Exceptions are converted to the
function return code specified in Figure 8 with the try/catch mechanism.
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of an application; (2) facilitates the use of thoroughlygdrmexternal components im-
plemented by experts; and (3) allows individual componentse developed, main-
tained, and extended independently, with minimal impacthenremainder of the
application.

4 Reusable Scientific Components

Various scientific simulations often have similar matheéosaand physics, but cur-
rently most are written in a stovepipe fashion by a small grofi programmers
with minimal code reuse. As demonstrated in part by Figura Rey advantage
of component-oriented design is software reuse. Compsnredféct reuse in two
ways: (1) because an exported port interface is simpler ¢cthen the underlying
software, a component should be easier to import into a sitioul than to rewrite
from scratch; and (2) becausemmorinterfaces for particular functionalities can be
employed by many component implementations, differentiémentations can be
easily substituted for one another to enhance performaneetarget machine, data
layout, or parameter set. In Sections 4.1 through 4.7 weldb&se two facets of
reusability in terms of several current efforts to develomponent implementations
and domain-specific groups devoted to defining common euted for various nu-
merical and parallel computing capabilities. In Sectio® we demonstrate that the
overhead associated with CCA components is negligible velpgmnopriate levels of
abstraction are employed.

Component implementations can directly include the codecfre numeri-
cal and parallel computing capabilities, and indeed newepts that start from
scratch typically do so. However, many of the component é@mgntations dis-
cussed in this section employ the alternative approach efiging thin wrappers
layered on top of existing libraries, thereby offering op&l new interfaces that
make these independently developed packages easier to wsenbination with
one another in diverse projects. Section 5 discusses sothe &fsues that we have
found useful to consider when building these componentfates. The web site
http://www.cca-forum.org has current information on the availability of
these components as well as others.

4.1 Unstructured Mesh Management

Unstructured meshes are employed in many PDE-based maugigling the ac-
celerator application introduced in Section 2.1 and theplraxamples discussed in
Section 3.3. The Terascale Simulation Tools and Technedo@iSTT) Center [124],
established in 2001, is developing common interface atisires for managing
mesh, geometry, and field data for the numerical solutiord#® As shown in Fig-
ure 11, the common TSTT mesh interface facilitates experiaton with different
mesh management infrastructures by alleviating the neestfentists to write sep-
arate code to manage the interactions between an appfiGat different meshing
tools.
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Application

Application

Overture

Others...

Others...

- TSTT
. . mesh
mesh libraries interface

Fig. 11. (Left): The current interface situation connecting an applicatiomtonesh man-
agement systems through different interfaces. Because developing these connections is
often labor-intensive for application scientists, experimentation with vamoesh systems is
severely inhibited(Right) The desired interface situation, in which many mesh systems that
provide similar functionality are compliant with a single common interfacéerists can
more easily explore the use of different systems without needing to @dmeparticular so-
lution strategy that could prematurely lock their application into a specific mestagement
system.

TSTT Mesh Interfaces

The TSTT interfaces includ@esh datawhich provides the geometric and topolog-
ical information associated with the discrete represamaif a computational do-
main;geometric datawhich provides a high-level description of the domain kaun
aries, for example, a CAD model; afidld datg which provides the time-dependent
physics variables associated with application solutidhe. TSTT data model covers
a broad spectrum of mesh types and functionalities, ranfgomy a nonoverlapping,
connected set of entities (e.g., a finite element mesh) tdlection of such meshes
that may or may not overlap to cover the computational dontordate, TSTT ef-
forts have focused on the development of mesh query and roatitifin interfaces at
varying levels of granularity. The basic building blocks the TSTT interfaces are
mesh entitiesfor example, vertices, edges, faces, and regionseatity setswhich
are arbitrary groupings of mesh entities that can be relai@rchically or by sub-
sets. Functions have been defined that allow the user tosanuesh entities using
arrays or iterators, attach user-defined data through thefusgs, and manipulate
entity sets using Boolean set operations.

The TSTT mesh interface is divided into several ports. The duterface pro-
vides basic functionality for loading and saving the medftaiming global infor-
mation such as the number of entities of a given type and égyolnd accessing
vertex coordinate information and adjacency informatisimg both primitive arrays
and opaque entity handle arrays. Additional ports are difthat provide single
entity iterators, workset iterators, and mesh modificafiomctionality. Figure 12
shows an example C-code client that uses the TSTT interfdeemesh variable
represents a pointer to an object of typfeT T_mesh, which can be either an object
created via a call to a Babel-generated constructorusesport provided by a mesh
component instantiated in a CCA framework (for example,Kgare 7). The mesh
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data is loaded from a file whose name is specified via a stringaBse many of the
TSTT functions work on both the full mesh and on subsets ofntlesh, the user
must first obtain the root entity set usiggtRootSet to access the vertex and face
information. In this example, the user asks for the handesciated with the trian-
gular elements with thgetEntities call. Once the triangle handles have been
obtained, the user can access the adjacent vertices andabedinate information
either one handle at a time as shown in the example, or usiimgke $unction call
that returns the adjacency information for all of the hasdlienultaneously.

#include "TSTT.h"

*o
void *root_entity_set;
void **tri_handles, **adj_vtx_handles;
int i, num_tri, num_vtx, coords_size;
double *coords;

/* Load the data into the previously created mesh object */
TSTT_mesh_load(mesh,“mesh.file”);

/* Obtain a handle to the root entity set */
root_entity_set = TSTT_mesh_getRootSet(mesh);

/* Obtain handles to the triangular elements in the mesh */

TSTT_mesh_getEntities(mesh,root_entity_set, TSTT_Ent ityType_FACE,
TSTT_EntityTopology_TRIANGLE, &tri_handles,
&num_tri);

/* For each triangle, obtain the corner vertices and their
coordinates */
for (i=0;i<num_triji++) {

TSTT_mesh_getEntAdj(mesh,tri_handle[i], TSTT_EntityT ype_VERTEX,
&adj_vtx_handles,&num_vtx);
TSTT_mesh_getVixArrCoords(mesh,adj_vtx_handles,num_ VX,

TSTT_StorageOrder_BLOCKED,&coords,&coords_size);
}

N
Fig. 12.An example code fragment showing the use of the TSTT interface in Cdalozesh
and retrieve the triangular faces and their corner vertex coordinates.

More information on the mesh interfaces and the TSTT Cerdarbe found
in [124]. Preliminary results of a performance study of tise of a subset of the
mesh interfaces can be found in Section 4.8.

TSTT Mesh Component Implementations

Implementations of the TSTT mesh interfaces are under wag\aral institutions.
The ports provided by these mesh components include thetMmst, which gives
basic access to mesh entities through primitive arrays padue entity handles. In
addition to global arrays, entities can be accessed inatiigl through iterators in
the “Entity” port or in groups of a user-defined size in the rAport. These com-
ponents also support the thag interface, which is a generic capability that allows
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the user to add, set, remove, and change tag informatiosiatssd with the mesh or
individual entities; theSet interface, which allows the creation, deletion, and def-
inition of relations among entity sets; and thdify interface, which allows the
creation and deletion of mesh entities as well as the moditaf vertex coordinate
locations.

For the performance studies presented in Section 4.8, wa sisgple implemen-
tation of the interface that supports two-dimensional dicigd meshes. The mesh
software is written in C and uses linked lists to store thenelet and vertex data.
This component has been used primarily as a vehicle for detratimg the benefits
of the component approach to mesh management and for engltia¢ performance
costs associated therein [95].

4.2 Block-Structured Adaptive Mesh Refinement

Block-structured adaptive mesh refinement (SAMR) is a dard&cretization tech-
nique that seeks to concentrate resolution where requiveile leaving the bulk
of the domain sparsely meshed. Regions requiring resalatie identified, collated
into rectangular patches (or boxes), and then resolved headiid. Note that the
fine grid isnotembedded in the coarser one; rather, distinct meshes efeliff res-
olutions are maintained for the same region in space. Dataach of these boxes,
is often stored as multidimensional Fortran 77 arrays inoegk#d format; that is,
the same variable (e.g., temperature) for all the grid gaané stored contiguously,
followed by the next variable. This approach allows opersiinvolving a spatial
operator (e.g., interpolations, ghost cell updates agromsessors) to be written for
one variable and reused for others while exploiting cacbality. This approach also
allows scientific operations on these boxes to be perfornyeusing legacy codes.
The collection of boxes that constitute the discretized @ionon a CPU are usually
managed by using an object-oriented approach.

SAMR is used byGraceComponent [79], a CCA component based on the
GrACE library [100], as well as by Chombo [35], a block-stwed mesh infras-
tructure with similar functionality developed by the APDEES2] group. While each
has a very different object-oriented approach (and intejf& managing the col-
lection of boxes, individual boxes are represented in a sgnjlar manner, and the
data is stored identically. This fundamental similarityables a simple, if slightly
cumbersome, approach to interoperability.

Briefly, the data pointer of each box is cached in a separatgonent, along
with a small amount of metadata (size of array, position efttbx in space, etc.),
and keyed to an opaque handle (an integer, in practice).eThasdles can be ex-
changed among components, and the entire collection ohggatcan be recreated
by retrieving them from the cache. The interoperabilityeiface is easy to under-
stand and implement; however, the frequent remaking of tixecbntainer imposes
some overhead, though not excessively so, since array slata icopied. Because
the main purpose of this AMR interoperability is to explgiesialized solvers and
input/output routines in various packages, metadata eagflis not expected to be
significant. Further, this approach is not a preferred meingeroperability on an
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individual-box basis unless the box is large or the openatiery intensive. A pro-
totype implementation of this exchange is being used toaix@hombo’s elliptic

solvers in the CFRFS combustion application introducedeictiSn 2.3. Section 6.3
includes further information about the use of SAMR compasé@nthis application.

4.3 Parallel Data Management

The effective management of parallel data is a key facet afynRDE-based simu-
lations. TheGlobalArray  component, based on the Global Array library [94, 98],
includes a set of capabilities for managing distributedsdenultidimensional arrays
that can be used to represent multidimensional meshesditiaadto a rich set of op-
erations on arrays, the user can create ghost cells withcifisgevidth around each
of the mesh sections assigned to a processor. Once an upeaétion is complete,
the local data on each processor contains the locallyvisile data plus data from
the neighboring elements of the global array, which has heed to fill in the ghost
cells. Two types of update operations are provided to fatdidata transfer from
neighboring processors to the ghost regions: a collectpdate of all ghost cells
by assuming periodic, or wraparound, boundary conditiowsaaother nonblocking
and noncollective operation for updating ghost cells althegspecified dimension
and direction with the option to include or skip corner ghoait updates. The first
of these two operations was optimized to avoid redundantmanication involving
corner points, whereas the second was designed to enabileppiag communica-
tion involved in updating ghost cells with computations][99

Unstructured meshes are typically stored in a compressedesmatrix form, in
which the arrays that represent the data structures areliorensional. Computa-
tions on such unstructured meshes often lead to irregular atxess and commu-
nication patterns. Th&lobalArray = component provides a set of operations that
can be used to implement and manage distributed sparses ésex/[24, 30]). Mod-
eled after similar functions in the CMSSL library of the Tkimg Machines CM-2/5,
these operations have been used to implement the NWPhys/NMAZ8] adaptive
mesh refinement code. Addition@lobalArray  numerical capabilities have been
employed with the optimization solvers discussed in Secti6 [13, 65].

4.4 Linear Algebra

High-performance linear algebra operations are key coatiomal kernels in many
PDE-based applications. For example, vector and matrixpa&ations, along with
linear solvers, are needed in each of the motivating apj@ics introduced in Sec-
tions 2 and 3.3, as well as in the integration and optimiratiemponents discussed
in Sections 4.5 and 4.6, respectively.

Linear Algebra Interfaces

Linear algebra has been an area of active interface developim recent years.
Abstract interfaces were defined in the process of impleimgmumerical linear
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algebra libraries, such as the Hilbert Class Library [Shg Template Numerical
Toolkit [106], the Matrix Template Library [85], PLAPACK [7 uBLAS (part of
the BOOST collection) [25], BLITZ++ [129], and the LinearSgm Analyzer [27].
Many of these packages were inspired by or evolved from lelijaear algebra soft-
ware, such as BLAS and LAPACK. This approach allowed thelfiégr of object-
oriented design to be combined with the high performanceptinozed library
codes. In some cases, such as BLITZ++, the goal is to extight gerformance
even if computationally intensive operations are impletedrby using high-level
language features; in that case, the library assumes arbsiréar to that of a com-
piler in order to ensure that array operations are performedway that exploits
temporal and spatial data locality.

Starting in 1997, the Equation Solvers Interface (ESI) vaglgroup [31] fo-
cused on developing interfaces targeted at the needs eftame DOE ASCI pro-
gram computations, but with the goal of more general use acejpance. The ESI
includes interfaces for linear equation solvers, as welwgsport for linear algebra
entities such as index sets, vectors, and matrices.

More recently, the Terascale Optimal PDE Simulation (TOER8hter [66],
whose mission is to develop a set of compatible toolkits cfrepource, optimal
complexity solvers for nonlinear partial differential eqions, has produced a pro-
totype set of linear algebra interfaces expressed in SIDI4][1This language-
independent specification enables a wide variety of newnlyidg implementations
as well as access to existing libraries. Special care hasth&en to separate func-
tionality from the details of accessing the underlying dafresentation. The result
is a hierarchy of interfaces that can be used in a variety gkvaepending on the
needs of particular applications. See section 3.3 for sampls examples and code
using linear algebra components based on the TOPS interface

Linear Algebra Component Implementations

As discussed in detail in [95], an early CCA linear solvertpeas based on ESI [31]
and was implemented by two components based on TrilinoslaPETSc [10,11].
The creation of basic linear algebra objects (e.g., ve@ntsmatrices) was imple-
mented as an abstract factory, with specific factory implaateons based on Trili-
nos and PETSc provided as components. The factory and kobaar components
were successfully reused in several unrelated comporasstebapplications. Linear
algebra ports and components based on TOPS [66] interfaees@ently under de-
velopment. One of the most significant advancements siecertbinal simple linear
solver ports and components were developed is the use of RiDhterface defi-
nition, alleviating implementation language restricioBy contrast, the ESI-based
ports and components used C++, making the incorporatioana@or C++ applica-
tions more difficult. The most recent linear solver compdm@plementations, such
as those shown in the examples in Section 3.3, are based lamthmge-independent
TOPS interfaces [114].
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4.5 Integration

Ordinary differential equations (ODES) are solved roudtinghen modeling with
PDEs. Often the solution is needed only locally, for exanmyleen integrating stiff
nonlinear chemical reaction rates at a point in space ovieod 8me span. At other
times we need a large parallel ODE solution to a methodrafsliproblem.

By wrapping the CVODE [33] library, we have created @ODEComponen{79,
115] for the solution of local ODEs in operator-splittindiemes, such as in the com-
bustion modeling application introduced in Section 2.Xelthe library it wraps,
CVODEComponentcan be used to solve ODEs by using variable-order Adams-
Bashforth or backward-difference formula techniques. liitrary provides its own
linear solvers and requires the application to provide datag a particular vector
representation. The application can provide a sparse,coarmat dense gradient or
can request CVODE to construct a finite difference approtionaof the gradient if
needed.

For parallel ODE solutions we have refactored the LSODE B8] library to
allow the application to provide abstract linear solverd wactors. The parallelism
of the ODE is hidden from the integration code by the vectar swiver implemen-
tations. The resultingntegratorLSODE  and related components are described
in [5]. These components have been coupled with PETSc-baszat algebra com-
ponents described in Section 4.4 to solve finite element a¢as].

4.6 Optimization

The solution to boundary value problems and other PDEs aft@nbe represented
as a functioru € U such that/(u) = inf,cy J(v). In this formulation,U is a set
of admissible functions, and : U — R is a functional representing the total energy
associated with an element &h. This formulation of a PDE is often preferred for
nonlinear PDEs with more than one solution. While each smiugitisfies the first-
order optimality conditions of the corresponding minintiaa problem, the solution
that minimizes the energy functional is often more stabtk@frgreater interest.

The minimization approach also enables inequality comgsdo be incorpo-
rated in the model. Obstacle problems, for example, haveea floundary that
can be modeled by using variational inequalities. Efficigigiorithms with rigor-
ous proof of convergence can be applied to minimization lerab with inequality
constraints [14, 16]. Even PDEs whose corresponding miatign problem is un-
constrained or equality constrained can benefit from ogation solvers [90].

Optimization components [113] based on the TAO library [@3¢apsulate the al-
gorithmic details of various solvers. These details inellide searches, trust regions,
and quadratic approximations. The components interatttivé application model,
which computes the energy function, derivative informatiand constraints [65].
The optimization solvers achieve scalable and efficierdlfgiperformance by lever-
aging general-purpose linear solvers and specializespditboners available in ex-
ternal components, including the data management compmétussed in Sec-
tion 4.3 and the linear algebra components described indpet# [13, 65, 95].
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4.7 Parallel Data Redistribution

As discussed in Section 2, scientific simulations are irgingdy composed of mul-
tiple distinct physics models that work together to provédmore accurate overall
system model or to otherwise enhance fidelity by replaciaticsboundaries with
dynamically computed data values from a live companion kitian. Often each of
these models constitutes its own independent code thatlmustegrated, ocou-
pled with the other models’ codes to form a unified simulationisT¢oupling is
usually performed by sharing or exchanging certain comnraelevant data fields
among the individual models, for example, heat and moidiuses in a coupled
climate simulation. Because most high-performance sfiesimulations require
parallel algorithms, the coupling of data fields among thesmllel codes raises a
number of challenges. Even for tsamebasic data field, each distinct model often
applies a unique distributed data decomposition to opérdiata access patterns in
its localized portion of a parallel algorithm. Further, bawodel can use a different
number of parallel processors, requiring complex mappbegaeen disparate par-
allel resource topologies (hence the characterizatiohisfrhapping as the “MxN”
problem — transferring data from “M” parallel processoratmther set of “N” pro-
cessors, where M and N are not in general equal). These nggppaguire both
an understanding of the distributed data decompositionedoh distinct model, to
construct a “communication schedule” of the elements betvtke source and des-
tination data fields, as well as special synchronizatiordhiag to ensure that data
consistency is maintained in any MxN exchanges.

Worse yet, each model may compute using a different timemstemay store data
elements on a unique mesh using wholly different coordisgstems or axes. This
situation necessitates the use of complex spatial and tehipterpolation schemes,
and often the preservation of key energy or flux conservdtiais. Such complica-
tions further exacerbate the already complex infrastrechecessary for coupling
disparate data arrays, and require the incorporation ofexsk set of interpolation
schemes that are often chosen as a part of the system’sificissquirements, or
simply to ensure backwards compatibility with legacy cofeme software pack-
ages capable of addressing these issues exist, notablyeable-bhsed parallel Code
Coupling Interface (MpCCI) [1, 2] and the Model Coupling Tkib(MCT) [71,73].
The details of interpolation schemes and their inclusioMiN infrastructure are
beyond the scope of the current work. Yet this importantof@eton research will
commence upon satisfactory completion of the fundamemtiaéalized MxN data
exchange technology. In the meantime, such data inteipoliatust be handled man-
ually and separately by each distinct code or by an interamggiiece of coupling
software.

Parallel Data Redistribution Interfaces

The CCA project is developing generalized interfaces fecsging and controlling
MxN parallel data redistribution operations [22]. Thedeifaces and their accompa-
nying prototype implementations address synchronizatimhdata movement issues
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in parallel component-based model coupling. Initial efdnave focused on inde-
pendently defining the local data allocation and decomisosibformation within
a given parallel component and then applying these detagsitomatically gener-
ate efficient mappings, or communication schedules, focugiey MxN transfers.
These evolving interfaces are sufficiently flexible and Higlel to minimize the in-
strumentation cost for legacy codes, and to enable néargparentoperation by
most of the coupling participants.

Parallel Data Redistribution Component Implementations

A variety of general-purpose prototype MxN parallel da@is&ibution components
have been developed by using existing technology. Initiatqtypes, which were
loosely based on the CUMULVS [49, 69] and PAWS [12, 63] systgonsvided a
proof of concept to verify the usefulness of the MxN integfapecification and
to assist in evolving this specification toward a stable aexilfle standard. The
CumulvsMxN component continues to be extended to cover a wider rangataf d
objects, including structured and unstructured dense @seshd particle-based de-
compositions. The underlying messaging substrates for klixfd transfers are also
being generalized to improve their applicability to comnsmientific codes. Addi-
tional MxN component solutions are being developed basegélated tools such as
Meta-Chaos [42,108] and ECho [43, 136].

Special-purpose MxN components [72] for use with climatedelimg simula-
tions have been built using the Model Coupling Toolkit (MJT}Y, 73] (see Sec-
tion 6.2). These prototype coupler components provideiarscientific features
beyond fundamental parallel data transfer and redistdbuincluding spatial in-
terpolation, time averaging and accumulation of data, imgrgf data from multiple
components for use in another component, and global sjattgjrals for enforcing
conservation laws [22]. Currently MCT is being employeddagle the atmosphere,
ocean, sea-ice, and land components in the Community @&iSygtem Model [54]
and to implement the coupling interface for the Weather Reseand Forecasting
Model [132]. Similar coupling capabilities for climate nelthg are also being ex-
plored as part of the Earth System Modeling Framework (ES]MF) effort, with
specially tailored climate-specific interfaces and caliads.

4.8 Performance Overhead Studies

Object-oriented programming in general and componentaitiqular adopt a strict
distinction between interfaces and implementations otfionality. The following
subsections demonstrate that the interface-implementaéparation results in neg-
ligible overhead when appropriate levels of abstractieneanployed.

CCA Components
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To quantify the overhead associated 1
with CCA components, we solved w0
an ODE,Y; = F(Y,t), where .
Y is a 4-tuple, implicitly in time

using the CVODEComponent in-
tegration component introduced in ]
Section 4.5. The numerical scheme ,
discretizes and linearizes the prob- IH
lem into a system of the formz = is 2 28 ;
b, which is solved iterativelyA is

derived from the Jacobian of the Sysl.:ig. 13. Timings (in seconds) for component and
tem, 9F /Y, which is calculated non-component versions of an ODE application.
numerically by evaluating” repeat- Th_e differences clearly are insignificant. The x-
edly. EachF invocation consists of axis shows thg number of times th_e same problem
onelog evaluation and 40 exponen-\.NaS solved tg increase Fhe execution time between
. - "instrumentation invocations.

tials and corresponds to the sim-

plest detailed chemical mechanism

described in Section 6.3. A three-component assembly weeent (theDriver
Integrator andF), and theF evaluations were timed. These were then com-
pared with timings from a non-component version of the cddearder to reduce
instrumentation-induced inaccuracies, the problem wasated multiple times and
the total time measured. These steps were taken to enstithehiavocation over-
head was exercised repeatedly and the time being measusedigvaficant. The
code for F' was written in C++ and compiled usirggr+ -O2 using egcs version
2.91 compilers on a RedHat 6.2 Intel/Linux platform.

Figure 13 plots the solution time using the C++ componenthadon-component
versions. The differences are clearly insignificant and lbarattributed to system
noise. For this particular case, the function invocatioerbeads were small com-
pared to the function execution time. Likewise, negligibleerhead for both C++
and SIDL variants of optimization components has been siHa@y95]. The actual
overhead of the virtual pointer lookup has been estimatée tof the order of a few
hundred nanoseconds (around 150 ns on a 500 MHz Intel pa@(}¢26]. Thus, the
overhead introduced by componentization is expected tadignificant unless the
functions are exceptionally lightweight, such as poinendsta accessor methods.

Time (sec)
>

Log,(No. of repetitions)

TSTT Mesh Interfaces

We next evaluate the performance ramifications of using gpoorent model for the
finer-grained activity of accessing core mesh data strastwrhere we used the sim-
ple mesh management component described in Section 4ce Bia granularity of
access is a major concern, initial experiments focused enr#éiversal of mesh en-
tities using work set iterators. These iterators allow theruo access mesh entities
in blocks of a user-defined siz&]. That is, for each call to the iterata entity
handles are returned in a SIDL array, and it is expected htiacreases, the over-
head associated with the function call will be amortized. €@mparison purposes,
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Fig. 14. Average wall clock time for traversing all mesh elements by work setreilegive
to Native Interface(Left): A comparison of the four TSTT interface approaches for work set
sizes 1 through 100 entitieRight) A comparison of the six variants for work sets of size 1
and 100 entities only.

experiments were also performed using native data stestiar quantify the base
costs.

Figure 14 shows the relative costs of obtaining entity hesdiom the mesh
using both native data structures and interfaces. In thererpnts, six different
mechanisms were used for data access. The native variamgistof timing array
(Native Array), linked list (Native Linked List, and language-specific TSTT inter-
face (Native Interfacg versions. In order to test the performance of the language
interoperability layer created by SIDL, three variatiofisranaging the conversion
between native and SIDL arrays were developed. The firsttgferred to asSIDL
Direct and SIDL Memcpy take advantage of the fact that the language interoper-
ability layer and native implementation are both writterCinThe former allows the
underlying implementation to directly manage the SIDL warcantents, while the
latter is able to use theemcpy routine. The general-purpose variant, cal®L
For-loop, individually copies the pointers from the native into tHB®E array. Babel
0.9 was used to generate the interoperability layer for tigetlying mesh imple-
mentation. The results were obtained on a dedicated Linukstation with a 1.7
GHz Intel Pentium processor and 1 GB RD RAM using three metifagsanged in
size from 13,000 to 52,000 elements and work set sizes from21000 elements.
The codes were compilegithoutoptimization, and the timing data was measured in
microseconds. Because of the consistency in results attreshree different mesh
sizes, the average value of all runs on the meshes is redortedch work set size.

The left-hand side of Figure 14 reports the percentage aserdor the SIDL-
based accesses compared to the baseline native interfaessdor increasing work
set sizes. As expected, the additional function call andyatonversion overhead
of the SIDL interoperability layer is most noticeable whatessing entities using
a work set size of 1 and ranges from 50% more expensive thamatiee interface
for the SIDL Directto 112% more expensive for tf®IDL Memcpyvariant. From
work set size 2 on, th8IDL For-loopvariant is the worst performing. For all cases,
the SIDL Direct gives the best performance. As the work set size increas2e to
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entities and beyond, the SIDL-related overhead decreas8s/% more than the
native interface in the direct case and approximately 18méte in the for-loop
case.

To gauge the overhead associated with functional intesfacmpared to access-
ing the data directly using native data structures, thesoofsall six access mecha-
nisms are shown on the right-hand side of Figure 14. Thetseful the interface-
based versions are displayed for work set sizes of 1 and 1iitieenAs expected,
the array traversal is the fastest and is 40% faster tharrsing a linked list. Go-
ing through the native C interface is about 2.2 and 1.2 tin@ses than using the
linked lists directly for work set sizes 1 and 100, respeatyiviFor work sets of size
1 and 100, th&IDL Directmethod gives the best SIDL performance and is 3.3 and
1.2 times slower, respectively, than using linked lists: Work sets of size 1, the
memcpy SIDL variant is 4.7 times slower (versus 4.5 timewstdor the for-loop
version). This position is reversed for work sets of size, 1@ifere the for-loop ver-
sion is 44% slower (versus 29% for the memcpy version).

These experiments demonstrate that the granularity okadseritical in deter-
mining the performance penalty involved in restructurimgagplication to use an
interface-based implementation. However, the granylaides not need to be very
large. In fact, our experiments show that work sets of size@@ sufficient to amor-
tize the function call overhead. We also found that the @it overhead associated
with transitioning from a native to language interoperaldesion of the interfaces
can be negligible for suitable work set sizes.

5 Componentization Strategies

Next we examine strategies for developing software compisnier parallel PDE-
based applications, including projects that incorporaggty code as well as com-
pletely new undertakings. These general considerations been employed when
developing the reusable components discussed in Sect®wélbas throughout the
application case studies presented in Section 6. Usefupooant designs may be
coarse-grained (handling a large subset of the overalllaiion task per component)
or fine-grained. Similarly, an interface (port) between poments may be a simple
interface with just a few functions having a few simple argums or a complex in-
terface having all the functions of a library such as MPI.

The first step in defining components and ports for PDE-babedlations is
considering in detail the granularity and application deposition of the desired
software. The second step is evaluating the impact on ingiéens and users of
the chosen component and interface designs. This step malyeérimplementation
and testing. The third step is iterating the design and implgation steps until a
sufficient subset of the implementers and users is contehtthé resulting compo-
nents and interfaces. The finest details of CCA componetwacé design [5] and
construction [21] are beyond our scope.
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5.1 Granularity

How much functionality is inside each component? What infation appears in
public interfaces? In what format does the information @pp& he answers to these
questions determine the granularity of any component. Wewaant fine or coarse
granularity or a combination.

Very coarse-grained designsAt the coarsest granularity, an entire PDE simu-
lation running on a parallel machine can be treated as aesoaghponent. In most
cases of this scenario, the component simply uses inputdildsprovides output
files. This approach permits the integration of separatgraras by applying data
file transformations. The overhead of transferring datagigitermediate files may
be reduced by instead transporting data directly from ompdiGgtion to another in
any of several ways, but the essential aspect of copyingfdata one simulation
stage to the next remains (see Section 4.7). The cost of mdaige data sets at
each iteration of an algorithm to and from file systems indgrgrallel machines can
be prohibitive. Nonetheless, the CCA specification alloamponents to interact by
file exchange. Software integration through files (see, 8&gtion 6.1) can be a use-
ful starting point for the evolutionary development of a pad simulation. Many
tools have been built on this style of componentization,dosading up to very large,
multidomain, multiphysics problems is often inefficientamen impossible.

Finer-grained designs.For the remainder of this section we are concerned with
building an application from component libraries that wébult in executing a sin-
gle job. Nearly every PDE-based application has one or mostom drivers that
manage a suite of more general libraries handling diffeaeeas of concern, such
as mesh definition, simulation data, numerical algoritharg] auxiliary services,
such as file input and output, message passing, performaoiing, and visualiza-
tion. Building component software for PDEs means teasiragtéhese many areas
of concern into separate implementations and definingtseifanctional interfaces
for exchanging data among these implementations. Oncdycksparated, the sub-
stitution and testing of an alternate implementation in srgjvidual area is much
easier.

5.2 Application Decomposition and Interface Design

Making components for a new or existing PDE-based simulatiitl be straightfor-
ward or difficult depending on how well the code is alreadyateposed into public
interfaces and private implementations. We have foundttietnswers to the fol-
lowing technical questions about a PDE software system ichim @reating a good
first approximation to an equivalent component design. lakeood software de-
sign, an iterative implementation and evaluation processquired to arrive at a final
design.

e What are the equations to be solved, the space and time domaitsch these
equations apply, and the kinds of boundary and initial cihorat that apply at the
edges of these domains?
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e What are appropriate meshing and spatial discretizatidmtques and an effi-
cient machine representation of the resulting mesh?

e How is data stored for the simulation variables, and how @laionships of the
stored data to various mesh entities (points, edges, faeks) represented?
What are appropriate algorithms for solving the equations?

What are appropriate implementations of the algorithmsergithe algorithms
and data structures selected? Can these implementatiferstdred into multiple
independent levels, such as vector and matrix operatioiesyisolvers, nonlinear
solvers, and time marching solvers?

e How can we identify, analyze, and store interesting datargnbe computed
results?

Usually many mathematical and software design solutioist ¢ each of these
guestions, and of course they are interconnected. Our foedgl goal in component
design for an application involving large-scale or multitin PDEs is to separate
these areas of concern into various software modules witlkeducing overall appli-
cation performance. Many packages used for solving PDEalezady reasonably
well decomposed into subsystems with clear (though oftérerdarge) interfaces
that do not impede performance; extending these packagaspfmort component
programming is usually simple unless they rely on globailaldes being set by the
end user.

The performance requirement directly impacts the integdetweencompo-
nents. Arrays and other large data structures that are tegecam by many com-
ponents must be exchanged by passing pointers or othewkgitit handles. This
requirement in turn necessitates specific public intertaremitments to array and
structure layout, which depend on the type of PDE and the noaielgorithms
being used. CCA componentization allows similar packagesdrk together, but
it does not provide a magic bullet solution to integratingkzges based on fun-
damentally different assumptions and requirements. Famgke, a mesh and data
component representing SAMR data as three-dimensionaledamays [77, 79] is
simply inappropriate for use in adaptive finite-elemenbatms that call for data
trees. When constructing new components, it is useful faramerability to de-
sign them to be as general as reasonably possible with tespdetails of the data
structures they can accept. For example, we suggest dedtimgrrays specified by
strides through memory for each dimension rather thanicésty a code to either
row-major or column-major layout.

Some preprocessing or postprocessing components may ddimaibility in
accessing many different kinds of mesh or data subsetsigigithation public inter-
face definitions that require a function call to access datadch individual node or
other mesh entity may be useful. However, as seen in testexd $TT mesh inter-
faces (Section 4.8), single entity access function ovetlséavs inner loops, so that
care should be taken when deciding to use such interfaces.

Success is often in the eye of the beholder when choosingtaagef decom-
position and when naming functions within individual irfeeres. Compact, highly
reusable objects, such as vectors and other simple objelitear algebra, may ap-
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pear at first to be tempting to convert into components orspénstead, in many
CCA applications, experience has shown that these objeetbest handled as
function arguments. Many high-performance, componesedémplementations for
PDEs have been reported. Most feature a combination of a ehefstition com-
ponent, a data management component, and various numaigoaithm compo-
nents [4,21,72,78,95,138].

5.3 Evaluating a Component System Design

Each reusable component provides a set of public interfaogsnay also use inter-
faces implemented by other components. Armed with our teeahanswers about
the PDE software system that we will wrap, refactor, or @datm scratch, we must
ask questions about how we expect the components to be udeidhplemented.
Is some aspect of the design too complex to be useful to thettasers? Have we
introduced an interface in such a way that we lose requirgdiezfcy or capability?

Component granularity checks.An application is formed by connecting a set
of components and their ports together, and the more compema/olved in an
application, the more complex it is to define. Too many conemtsmaybe an indi-
cation of an overly fine decomposition. A good test is to cdesthe replacement of
each component individually with an alternative implenagion. If this would ne-
cessitate changing multiple components at once, then thapgnay be a candidate
for merging into a single component. As a rule of thumb, weehimund that if a
simpletest application, such as those discussed in Section 3jGBires more than
seven components, then the decomposition may be worthtieyis

Similarly, a component providing or using too many ports rbayan indication
that it contains too much functionality to be manageablesiruild be decomposed
further. Multiple ports may offer alternative interfacestbhe same functionality, but
many unrelated ports may signal a candidate for furtherystydletailed case study
of component designs for ODE integrations is given in [5].

User experience.Empirical evidence determined by CFRFS combustion re-
searchers, whose work is introduced in Section 2.3, ingéctitat the final granular-
ity of a component-based application code is arrived attitegly. One starts with a
coarse-grained decomposition, which in their case waatgidtby the nature of their
time-integration scheme, and moves to progressively nafireed and fine-grained
designs. For the CFRFS researchers, the more refined destiop® were guided
by physics as represented as mathematical operators ansl itethe PDE system
being solved. The finest granularity was achieved at thd tEvpghysical/chemical
models. For example, in their flame simulation softwaretrttesport system formed
an explicit-integration system. In the second level of mfient, transport was sepa-
rated into convection and diffusion, which occurs as se@paeams in their governing
equations. In the final decomposition, diffusion was sefedrinto a mathematical
component that implemented the discretized diffusion afeerwhile the functional-
ity of calculating diffusion coefficients (required to calate the diffusion term and
used in the discretized diffusion operator) was separased specialized compo-
nent [79]. Such a decomposition enables the testing of wardiffusion coefficient
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models and discretizations by simply replacing the releeamponent. Since these
components implement the same ports, this activity isditgplug-and-play.

Port complexity checks.Many ports for PDE computations are as simple as
a function triplet (setup, compute, finish) with a few argumseto each function
(see, for example, the climate component discussion in@e6t2). Port interface
design complexity can be measured in terms of the numberrattifins per port
and the number of arguments per function. If both these nwnlee very high,
the port may be difficult to use and need further decompasit®@ould some of
the functions instead be placed in a component configurgtovhthat is separate
from the main computation function port? Is a subset of thections in the port
unigue to a specific implementation, making the port unjikel be useful in any
other component? Are there several subsets of functiorteipart such that using
one subsetimplies ignoring other subsets? Conversehg thay be so few functions
in a port that it is always connected in parallel with anofbext. In this case the two
ports may be combined.

5.4 Adjusting Complexity and Granularity

Of course a degree of complexity is often unavoidable in geembly of modern
applications. The CCA specification provides tmntainers which can encapsulate
assemblies of components to further manage complexity T18% capability allows
a component set to appear as a single component in an applicsd that the granu-
larity of components and complexity of interfaces can bésexl/for new audiences
without major re-implementation. The container may expmsémplified port with
fewer or simpler functions (and probably more built-in aagtions) than a similar
complex port appearing on one of its internally managed aomapts. Some or all
of the ports not connected internally may be forwarded tlydo the exterior of the
container for use at the application level.

6 Case Studies: Tying Everything Together

The fundamental contribution of component technology ® ftbur parallel PDE-
based applications introduced in Section 2 and discusseletail in this section
is the enforcement of modularity. This enforcemenhds the consequence of pro-
gramming discipline; rather, it is a fundamental propeftthe component paradigm
itself. The advantages observed are those naturally flofeimy modularization:

1. Maintainability: Components divide complexity into manageable chunkdao t
errors and substandard implementations are localizedasily @entifiable, and
consequently may be quickly repaired. Further, the coremsops of careless
design of one component often stop at its boundary.

2. Extensibility Modularization limits the amount of detail that one hasearh
before beginning to contribute to a component-based agjdit. This simplifies
and accelerates the process of using and contributing totannal piece of
software and thus makes it accessible to a wider community.
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3. ConsistencyEven though the component designs for the various profents
been agreed to rather informally within small communitiesing the component-
based architecture ensures through compile-time chec¢katgpbject-oriented,
public interfaces (ports) are usednsistentlyeverywhere. This approach elim-
inates errors often associated with older styles of interfdefinition such as
header files with global variables and C macros that may depancompiler
flags or potentially conflicting Fortran common block deatans in multiple
source files. For example, in the CFRFS project introducekittion 2.3, inter-
faces and the overall design could be (and was) changedaritewithout much
formal review. However, each port chaniged to bepropagated through all the
components dependent on that port interface in order fagdftevare to compile
and link correctly. This requirement enforced uniformitydeconsistency in the
design. As the CFRFS toolkit grew, major interface changesime more time-
consuming, compelling the designers to design with carecanapleteness in
the first place, a good software engineering practice ungecanditions.

We now discuss how component technology has been applibdse four scien-
tific applications, each of which faces different challesiged is at a different stage
of incorporating component concepts. We begin in Sectitrbg.discussing the ac-
celerator project, introduced in Section 2.1, which is ently at an early phase of
exploring a component philosophy for mesh infrastructoratilitate experimenta-
tion with different meshing technologies, as introduced®eéction 4.1. Section 6.2
explains how climate researchers have decomposed theielmuosing the general
principles introduced in Section 5 to develop next-genengbrototype applications
that handle model coupling issues, which were introduce8lidctions 2.2 and 4.7.
Section 6.3 highlights how the plug-and-play nature of C@ponents enables
combustion scientists to easily explore different choinedgorithms and data struc-
tures and thereby achieve their scientific goals, introdugesection 2.3. The final
application, discussed in Section 6.4, explains how CCAmmments help to harness
the complexity of interdisciplinary simulations involgraccidental fires and explo-
sions, as introduced in Section 2.4. Here components allegrsk researchers to
work together without being in lock step, so that a large,tiphysics application
can achieve efficient and scalable performance on a wideerahgarallel architec-
tures.

6.1 Accelerator Modeling

As introduced in Section 2.1, ongoing collaborations amseigntists in the TSTT
Center and SLAC have resulted in a number of improvementsetmesh generation
tools and software infrastructure used for acceleratoratiog. Although the TSTT
mesh interfaces are not yet mature enough for direct use application code, a
component philosophy is being employed to insert TSTT adaptesh capabilities
into the finite element-based frequency domain code, Onkega3

Initially, the goal was to demonstrate the benefits of adaptiesh refinement
without changing a line of code in the core of Omega3P. Thial geas accom-
plished by cleanly dividing the responsibilities of theféeient pieces of software
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and iteratively processing the mesh until convergence whi&weed. In particular,
TSTT tools developed at RPI handled error estimation angtagarefinement of
the mesh, while Omega3P computed the solution fields. Irdtiom was exchanged
between Omega3P and the TSTT meshing tools by using a fiegdlaschanism in
which the current mesh and solution fields were written toeatfibt was then read
by the RPI tools.

Although the performance of a file-based mechanism for mé&dion transfer
between adaptive refinement steps is clearly not idealpitaat to be an excellent
starting point because it allowed a very quick demonstnatifcthe potential benefits
of adaptive mesh refinement for the Omega3P code. As medtiaorgection 2.1, a
high degree of accuracy is required in the frequency donesults. For one com-
monly used test geometry, the Trispal geometry, the refuta the adaptive re-
finement loop were more accurate than those from prior sitonks and provided
the best match to experimental results at a fraction of tmepeational cost [47].
Furthermore, this work has showcased the benefits of madialgrvarious aspects
of the simulation process by allowing SLAC researchers iokdy use AMR tech-
nologies without requiring a wholesale change to their c@#esed on the success
of this demonstration, work is now proceeding to insert tthegive refinement loop
directly into Omega3P using the TSTT interface philosopig #e underlying im-
plementations at RPI.

6.2 Climate Modeling

In Section 2.2 we described how the climate system'’s contgléeads to software
complexity in climate system models. Here we discuss intgrefetail the practices
of the climate/weather/ocean (CWO) community; for brewtyr scope is restricted
to atmospheric global climate models. We discuss the mfiact of CWO software

to make it more component friendly and to alleviate compiexive describe the
CWO community’s effort to create its own component spedifica(ESMF). We

also present a prototype component-based atmospherictamvenodel, which uses
both the ESMF and CCA paradigms. See [72] for further infdiomeon these topics.

Model Decomposition

As mentioned in Section 2.2, the fundamental equationstfopsphere and ocean
dynamics are called the primitive equations. Their sohagesnormally structured
in two parts. The first part, which solves the primitive edurd, is called thely-
namics dynamical coreor dycore The second part, which models source and sink
terms resulting from length scales shorter than those uséuki dynamical core’s
discretization, is called thghysics Examples of parameterized physical processes in
the atmosphere include convection, cloud formation, adétize transfer. In prin-
ciple, one could use the same solver infrastructure for bothosphere and ocean
dynamics, but this approach is rarely used because of eliféers in model details.
Climate models are a natural application for componentreldyy. Figure 15
illustrates one of the ways for the component decompositoseveral levels. The
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Fig. 15.Diagram of climate models decomposed in terms of components.

highest level integrates the major subsystems of the sartimhate (ocean, atmo-
sphere, sea-ice, and land-surface), which are each a cempdfithin the atmo-
sphere, we see a component decomposition of the major pfatie enodel—the
dynamics and the physics. Within the physics parametéizgtackage, each sub-
gridscale process can also be packaged as a component.

The plug-and-play capabilities of component-based desigimtroduced in Sec-
tion 3, can aid researchers in exploring trade-offs amonigwa choices in meshing,
discretization, and numerical algorithms. As an examplecagsider atmospheric
global climate models, in which various approaches, eatt aifferent advantages
and disadvantages, can be used for solving the primitivatemns. The main solvers
are finite-difference [41] and spectral methods [50]; seagrangian and finite ele-
ment techniques are also sometimes used. Various solveesblean developed for
each approach, including the Aries dycore [118], the GFDIL IdGAR spectral dy-
cores [50,126], and the Lin-Rood finite-volume dycore [#8].additional challenge
is handling the physical mesh definition; choices for théZwmtal direction include
logically Cartesian latitude-longitude, geodesic [36id @ubed-sphere [86]. Various
choices for the vertical coordinate include pressure, aignessure, isentropic, or a
combination of these.

A primary challenge in developing atmospheric models isiexihg scalable
performance that is portable across a range of paralleitaotbres. For example,
parallel domain decompositions of atmospheric dycoresuatmlly one- or two-
dimensional in the horizontal direction. Most codes use MP&n MPI/OpenMP
hybrid scheme for parallelization because it providesdspérformance and porta-
bility. Component-based design helps to separate issyzgralielism from portions
of code that handle physics and mathematics, therebyt&itilj experimentation
with different parallel computing strategies. Another ltdrgge is language interop-
erability. The modernization path for most climate models heen a migration from
Fortran 77 to Fortran 90, combined with some refactoringhtwaéase modularity.
Few of these models are implemented in C or C++ [122]. As dised in Section 3,
the programming language gap between applications and neahkbraries is an
issue that component technology can help to bridge.

In response to a CWO component initiative, scientists haenbefactoring their
application codes. Initially, this activity was undertaksimply to provide better
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modularity and sharing of software among teams. A good elairspthe refac-
toring of the Community Atmosphere Model (CAM) to split theepiously entan-
gled physics and dynamics portions of code. This entangiemade the change
of one dycore for another an arduous process. Now that theigshgnd dynamics
have been split, CAM has three dycores: the spectral dycahesemi-Lagrangian
moisture transport, the Lin-Rood finite-volume dycore, #imel Williamson-Rasch
semi-Lagrangian scheme. This refactoring will ease thegisttion and testing of
the newly developed NCAR spectral element dycore. An effoalso under way to
repackage these dycores as ESMF components (see belowh witli be the first
introduction of component technology to CAM.

Model Coupling

The primitive equations are a boundary-value problem. Reratmosphere, the lat-
eral boundary values are periodic, the top of the atmosfthkoaindary condition

is specified, and the boundary conditions at the Earth’sasarére provided by the
ocean, sea-ice, and land-surface components. This mateshction between mul-
tiple subsystems requires MxN parallel data transfersh siscthose described in
Section 4.7. This need for boundary data also poses thegmnotf how to schedule
and execute the system’s atmosphere, ocean, sea-ice,rahdudace components
to maximizes throughput. There are two basic schedulirgesires. The first is a
sequential event-loop strategy, in which the componemtérturn on the same pool
of processors (e.g., the Parallel Climate Model (PCM) [2BRe second strategy is
concurrent component execution, in which each model ersantependently on
its own pool of processors (e.g., CCSM). Componentizatfdheland, atmosphere,
ocean, and sea-ice models will increase overall flexibititycheduling the execution
of a climate model’s constituents and thereby facilitatgragsive experimentation
in creating previously unimplemented climate system m&adel

ESMF and the CCA

The great potential that components offer for enabling neienge has inspired
the CWO community embrace component technology. Of pdaticoote is the
NASA-funded interagency project to develop the Earth Syskéodeling Frame-
work [57, 67]. The ESMF comprises superstructureand aninfrastructure The
superstructure provides the component specification amavhrall component in-
terfaces used in coupling. The infrastructure includesroonly needed low-level
utilities for error handling, input/output, timing, andexall time management. The
infrastructure also provides a common data model for coatdi grids, physical
meshes, and layout of field data, as well as services for hzdates, parallel data
transfer, and intergrid interpolation, much like the faigis described in Section 4.7.
One distinguishing feature of ESMF components is that theyetthree methods:
Initialize , Run, andFinalize . The ESMF supplies its coupling data in the
form of theESMEState datatype.



38 Lois Curfman Mclnnes et al.

ESMF developers have collaborated with the CCA to ensuredveork interop-
erability, so that ESMF components may run in a CCA-complfeermework and
vice versa. This effort will provide scientists applicatispecific ESMF services in
composing climate components, while also enabling the USE€A numerical com-
ponents, such as those described in Section 4.

A Prototype Component-Based Climate Application

A prototype coupled atmosphere-ocean application, whichleys both the CCA
and ESMF component paradigms, has been developed as frooficept appli-
cation for CWO codes [139, 140]. The application combines@CA component
registration infrastructure andses-providesnteraction model introduced in Sec-
tion 3 with the ESMF’s component method specification (iratjalize , Run,
Finalize ) and data model. (i.eESMEState ). This application includes a com-
ponent common to the atmosphere and ocean dycores, namelglirhensional ad-
vection of a quantity? by the horizontal velocity fieldu, v):

o ov ov g

E + U% + Ua—y =0,
where? (x,y, t) is the advected quantity, arftix, y, t) is the sum of all sources and
sinks. Thez-y spatial grid is rectangular, and the discretization metisaal finite-
difference scheme. Here we consider three finite differeadants, which are each
forward in time and either forward-, central-, or backwalitference in space.

Following the CCA component specification, we created areetittn compo-

nent with a solver port definition for a finite-difference safe. The advection equa-
tion can be solved by using forward-, central-, or backwdiffitrencing in space. We
employ aproxy design pattern [46] to allow the atmospheric model compbtien
choice of one of these default solvers or a user-designatezhse. We also use CCA
technology to enable the user to specify run-time pararseterh as advection speed.
The ability to easily swap in different implementations liistcomponent-based ad-
vection application has proven useful in exploring diffezes in the accuracy and
computational complexity of the various numerical methods

6.3 Combustion

The objective of the CFRFS [93] project introduced in Setto3 is the creation

of a component-based toolkit for simulating laboratozesi (0.1 m) flames with
detailed chemistry. Such flames contain tens of speciesirbda of reactions, spatial
structuresl0~* meters in size, and timescales ranging froin® seconds (chemical
processes) ta0~! seconds (convective processes). The low Mach Navier-Stoke
equation [92,133], and the equations for species’ evatut@mprise a set of coupled
PDEs of the form

aa—i’ =F(®,VP,V3®,..) + G(®),
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where® consists of flow quantities such as density and temperafheequation is
discretized on rectangular meshes and solved in rectangitaains. For these sys-
temsG involves the variables only at a given mesh point, wikilewhich involves
spatial derivatives (computed by using finite-differencdinite-volume schemes),
depends on the mesh point and its close neighlgris. stiff, so that the ratio of the
largest and the smallest eigenvalue®6f/0® is large, whileF is non-stiff. Opera-
tor splitting [116, 117] is employed to evolve the sti€k] and nonstiff F) terms in
a decoupled manner by following@FG sequence, thus letting the stiff operator be
the last in the time step, in order to achieve higher accuiratiye data reported at
the end of the time step. A backward-difference formulaf88j and a Runge-Kutta-
Chebyshev integrator [9] are used for the stiff and nongtidblem, respectively. The
solution vecto® exhibits steep spatial variations in scattered, timesgrglregions
of the domain. Block-structured adaptive mesh refinemeAMR) [17] and time
refinement [18] are used to track and resolve these regions.

The CFRFS team used CCA-compliant component technologyplore the use
of high-order spatial discretizations in a SAMR setting,[7& 110] for the first time
and to perform scalability studies of reacting flow problemsSAMR meshes.

High-Order Spatial Discretizations and Block SAMR

PDEs can be discretized by a variety of methods [103]. Fitifferences and vol-
umes are popular for solving fluid flows. Typically, secondey spatial discretiza-
tions are used, although high-order spatial discretinatimnsingle-levelstructured
or unstructured meshes are becoming common [32,62,81382,31]. The CFRFS
team explored the use of high-order ) schemes imultilevel block-structured
adaptive meshes [76, 78]. Multilevel, block-structuredshes are a conceptually
elegant way of achieving resolution in simple domains. Oagts with a coarse,
structured, logically rectangular mesh. Regions reqgiriesolution are identified,
collated into patches, and overlaid with a rectangular noddtigher density. This
high-density patch is not embedded; rather, it is presesepdrately as a fine patch.
This process is carried out recursively, leading to a hidmaof patches, that is, a
multilevel grid hierarchy [18]. In this way a given point ipace is resolved at dif-
ferent resolutions simultaneously, by different levelshef grid hierarchy.

Deep grid hierarchies pose significant load-balancinglprob. High-order spa-
tial discretizations present a simple solution becausg thay provide an accept-
able degree of accuracy on relatively coarse meshes (iith,relatively shallow
grid hierarchies). Incorporating high-order schemes irAMR setting is nontriv-
ial, however, as the software infrastructure associatéll parallel SAMR codes is
very complex. Indeed, the mathematical complexities ohfogder schemes have
restricted their use to relatively simple problems. The ponent design established
a clear distinction between the various domains of expedisl a means of incorpo-
rating the contributions of diverse contributors withaapiosing a programming and
data-structural straitjacket. Most contributions weréten by experts in Fortran 77
and then componentized.
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Fig. 16. (Left): The root mean squared (RMS) error on the individual levels, asithela-
tion is run on a 1-, 2-, 3- and 4-level grid hierarckRighty The computational load versus
RMS error for the second- and fourth-order approaches. Resaésheen normalized by the
computational load of a second-order, 1-level grid hierarchy run.

These components were used to simulate PDEs on multileveh@se with
factor-of-two refinements between levels. The left-hade sif Figure 16 shows the
recovery of the theoretical convergence rate as the efeemsolution was increased
by increasing the number of levels. The base grid has 108 oelthe [0,1] do-
main. Both second- and fourth-order discretizations weegluHigh-order schemes
were found to be more economical than second-order schessas$e they required
sparser meshes to achieve a given level of accuracy. Fuhtigder-order schemes
become progressively more economical vis-a-vis secoddr@pproaches as the er-
ror tolerances become stringent. This behavior is evidetié right-hand side of
Figure 16, which plots the computational loads (in termsaxtihg point operations
count) normalized by the one-level grid hierarchy load @8,Z228,001 operations).

Strong-Scalability Analysis of a SAMR Reacting Flow Code

SAMR scalability studies are rare [134, 135] and usuallyc#jeto the applications
being tested, that is, specific to the implemented algorittamal hence are difficult
to analyze and interpret. To explore the behavior of thellght@CA-based block-
SAMR toolkit and to identify the scalability bottleneckketCFRFS team performed
a strong scalingstudy (i.e., the global problem size was kept constant wihiée
number of processors increased linearly) for a two-dinwrai reaction-diffusion
problem with detailed hydrogen-air chemistry using theels of refinement with
a refinement factor of two [80]. The initial condition was adam distribution of
temperature kernels in a stoichiometric hydrogen-air nixt For this experiment,
the parallel virtual machine expanded by a factor of twortistg with 7 processors
and reaching 112 processors. Time and messaging volumeswezsured by con-
necting the TAU [127] performance analysis component toGR&FS component
code assembly.
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Fig. 17.(Left): Communication patterns f@8 processors at timestep 4Right) Communi-
cation costs as a function of the communication radius at timestep 40.

Results indicated that the overall scalability of the atd@palgorithm is highly
dependent on the scalability of the intermediate time sf@ps There were “scal-
able” and “nonscalable” time steps, depending on the quadithe domain decom-
position. The nonscalable time steps were a consequengadir®nization times,
where many processors idled because of severely uneverutatiopal load parti-
tioning. The scalable time steps showed good load-baldutéheir communication
times increased as the number of processors increasedefifiehd side of Fig-
ure 17 shows the communication map for a 28-processor runleVttie bulk of
the communication is with the nearest neighbors, there argraficant number of
outliers. The remoteness of these outliers was charaeteby an average commu-
nication radius-. The right-hand side of Figure 17 shows that the average aoxitm
cation time per processor increases witfafterr ~ 4), a counterintuitive result, as
increasing- indicates more processors and smaller per-processormpnahizes. The
explanation lies in the network topology. The scaling stweg performed on a clus-
ter with Myrinet, which has a Clos-network topology. Eigbides are connected to a
switch; a cascade of 16-port switches ensures full conniggtihough at increasing
levels of indirection. As: — 8, increasing fractions of the total communication oc-
cur over the cascade, as opposed to in-switch communicatfos situation results
in message contentions and collisions and hence slowesféraspeeds and larger
communication costs.

6.4 Accidental Fires and Explosions

The simulation environment for the Center for the SimulatdAccidental Fires and
Explosions (C-SAFE) [55], introduced in Section 2.4, is tiatah Computational
Framework (UCF) [39], which is a set of software componemd Bbraries that
facilitate the parallel simulation of PDEs on structure@ti’e mesh refinement
(SAMR) grids. The UCF is implemented in the context of the CRased SCIRun2
framework [138], which supports a wide range of computatiand visualization
applications. One of the challenges of creating compobhaséd PDE software is
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achieving scalability, which is a global application pragethrough components
that, by definition, make local decisions.

Managing Parallelism via Taskgraphs

To address this challenge of managing parallelism in migttiglinary applications,
the UCF employs a nontraditional approach. Instead of usikmicit MPI calls
throughout each component of the program, applicationsastin terms of #ask-
graph which describes the data dependencies among variousastesproblem.

Computations are expressed as directed acyclic graptaskd each of which
produces some output and consumes some input, which isitheoutput of some
previous task. These inputs and outputs are specified for gatch in a structured
AMR grid. Associated with each task is a method that perfotingsactual com-
putation. This representation has many advantages, indwficient fine-grained
coupling of multiphysics components, flexible load balagcmechanisms, and a
separation of application and parallelism concerns. MagedJCF data structures
are compatible with Fortran arrays, so that applicatioriessican use Fortran sub-
routines to provide numerical kernels on each patch.

Each execution of a taskgraph integrates a single timestepsingle nonlinear
iteration, or some other coarse algorithmic step. Taskswanicate with each other
through an entity called tHeataWarehouseThe DataWarehouse is accessed through
a simple name-based dictionary mechanism, and it providels sk with the illu-
sion that all memory is global. If the tasks correctly ddsetheir data dependencies,
then the data stored in the DataWarehouse will match the(dateble and region
of space) needed by the task. In other words, the DataWasehswan abstraction
of a global single-assignment memory, with automatic déigsirne management
and storage reclamation. Values stored in the DataWarehauestypically array-
structured. Communication is scheduled by a local algarithat approximates the
true globally optimal communication schedule. Becauséefflexibility of single-
assignment semantics, the UCF is free to execute taskstolosta or move data to
minimize future communication.

The UCF storage abstraction is sufficiently high level thatain be efficiently
mapped onto both message-passing and shared-memory cdératiam mecha-
nisms. Threads sharing a memory can access their input datetlyt single-
assignment dataflow semantics eliminate the need for akingof values. Threads
running in disjoint address spaces communicate by a megseping protocol, and
the UCF is free to optimize such communication by messageeggtion. Tasks
need not be aware of the transports used to deliver theitshpnd thus UCF has
complete flexibility in control and data placement to opiemcommunication both
between address spaces or within a single shared-memometyim multiprocess-
ing node. Latency in requesting data from the DataWareh@uset an issue; the
correct data is deposited into the DataWarehouse befohetask is executed.

Consider the taskgraph in Figure 18. Ovals represent tasks, of which is a
simple array-based subroutine. Edges represent nameesvsiared by the UCF.
Solid edges have values defined at each material point, andd&dges have values
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Fig. 18.An example UCF taskgraph, depicting a portion of the material point mgt&d1)
algorithm used to simulate solid materials in C-SAFE scenarios.

defined at each grid vertex. Variables denoted with a prilmégve been updated
during the time step. The figure shows a portion of the Uintakenial point method
(MPM) [119] taskgraph concerned with advancing Newtoniaterial point motion
on one patch for a single time step.

The idea of the dataflow graph as an organizing structurexecigion is well
known. The SMARTS [128] dataflow engine that underlies th©RIA [111] toolkit
shares goals and philosophy with the UCF. Sisal compiléskuyded dataflow con-
cepts at a much finer granularity to structure code generatid execution. Dataflow
is a simple, natural, and efficient way of exposing paraleland managing compu-
tation and is an intuitive way of reasoning about paralteli$Vhat distinguishes
implementations of dataflow ideas is that each caters to ticpi@r higher-level
presentation. SMARTS is tailored to POOMA's C++ implemdiota and stylistic
template-based presentation. The UCF supports a preisentatering to C++ and
Fortran-based mixed particle/grid algorithms on struediadaptive meshes, and the
primary algorithms of importance to C-SAFE are the MPM an¢eBEan computa-
tional fluid dynamics algorithms.

This dataflow-based representation of parallel computdfits well with the
structured AMR grids and with the nature of the computatitireg C-SAFE per-
forms. In particular, we used this approach in order to acnodate multiphysics
integration, load-balancing, and mixed thread/MPI prograng. A more detailed
discussion of these advantages (and disadvantages) cauorizkif [101].

The most important advantage for a large interdisciplinamgject such as C-
SAFE is that the taskgraph facilitates the separate dewedapof simulation compo-
nents and allows pieces of the simulation to evolve indepethyl Because C-SAFE
is a research project, we need to accommodate the fact thetahthe software is
still under development. The component-based architeetlows pieces of the sys-
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tem to be implemented in a basic form at first and then to evadvihe technologies
mature. Most importantly, the UCF allows the aspects of Ifdism (schedulers,
load-balancers, parallel input/output, and so forth) tohe¥ independently of the
simulation components. This approach allows the compuiense effort to focus
on these problems without waiting for the completion of theestific applications
or vice-versa.

Components Involved

Figure 19 shows the main components involved in a typicalAEES simulation.
The simulation controller component, which is in chargehef simulation, manages
restart files if necessary and controls the integrationudinatime. First, it reads the
specification of the problem from an XML input file. After sag up the initial grid,
it passes the description to the simulation component, wbée implement various
algorithms, including one of two different CFD algorithntise MPM algorithm, or
a coupled MPM-CFD algorithm. The simulation component aefia set of tasks
for the scheduler. In addition, a data-archiver componestdbes a set of output
tasks to the scheduler. These tasks save a specified setiafflgarto disk. Once
all tasks are known to the scheduler, the load-balancer ocoend uses the machine
configuration to assign tasks to processing resources. difedaler uses MPI for
communication and then executes callbacks to the simulati@ata-archiver com-
ponents to perform the actual work. This process continnéisthe taskgraph has
been fully executed. The execution process is then repéaiategrate further time
steps.

Fig. 19.UCF simulation components.
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Each of these components runs concurrently on each prac&ssocomponents
communicate with their counterparts on other processorgyudPIl. However, the
scheduler is typically the only component that needs to canicate with other
processors. Figure 20 demonstrates that the resultingreystales well on various
parallel architectures. Delegating responsibility forgdelism to the scheduler com-
ponent allows complex multiphysics applications to udlirocessor resources effi-
ciently and reduces the programming burden for applicatibat require complex
communication patterns to achieve good scalability.
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Fig. 20.Performance of the UCF MPM simulation on various architectures durmgekhel-
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processor 2.4 GHz Pentium 4 Linux cluster, Nirvana: 2048-proc&&®MHz Origin 2000
at LANL, QSC: 256-processor 1.25 GHz Alpha. Data courtesy ofdgalones, Jim Guilkey,
and Todd Harman of the University of Utah.

7 Conclusions and Future Work

All component-based approaches to software seek to dikElenherent complexity
of large-scale applications into sizes that human beingsdeal with individually,
so that more complex applications can be constructed fre@setmanageable units.
Parallel PDE-based applications are unigue in this corgakt to the extent that
they tend to be extremely complex and thus can profoundlgiitfnom component
concepts. The CCA contributes a component model for higfepaance scientific
computing that may be of particular interest to investigatmnducting simulations
of detailed or comprehensive physical phenomena. Congdiaiith the CCA spec-
ification has enabled the scientific application teams fedtin this chapter to per-
form several tasks more easily:

e Create sets of reusable, easy-to-maintain, and scalabiparents, each of
which expresses a unique physical or numerical functigng,77,79,101,139]

e Use legacy code (originally written in Fortran or C) in the £€nvironment
without major code rewrites [72,77]

e Easily test different physics and numerics modules with-defined interfaces
in a plug-and-play mode [79]
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e Manage the evolution of complex scientific applications skparating the dis-
parate concerns of physics, numerical, and computer seieages [39, 101]
e Obtain good parallel performance [40,79,87] with negligiBCA overhead [20]

There is no point at which we envision the CCA as a componemteinaill be
finished. The CCA continues to respond to implementers’ eors; feature requests,
and unforeseen conflicts created by CCA-specified mecharosihe lack thereof.
In addition, the CCA Forum is extending the prototype workSefkction 4 and as-
sembling a critical mass of components from which paraitelgations can be pro-
totyped and evolved into meaningful simulations. Comporencepts also provide
unprecedented opportunities for automation. Recent workomputational quality
of servicd59,96] allows component parameters and component coafigus to be
rearranged dynamically, thereby enabling the automatécsen and configuration
of components to suit the computational conditions impdsg@ simulation and
its operating environment. The CCA Forum aims to enable-gereration high-
performance scientific simulations by providing a meangdas or even hundreds
of researchers to contribute to a single application as aglby developing the in-
frastructure to automate its construction and execution.
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