
Parallel Performance of a Combustion

Chemistry Simulation

GREGG SKINNER AND RUDOLF EIGENMANN

Center for Supercomputing Researrh and DPI'Plopment, L'nin•rsitY of Illinois at L'rbana-Champai!(n, 1308 W. Main St.,

Urbana, IL 61801; e-mail: {skinnPr, eigPnmann}(il rsrd.uiui'.Pd11

ABSTRACT

We used a description of a combustion simulation's mathematical and computational

methods to develop a version for parallel execution. The result was a reasonable

performance improvement on small numbers of processors. We applied several impor

tant programming techniques, which we describe, in optimizing the application. This

work has implications for programming languages, compiler design, and software

engtneenng. -~ 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

i\umerical sinwlation,:; of reactinc· flow are widelY

used for problems such a,; controllint!' combu,;

tion-w~nerated pollutants. rt>ducint!' knockin~ in

internal combustion ent!'ines. studyint!' the envi

ronmental impact of compounds emittf'd from

combustion. and disposin~ of toxic wa,:;tes [11.

These simulations require extensin,• computation.

~lany can only be served by the advanced capa

bilities of a parallel supercomputer. In this article

we describe an effort to optimize tlw parallel per

formance of a reactive flow simulation written for

serial execution. Specifically. we examine PHntL\

[2]. which simulates combustion. an important

subclass of reactive flow.

This work is not rtf"Cl'ssarily reprt>st•ntativP of thP positions

or policies of tht~ anny or tht~ ~ovt~rnnH·nt.

Received :\olav 1994
Accepted De;·ernber 1994

© 199S by John Wiley&. Sons. Inc.

Scientific Prograrnrnin/!. Vol. 4, pp. 127-1:39 !199.3)

CCC 1058-9244/9.5/0.30127-1.3

Reactive flow modelintr problem;;; are governed

by equations conserving nw;;;;;. ener~·· and mo

mentum. They are coupled with a hydrodynamic

system driven by the ener~· released or ab;;;orbed

from the chemical reactions. Re;;;earchers seek to

understand the chemical kinetics behavior of large

chemical reaction svstems and the associated

convective and diffusive transport of mass. mo

mentum, and energy.

Complicating the numerical simulation of reac

tive flow is numerical stiffness. Stiff equations

have one or more rapidly decayin~ solutions and

usually require special treatment. In the context of

chemical kinetics Cu11iss and Hirschfelder [3j fir;;t

identified the problem of stiffness in ordinary dif

ferential equations in 1952. In reactive flow, stiff

ness often arises as a result of the differing time

scales of the chemical kinetics and the hydrody

namics [4 J. Chemical reactions occur on the order

of picoseconds, while the convective flow occurs

on the order of seconds. Stiffness also results

where large temperature gradients occur. To over

come these numerical difficulties researchers of

ten employ time-implicit algorithms and adaptive

gridding schemes.

A group at Sandia l\'ational Laboratories has

developed a number of software tools that facili-

128 SKINNER AND EIGE:\"~1A:'\N

tate simulation of reactive flow. Three basic pack

ages lie at the heart of their effort. The CIIE\IKI'\

library [5] is used to analyze gas-phase chemical

kinetics. The TRA'\SPORT [6 J library is used for

evaluating gas-phase multicomponent transport

properties. SL RFKL\ [7] is a package for analyzing

heterogeneous chemical kinetics at a solid-sur

face-gas-phase interface. These three combus

tion libraries undergo continual revision as part of

an ongoing effort to provide the numerical com

bustion communitv with standardized software.

This approach is successful because the governing

equations for each reactive flow application must

share a number of features. A general discu,.;sion

of this structured approach to simulating reactive

flow is provided by Kee and ~Iiller [1].

Several codes have been built bv Sandia to ex

ploit CHEMKI'\, TRA\SPURT. and SLHFKL\. One of

them is PRDIIX, which is used to predict the

steady-state temperature and species concentra

tions in one-dimensional burner-stabilized and

freely propagating premixed laminar flames. This

combustion is chemically interesting because the

large energy release associated with burl!ing gives

rise to high temperatures and many exotic chemi

cal species. The high temperatures resulting from

the transfer of chemical energy to heat lead to

rapid expansion of the gases which in turn affect

convective flow.

The goal of this article is to describe experi

ences in an effort to improve the performance of

the PREMIX application. The machine architec

tures we considered are shared memory multipro

cessors with a modest number of CPCs, such as

the Alliant FX series, the Convex C2 series. and

the high ends of the Sun SP ARC station, HP

Apollo, IB.\1 RS/ 6000, and Silicon Graphics Iris

series. Such machines are becoming less expen

sive and more widely available.

Only one version of the Fortran 77 source for

PRE.'-IIX is distributed by Sandia. This code exe

cutes without significant modification on all ma

chines from a personal computer to a Cray. To

ensure the software can still be used by the large

established user base, modifications to the code

are strictly backward compatible, i.e., the subrou

tine interfaces are fixed. Our main concern .. then,

was with extracting parallelism from the chemical

and thermodynamic computations performed by

the CHEMKI'\ and TRA'\SPORT libraries.

We approached PRE!\tLX with a simple goal: Re

duce the actual time a program requires to pro

duce a solution to a given problem through effi

cient use of multiprocessing hardware. To

accomplish this .. independence must be present in

the code so that different subproblems can be ex

ecuted by separate processors concurrently. Often

the desired independence. if it exi;;ts, is apparent

from the mathematical description of the physical

problem. This conceptual independence may not.

however, be expressed in the actual code. Two

factors contribute to the absence of concep.tual

independence in the final program: (1) the com

putational method chosen to approximate the

mathematical problem may sPquentialize formerly

independent tasks: !2) the specific implementa

tion of the computational method adds unnece"

san· svnchronizations.

"'e therefore make a reasonably ,;harp di,-tinc

tion between the mathematical model of a prob

lem, the computational method for its solution.

and the particular implementation of the method.

"'e begin in the next section with a brief 0\en·iew

of PRBIIX. In Section 3. we obsen·e how well the

original ,·ersion of PRE\IL\. expresses parallelism

inherent to the mathematical model and compu

tational method. In Section -i we describe the pro

gram transformation techniques applied to pro

duce an optimized version of PRE\tL\.. In Section 5

we exhibit the resulting performance improve

ment, and in Section 6 we offer the conclusions

drawn from this work.

2 THE PREMIX APPLICATION

PRE!\IIX is a typical example of a library-oriented

production Fortran code. It is a flexible prog-ram

developed to analyze general problems im·oh·ing

combustion of premixed gases in a flame. PHE\11\.

consists of a driver and four librarie:-;: CHE\IKI'\ [51.
used to analyze gas-phase chemical kinetics:

TRA'\SPORT [6], used to evaluate gas-phase multi

component transport properties; T\\ OP'\T [8], a

two-point boundary value problem solwr: and

LIWACK [9], a popular numerical linear algebra

package. Each is a standardized, extensible li

brary intended for use on a wide variety of plat

forms. The code, approximately 30.000 lines of

standard Fortran 77. is highly modular, robusL

and portable. The program can be stopped at any

of several checkpoints and restarted with a new

configuration.

Our testing environment was a shared memory

MI~ID machine, an Alliant FX/80 [10] with eight

processing units. The processors are register

based with chained functional units and memon'

port. The computational processors are con-

CO.\IBLSTIO:\i CHDIISTRY SIMULATION 129

-{

ckinit ~

t
1 ckindx ~

po1n 1 . . 0
ac1n1t 1

of hers ...

driver rn
pre~ix inA

-f
newton ~ 61

l . 48
tvopnt 2'!I02 t1astp J',tt

others ...

d 20
jacob ~T.,~ ______s-- copy 21

~fun~~Jj.

~nevton3!lo!.7

others ...

{

dasum:.,.,

-f
ida•ax ~ 4 J 43

dgbfa ~~
1

dscal iu-o

d b 6'>'• d 3
g co 21

0

axpy 12Ji466

dscal H 2

ddot ~HtJ

daxpy 1t·o7

dgbsl ;i}.:~ --daxpy ;~~ .. ~ 13
of hers .

FIGURE 1 LxPcution protile of sequential program. Times were obtained on an Al

liant FX/80 with sPrial optimizations lcompilo· command: fortran -Og -pg). Elapsed

times (in sPconds) are superscript•~d and the number of evPnb is subscripted. Procedure

times include time spent in eallt>d subpron·dun•s. Total elapsed time is 9 .. 305 seconds.

The two separate invocation~ of ··fun·· are protiled together in Fi~o,'Ure 2.

nected by a concurrency bus. which keep,.; the

overhead for concurrency small. A ,.;equential pro

file for an execution uf the nitro~en combustion

simulation mentioned earlier appears in Fi~ures 1

and 2. For the teiit problem the prowam tracks :3-t

chemical species and 1;) 1 chemical reaction,.;

throu~h three simulated burns. The one-dimen

sional grid bein~s with 19 grid points and i;; ulti

mately refined to 61 wid points.

The program ~pend,.; most of its execution time

in routine,.; from tlw CI!E\IJ-..:1:\ and TH \\sPOilT li

braries. Approximately 6.)'l'o of tlw st>quentiul ex-

ecution time is consumed performing chemical ki
netics computations in CHF:\IJ-..:1:\ routines ckytx,
ckmmwy, ckwyp, ckrat, ckhml, ckcpbs,

ckrhoy, and ckcpms. (These subprogram

name~ are defined in Table 1.) Another 20% of

the execution time is consumed by transport com

putations in TRA:\SI'ORT routines mtrnpr, ckytx,

mcadif, mcedif, mceval, and mcacon. Soh·

ing systems of linear equations consumes most of

the remaining time. The TwoP:\T library simply

controls the flow of the computations and thus

contributes little to the execution time.

_ · IUo) ·)t;<,4 -t
ckytx , .. .,,,

-mtrnpr :
1
]] n~cad1f 2'AJt. --mcedlf 2., 4Jt; --mceval =~ziH

me aeon~~ •o --mceval ;~lo

r- ckhml/.~~~ 0

r-- eke pbs 21~co -- ckcpms ~\~~t;o

~ ckcpms i.~~co

-temp i,",A

FIGURE 2 Execution profile for procedure fun.

130 SKIN~ER A:\'0 EIGEJ\;MA.'\L\'

Table 1. Symbols Appearing in the Premixed Flame Equations 1-4.

Symbol

X

T

M
Y,

A

p = pW/RT

h,

p
u

R

QuantitY

Spatial coonJinate along flow direction

Temperature

Mass flow rate (indt>pendent of~-)

Mass fraction of the kth species

Thennal conductivitY of the mixture

:'11ass fraction times diffusion velocity of the

kth species

Mass density

Specific enthalpy of the kth species

Constant pressure heat capacity of the

kth species

Constant pressure heat capacity of the

mixture
.\1olar rate of production of the kth
species per unit volume

.'vlean molecular weight of the mixture

Diffusion velocity of the kth species

Molecular weight of the kth species
Cross-sectional area of the stream tube

encompassing the flame
Pressure (constant)

Velocity of the fluid mixture (constant)

Cniver~al gas constant

Subroutine fun

Subroutine fun

SubroutinP fun

SubroutinPs mcmcdt,

mcacon, mceval

Subroutines mdifv,

mcatdr, mtrnpr, mead if,

mcedif, mceval, ckytx

Subroutine ckrhoy

Subroutine ckhml

Subroutine ckcpms

Subroutines ckcpbs,

ckcpms

Subroutines ckwyp,

ckrat
Subroutine ckmmwy

Read from input
Read from input

Subroutine area

Read from input

Read from input

Read from input

i\'ote. More detail is available-from the Cllf:\fJ.;J\ and TR\:\,PoRT documentation [.S. 6'.

3 DESCRIPTION OF THE ALGORITHM . dT 1 d (d8 1 A ' dT
Jf -d - - -d AA -d + - L (pAZk)c"" -d

X Cp X X Cp k=l X

We first give a description of the mathematical

model and the computational method, which as

sisted us in discovering which level of outer loop

parallelism is best to obtain a granularity suffi

cient to saturate available processors with reason

ably sized parcels of independent work [11 J. A

mathematical description of the general fJroLlem

appears in several references [2]. ·we review them

briefly here. w·e then consider the computational

methods employed to solve the combustion prob

lem and explore the potential for parallelism in

these methods. Finally, we describe the particular

implementation of these methods and explore the

remaining potential for parallelism in the actual

program.

3.1 Mathematical Model

PREMIX computes the steady-state temperature

and species concentrations in one-dimensional

burner-stabilized and freely propagating pre

mixed laminar flames. The steadv state is defint>d

by the following conservation equations [2]:

~~1 = puA = constant (mass), (1)

(2)

(3)
(k = 1, K) (momentum).

where K is the number of chemical species. Thus,

K + 2 conservation equations govern the steady

state of the system. The symbols appearing' in

these equations are defined in Table 1.

The chemical kinetics computations occur in

evaluating the molar rates of species production

Wk, the specific form of which is determined by the

input data set according to the equation,

A.

2: llk,qi (...)
i=l

where the vk.i are user-specified inte~er stoichio

metric coefficients and the q1 are the computed

reaction rates. Determining the value of q1 is com

putationally intensive, consisting of numerous ex-

ponentials, logarithms. and reductions. both mul

tiplicative and additive.

The heat generated or absorbed by these reac

tions strongly affects the gas flow. In Ptu:wx., the

chemical kinetics are computed first from the in

put data; then the hydrodynamic system governed

by conservation Equations 1-3 is solved in the

presence of the chemical reactions.

Equations 2 and 3 are discretized using finite

difference approximations. A grid is numbered

from 1 at the cold (input) boundary to J at d~e hot

(output) boundary. The convective ter~s. (.U dTI

dx) from the enere:,ry equation and (JI dl//dx)
from the momentum equation, are modeled by ei

ther first order windward or central differences as

necessary. The other derivatives are approxi

mated bv first and second order central differ

ences. The diffusive term of the species conserva

tion equation. dl dx(pAZk). is approximated in the

same manner. Appropriate boundary conditions

are implemented for both the cold and hot bound

aries. yielding a two-point boundary value prob

lem. (See Equations 10-21 in Kee eta!. [2j and

discussion therein for a detailed description.) The

nitrogen combustion problem is solved first using

windward differences for the convective terms.

Then the initial solution is used as a starting con

dition for a run using central differences for the

convective terms.

The finite difference approximations reduce

the stiff two-point boundary value problem to a

system of nonlinear algebraic equations. The

boundary value problem is modeled first on a

coarse mesh. ~-hen necessary, new grid points are

added (nonuniformly) in regions where the solu

tion or its gradients change rapidly. Assuming a

unique solution exists. this process ends when the

solution has been resolved to a specified degree.

The nonlinear system is solved using the modi

fied 1\"ewton-Raphson algorithm. "-e seek avec

tor ¢ which satisfies

F(¢) = 0. (5)

We begin with a (usuallv poor) approximation<$ to

¢: It is clear that F(<$) i.s not zero. The quantity

y= F(<$) (6)

is called the residual.

In order to obtain a block-tridiagonal structure

in the Jacobian, the mass flow rate, JI, is treated

as an independent variable JI1 at each grid point,

CO~IBCSTIO:\ CHEMISTRY SI~ILLATIO:\ 131

and the additional equation stating that they are

all equal,

() = 1' ... , J) (7)

is added with a suitable boundary condition. This

mass conservation equation, coupled with the en

ergy conservation Equation 2 and the K equations

of momentum conservation (3) yield a total of K +
2 equations. The approximate solution vector cb
has the form,

(8)

where

Equation 9 corresponds to the independent vari

ables for temperature, species concentration. and

mass flow rate for each grid point, j.
The modified 1\"ewton-Raphson algorithm pro

duces a sequence {</> nJ,

In the equation, 11- is a damping parameter and J is

a finite difference approximation to the Jacobian

matrix-. The sequence converges to the solution of

the nonlinear equations F(<f>) given a sufficiently

good starting estimate ¢ 0
'. It is rejected if it does

not converge.

Should the 1\"ewton algorithm fail to converge, a

user-specified number of artificial time integra

tions are performed to improve the conditioning of

the nonlinear system. The discretized time inte

gration is again a system of nonlinear equations.

The modified 1\"ewton-Raphson method is em

ployed to solve the nonlinear system, but in this

case it is much more likely to converge. See the

discussion in Kee et al. [2] for more details.

Independence Inherent to the
Computational Method

Each 1\"ewton or time-stepping iteration depends

directly on the result of the previous iteration, so

we will not discover independence necessary for

parallelization outside the computations within a

single iteration. We will show, however, that 1 aco

bian evaluation contains considerable indepen

dence, in that all residual differences can be com

puted simultaneously. Additionally, many of the

132 SKINNER AND EIGE;\:MANN

properties evaluated for each species and reaction

within a single residual evaluation are indepen

dent in principle. Others are not independent, but

many have the form of a reduction, a computation

amenable to partial parallel optimization.

Let cPin) represent the vector of independent

variables after Kewton iteration n. Skinner [12]

has shown that y = F(cP1"i) depends only on the

partial vectors,

A..(n) A..(nl A..l.n; A..:.n-nn) A..:,rl-no) A..'.n-no (11)
'1-';-1' 'I'; ''1-';+1' '1-';-1 ''I'; . '~-';+1 .

(The dependence on some previous evaluation

n- no arises from the fact that the transport coeffi

cients are not recomputed for each iteration.) It

follows that y depends only on solution vectors

cP '" and cf> n-no. both of v.·hicl1 are available at the

beginning of l\"ev.1on iteration n + 1. That is. y =

F(cf> ")is a completely explicit computation. Thus.

the computations for each grid point sectioning of

y can be performed simultaneously. It follows that

all the residuals needed to approximate the Jaco

bian can Le computed concurrently.

~T e see that there exists the potential for sen'ral

levels of significant parallelism in PR.E\11\. 1\"ote.

however, the hierarchy is not strict. For efficiency.

the Jacobians are often reused. Thus. a significant

number of residual evaluations occur which are

not part of Jacobian evaluation. In the nitrogen

combustion simulation we used for testing, one

third of the residual evaluations occur indepen

dent of Jacobian evaluation. This suggests that if a

single level of parallelism is to be exploited. it

should be done at the level of residual evaluation.

3.2 Specific Implementation

The control flow of PHE\11.\ can be ,·iewed as in

Figure 3. The CHL\11\.J:\ hTERPHETEH [5 J and TR'-\!'

PORT PROPERTY FITTJ:\G CoDE [6 J are each external

modules which access databases to create ··link

ing" files to be read during execution. The

CHF:Ml\.1:\ and TRA:\SPORT libraries require access to

many problem-specific constants, such as the

molecular weights of the species. In addition, each

library requires some scratch space, or memory

locations, used to store values needed only tempo

rarily. Tracking the use of these scratch arrays is

significant when analyzing for parallelism.

Because the libraries are general purpose and

used in a wide variety of applications, these work

arrays must be of arbitrary size. Thus, a ''dy

namic" memory allocation .scheme is used. Both

CHEMKI:\ and TRA:\SPORT implement dynamic

I ('j,,n,I..Jn lu!orpr<ln I

I
L
l

I I'• rlo1111 tlloulilw<l \t·\\l<>lo-JI,!pli,<JII I L]!, l1111 ,oppru'\lllloll< '"IIJII(m I

l

I J
j

'-------i-''
I

lonl-lo ,,,jnli<!IIII•>T f,,,u,l

FIGL"RE :i Flow dial!ram for PHL\11\. The nonlinear

discretized sy:-;tem is iiohcd w;inl! the modifit>d ."\ew

ton-Raphson algorithm. Should tlw :\e\\lon all!oritlun

fail to coiiYergc, a u~er-specilied llUIJIIwr of anificial

time integrations are perfornwd to impnm· tht· condi

tioning of the nonlinear system. The time ~tq>pinl! alf!o

rithrn also uses the .\"e\\1011 method.

memorv allocation in a wav common to scientific . .
programs written in Fortran. For t>ach data typt>

employed by one of the program libraries ,'charac

ter. integer. double-prt>cision floating poinli. a

single. large array is can·ed into ,.;ections by a se

quence of integer offsets computed at run-time.

The indices are computt-d during initialization

and stored in COMMON blocb for future u,.;e. Tht-v

are never modified after initialization. The work

arrays for each of the libraries are passed as argu

ments down the calling tree. A COMMON block for

each of the libraries encapsulates the pointers into

their respective integer and floating-point work ar

rays. It is important to nott:> that the COMMON

blocks for a particular library are declared only iu

procedures within that library.

Returning to Figure 3, we see that each time the

outer control loop iterates, either the l'\t>wton

solver or time stepping is invoked. The l'\t-wton

solver is always inn>ked first: time stepping is only

performed when the 1\"ewton solution phase fails

to converge. A single Kewton iteration consists of

the following steps [2]:

1. Calculate the residual (fun)

2. If necesssary, evaluate (jacob) and factor

(dgbco) the Jacobian matrix

3. Backsolve (dgbsl)

Because chemical computations involve only a

grid block and its immediate neighbors (Equation

11), the chemistry is local. As the residual evalua

tions are independent of one another_ no concep

tual reason exists that the residuals cannot be

computed efficiently in parallel.

Computin~ the residual requires numerous

chemical and thermodynamic property e\·alua

tions at each grid point. The computation has

three distinct steps. First, the transport coeffi

cients are evaluated, if necessarv. Then the diffu

sion velocities are computed. Finally, the chemi

cal kinetics terms are evaluated and the residuals

of the governing Equations 2. :3, and 7 are deter

mined.

However, the specific implementation of the

computational methods hides some of the poten

tial for parallelism. Concurrent evaluation of the

residuals is hampered by the presence of shared

local variables and work arravs. The chemical and

thermodynamic computations for each grid point,

which we also identified as independent in princi

ple, cannot be executed concurrently either. In

addition to shared local variables and work ar

rays, the nearest-neighbor communication of

density and area data forces a sequentializing

synchronization. The next section describes tech

niques to overcome some of these problems.

4 PROGRAMMING TECHNIQUES AND
OPTIMIZATION

In this section we describe the program transfor

mation techniques we applied to the specific im

plementation of PRDIL'\ and the program analysis

that was necesssary to do this. \Ve compare these

techniques to those applied in other application

programs and discuss some implications on pro

gramming languages, compiler design, and soft

ware engineering issues.

4.1 Transformation and Analysis
Techniques

Tpe basic program modification that enabled

multiple processors to participate in the parallel

e~ecution of the program was to declare a number

of time-consuming loops to be executable concur

rently. Simply speaking, in order to do this we first

had to recognize that the iterations of these loops

were potentially independent, then perform some

transformations to make them truly independent,

and finally insert a directive informing the com

piler that the loops shall be executed in parallel.

By far the most important transformation in

CO~IBCSTIO:\" CHEMISTRY SI"'IULATION 133

this process was the privatization of arrays (Fig. 4)

that are used as temporary work spaces within

loop iterations. In the original program all such

loop iterations use the same array(s) for storing

temporary results. In a parallel execution of the

unmodified program, every iteration would have

to wait before using this array until the previous

iteration is done using it, which effectively would

serialize the loop. However, by giving each itera

tion a separate copy of the array, we can avoid

these dependences. The difficulty of this transfor

mation is in making sure that it is a truly tempo

rary array where no array element passes informa

tion from one loop iteration to the next. This is

usually done by an array definition/use analysis

of the program.

An additional technique-the parallelization of

reduction operations-we have found to be appli

cable in our program. However, we have not done

this because we exploited an outer level of paral

lelism. The transformation will become important

on machine architectures that support the exploi

tation of multiple levels of parallelism, e.g., ma

chines that have cluster structure so that the outer

parallel loops can be spread across clusters while

the inner loops exploit the parallel resources

·within the cluster.

For both the definition/ use analysis and the

real temp(kk), c(jjl

do j = 1, j j
do k = 1, kk

temp(k) k * b(k)
end do

do k = 1, kk
c (j J c (j) + temp (k)

end do
end do

real temp(kk,jj), c(jj)

doall j = 1, j j

do k = 1, kk
temp(k,j) k * b(k)

end do

do k = 1, kk
c (j) c (j) + temp (k, j l

end do
end do

FIGURE 4 Privatization of arrays. In the second code

fragment, each iteration of the outer loop is provided a

separate copy of work array 11 temp 11
•

134 SKJ:\":\"ER A:\"D EIGI:::\.\1:\Y'\

detection of independence of the loops we had to

analyze the program interprocedurally. Often. ar

ray sections were defined (i.e .. written) in one sub

routine and used (i.e .. read) in another subrou

tine. Even more difficult was the analysis of

accessed array sections that in,·oln·d prowam in

put data. Sometimes it was only knowledge of the

application that could ensure that. in all reason

able executions of the program. input nuial .Ies

would relate so that the definPd array runges

would always cover the ust->d. rangt~s or that tlw

ranges accessed in differellt loop iteration" would

never overlap.

The dvnan1ic nwnwn· allocation ;.cheme. lllP!l-. .
tioned in Section .3.2. furtlwr complicated the "it-

uation. "~e had to track array ,.;uiJ,LTipb which

were themselves subscripted array elenwnts in or

der w detennine which ;.ectiuu;. uf the original.

large array are read or written. Since the ,.;ubsnipt

arravs are read-onh· after their initialization. it i" . .
possible to determine temporary arrays and paral-

lel loops from the analysis of the program code.

However, this process is tedious and it makes the

interesting question of whether "uch techniques

could be automated in a compiler quite chal

lenging.

4.2 Tools, Languages, and Programming
Methodology

A profile facility that identified the mo,.;t time-con

suming loops in the program was the basic instru

ment for our program analy,.;i,.;. In addition. the

most helpful tool was an array section analysis

facilitv that determined the mTm· sections read . .
and written in each subroutine and loop. This in

formation was then propagated up the calling trPe

so that the summan· of all accessed arrm·s could . .
be seen at each loop.

The actual transformations were done in a con

ventional text editor. Compared to the time con

sumed by the program analysis this task was not

overly expensive, although the mechanics of array

privatization could be somewhat tedious as de

scribed below.

w~ e restructured our program by explicitly

specifying parallel activities. rather than changing

the program so that the compiler could recognize

the parallelism automatically. The language we

used is Fortran 77 plus directives. The only direc

tive we used is CNCALL, which specifies that the

loop shall be executed in parallel. Private arrays

were specified in two forms. both using available

Fortran 77 constructs. One form is to declare the

arrav local to a subroutine that is called iibidP the

parallel loop and tlw other is to Pxpand tlw array

bv one dimension and index this dimen,.;ion with

the loop variable. The second form is u,.;ually

called array expan,ion. Sonwtinws. ,.;ubroutiiw

parameter lists had to lw modilit->d in ordn to pa,;,.;

expanded arrays from calling to the called routi!H-'.

Common exten,.;ion,.; to Fortran ?? are coH

structs for dynamic array dt->daration. Arrays of

arbitran· size and dimension can I w declarPd lo

cally. within a ,.;ubprogram. Had we tbt'd thi,.; ex

tension. we would not Inn e had to modify any of

the subprogram parametPr li,;ts. lea,·ing the

CHE\11-.:L'\ and TH \'\:-l'OHT librari<',.; J,achvanl com

patible.

The availalJilitv of a dirPctin' that dedan·, \uri

abies private to a loop \HHild haYe bet•n Yery u,;e

ful for our purpo,es becau"e it would ha\ e allowt->d

us to lean' tlw existing program text unchanged.

Such a directive would al,.;o hm·e to "upport tlw

priYatization of a partial array. \\·e encountert->d

situations where part of an array was read-only

and another part was used for tt>mporary storage.

To handle this situation we split the array,.; into

different parts and prinHized the temporarily tbed

sections. The need for a PRIVATE dirPctiw is an

important conclusion of our work. and it corre

sponds to findings of related work.

The method of program optimization we haYe

applied consists of idemifying the tinw-consuming

loops in the program. analyzing array section"

that are read and written in the"e loops. and de

ri,·ing privatizahle and independent array ,.;ec

tions. The parallel loops in our program could

then be determined from thi,.; information. The

actual transformations neces:oary to express the

parallelism were ,.;traightfm"\\·ard. Thi,;; program

ming scheme seems generally applicable and may

be used as a programming methodolOf.'Y that can

be applied in a systematic way. Altlwul!h we haw

found this to be u;;eful for optimizing other pro

grams as welL we should note that there are time

consuming optimization steps for which we don"t

know generally applicable methods. Such steps

are the gathering of knowledge about the applica

tion that goes beyond the analysis of the program

text. ~·e haYe found this to be important in some

cases for our program optimization.

4.3 Comparison to Findings of
Related Proiects

In a related project of optimizing application pro

grams for parallel computers similar results were

found. Such projPct,; includt-> tlw Ct->dar Fortran

pnljPct [1:3. 1-i, which wa,; completf'd at our cen

tf'r in 1 <JlJ:2. and the follow-on Polari;; projPct

[15~. Both projPct,; Hwlit>d tran,;;formation tPch

niqut>,.; that arf' rweded to iipt'f'd up real pr·o;rrams.

This \\·a,;; dorw by hand parallt'lizin;.r a suitf' of

codes. indudin;.r the Pt'rfPct Benchmark,;; and

somP applications of rt'lenllH't' to the user,;; at tlw

1\"ational Center for Super('omplltt'r Applications

at dw CnivPrsit\ of Illinois.

Tlw most important transformation,; idt'ntifit·d

wert' tlw same as in our projt't'l. :\rray privatiza

tion was most t'ffectivf'. followt->d hy the parallt->1-

ization of reduction operations. Inwrproeedural

definition/ usf' analy,;;i=- wa,.; a crucial techniqtw to

detf'rmirw tlw applicability of the transformations.

The transformations ~-it->ldt>d fully paralll-'1 loop,;

whosP iteration,; could be t:"xecutt'd indept-·ndt·rHiy

on multiplP proce,.;sor,.;.

Our application is relt'nlllt for thest' otlwr proj

ects in that it confirms tlw rf'iittlh and thu;; show,;

that they carry over from tlw samplf' lwnclunark

suite to new prol!ram,;. Orw difff'renct' St't'm;;

worth notinl!. Tlw ultirnatt' l!oal of the aiH•\e-re

lated projeeh was to lind tf'dmique,.; that can be

automated in a paraliPiizinl! compiler. and in fact

most of the transformation,; identified wert-> re

ported to be automatable. In our pro;.rram we havP

found that somf' crucial information for determin

ing the applicability of the parallt'lization tech

niques is known only from the input files and thu,;

is not availablE' at compile tirnP. Althoul!h then'

are compilation technique=- that are ablt:' to paral

lelize such situations at run-time [161. our find

ings indicate that it will tw at lea,.;t difficult to

detect the paralleli,;m automatically. A full di,.;cu,;

sion of this point is beyond the ,;cope of thi;; article

and is the object of future project;;.

A related approach to methodologit's for paral

lel programmin;.r is described by Eil!ennumn [171.

Our findinl!,.; lar;.rPly al!ree with his approach. One

difference is that he envisions a '"program-level'"

optimization. in which all nf'ce,;sarv information

fL!r transforming the prol!ram can. be l!athered

from the program text. As we have mentioned. for

optimizing PRDIL'\ therf' was sometimes a need to

use knowledge about the mathematical and physi

cal properties of the problem that could not easih·

be gathered from t~w spf'cific implementation o.f

the. program.

Our findings can also be compared with the

parallel programming methodology that envisions

the design of application programs from opti

mized libraries. The parallelism would be hidden

CO\!Bl STIO:'\ CIIE\IISTRY SL\Il"L\ TIO:'\ 135

in thf'se libraries and the pro/!ramrninl! method for

the user of these libraries \\·otdd be no different

from sequential prol!nmuninl!. A further advan

tage of this approach is that the libraries could be

optimized specifically for each machine and the

application program would be portable. Because

PRDII\ uses ;;tandard libraries. it would be a natu

ral candidate for such an approach. However. we

have found that exploiting parallelism \\·ithin the

libraries does not lead to significant speedup. The

parallelism we exploitt'Cl is at a higher loop level

and the libraries them;;elves executt' on one pro

cessor each.

5 RESULTS

"·e ;.rathered performance data on the Alliant

FX/80 for four version,; of PRL\11.\:

1. Original Sequential-the original PR[\11\

code compiled with ,;equential optimiza

tions (fortran -og:l
2. Original Parallel-the oril!inal code opti

mized for parallel execution by the FX/

FORTRAl\' automatic compiler (fortran

-Ogc)

3. Optimized Parallf'l-Oril!inal Parallel with

explicit parallel con,.;tmcts added. as de

scribed in Section -i

4. Optimized Sequential-Optimized Parallel

compiled for sequential execution (for
tran -Og)

The profilin§! option (-pgi was disabled for these

experiments. "·e also excluded vectorization opti

mizations from our performance tests because the

vectors were too short to be usd'ul with the FX/80

architecture. Enabling vectorization consistently

resulted in greater execution times.

The performance improvement can be seen in

Figure 5. The third group of bars shows total exe

cution times for the four versions of PRE\11\. "-e

see that the Optimized Parallel version of the code

executes approximately 4.4 times faster than

Original SequentiaL The added overhead of the

manual parallelization, seen by comparing the ex

ecution time of Optimized Sequential to Original

Sequential, is minimal (less than 0.3%). Auto

matic compiler optimizations, isolated in the Orig

inal Parallel version of the code, are responsible

for about half the performance improvement. This

result can also be seen in Figure 6, which exhibits

136 SKI~:\'ER A:\'D EIGE~MA~:'I

"' "C:I
c
8
Ji 10000

Linear Algebra Chemistry

':':'':':' Original Sequential

I
Original Parallel
Optimiud Sequential
Optimized Parallel

....

Total

FIGURE 5 Comparative performance of four wrsions of PHE\IIX. Times were obtained

using an eight-processor Alliant F.X./80 with the FX/FORTRA:\' parallelizing compiler.

X 10-3

Ideal

~08

:::.

" E
i=

1l 0.6

"' a. .,
0 Optimized Parallel w 0

"
0

~

~04 0

.E
0

0

X X X X Original Parallel
0.2 0 X

X
X

0
0 2 4 5 6 10

Number of Processors

FIGURE 6 Inverse execution times versus numLer of processors. Times for oril!inal

and optimized parallel versions of PHE\11.\ were oLtained on an Alliant FX/80. An ideal

performance improvement line is included for comparison.

CO\IBUSTIO:\' CHE:\IISTRY SL\IULATIO"-" 137

Table 2. Elapsed Execution Times of Four Versions of PRE.~nx

Original Original Optimized Optimized

Sequential Para lid Sequential Parallel
Performance

Sec. % Sec. % Sec. % Sec. % Improvement

(a) (b) (c) (d) (c)/(d)

Residual

Evaluation loop 5,472 63.2 2.28::3 5-i. 7 5.-i30 61.9 920 47.1 5.9

Transport loop 1.651 19.1 1.118 26.8 1.7.1~ 20.0 296 1.5. 1 5.9

Diffusion loop 170 2.0 82 2.0 167 1.9 28 1.4 6.0

Other chemistrv ~"7

::>. 0.0 -i2 0.0 "7"7 0.0 40 0.0 1.9

Total chemistry 7.350 8-i.9 .3.52.3 8-i.5 7.-i09 8-i. -i 1,28-i 65.8 5.8

Linear algebra 1.15:3 1:3.::3 .S-iO 12.9 1.180 1:3.5 518 26.5 2.3

Two-point BVP

Solver 68 0.8 .37 0.9 86 1.0 60 3.1 1.4

110 and OS 1.0 70 1.7 98 1.1 89 4.6 1.1 0.2

Total 8.6S8 100.0 '+.172 100.0 8.77:3 100.0 1.9.')1 100.0 4.5

.Yote. The parallt·l ver~ion:""o wen· t•xeciJtt-... d u:-;lrJf! t•i,!.dlt pnwt·~ . ..;or~.

the inver:-;e execution time,; uf the parallel ver:-;ions

of the code for varying numbers of proees:-;ors.

,,.e separated the linear algebra and chemi:-;try

computations in Figure .5 to demonstrate how the

nature of the Optimized Parallel version of the

program has changed from dw original. w-hile

performance of the chemical computations im

proved significantly. by a factor of almost 6. dw

gain for the linear algebra routint>,;. which we wPre

only able to parallelize partially. was a more mod

est 2.:3. Linear algebra commanded ouh· about

1~3% of the Original Sequential execution .time. In

the Optimized Parallel version linear algebra is re

sponsible for about 27%. As the number of pro

cessors grows. linear algebra computations will in

creasingly dominate execution tinw.

Fornwrly the chemistry wa:-; so expensivP that

the time spellt in linear algebra could be ea:-;ily

i~mored. l\'ow that the clwmistry can be madt> rt:>l

atively cheap. the algorithmic t radP-off,., havt'

changed. Alternativt:>;; to tllf' overall solution strat

e~· should be reviewed. Some discussion of paral

lel methods for solving two-point boundary vahH'

problems was provided by "right [18]. The L\
P\CJ-.: effort [1 <} J offers parallel versions of banded

system solvers. exploiting parallelism in multiple

right-hand sides and blocking algorithms. "' e did

not. however, obtain any performance improve

ment when we replaced the LL'\I'v:~-.: linear algebra

routines with their L\P,\<:1-.: counterparts. PHE.\11.\

has no multiple right-hand sides to exploiL but

blocking should have yielded some improvement.

The reason it did not do so is still under investiga

tion.

Table 2 shows the execution times of the four

versions of PHE\11.\. The three loops we manually

parallelized constitute nearly all the significant

chemical computations in the code. As these loops

are explicitly parallel in the Optimized Parallel

version of the code, we have successfully modified

the implementation to express the parallelism in

herent to the computational method. However,

the execution times of these loops exhibit only a

sixfold improvement on eight processors. "-e be

lieve this is largely due to an imbalance in the work

load. The program spends much of its time work

ing with a 19-point grid. If we assume each itera

tion of the loop over the grid points executes in the

same amount of time, 19 iterations are completed

in the time that the eight processors could execute

2·L This roughly 79% efficiency would reduce the

performance improvement factor to 6.3. A further

source of inefficiencv is the limited memorv band-. .
width of the FX/80 machine, which provides only

a four-way path between the eight processors and

the shared memory, and penalizes applications

with poor cache hit ratios. Factoring in these ineffi

ciencies models the measured performance with

good accuracy, so that we can characterize the

scalability of our application as follows.

The PHDIIX application runs with reasonable

efficiency on machines with small numbers of pro

cessors. It is potentially scalable to larger numbers

of processors for the solution of larger problems

with significantly more than 65 grid points. As the

chemistry component of the application speeds

up, the linear algebra part becomes speed limit

ing. We have not investigated possible improve

ments to this component of the application; how

ever, it seems possible to resolve this limitation

138 SKIN:\'ER A:\'D EIGEVviA.'\:~

through appropriate changes in the used algo

rithms.

6 CONCLUSIONS

We performed a detailed analysis of the mathe

matical model used in PRE!\IL\ coupled with a

study of the computational methods to gain a pic

ture of a hierarchy of parallelism inherent to the

problem being solved. A manual analysis of the

code followed, from which we determined to what

extent the parallelism inherent to the implementa

tion was expressed in the original version. \\"e then

chose an outer loop level appropriate to our target

machine and applied a handful of manual paral

lelizations. In all, we modified less than 1 00 lines

of code. The result was a greater than fourfold

improvement in the simulation· s execution time

on an Alliant FX/80 with eight processors.

In this work we have found that the PRE\11.\

combustion chemistry application nms with rea

sonable speed on small numbers of processors

and potentially scales up to more highly parallel

systems. The most important program transfor

mation to achieve our performance improvement

was the privatization of arrays. To determine the

applicability of this transformation we had to do a

careful, interprocedural analysis of defined and

used array sections. The available language con

structs were not always adequate for expressing

dynamically sized loop-private arrays. and we

suggest that such constructs be included in future

language designs. The method used for optimizing

our program seems generally applicable and. with

the provision of supporting tools. we beline they

represent a step toward the understanding and

improvement of the process of optimizing large

application codes for high-performance com

puters.

ACKNOWLEDGMENTS

This work is supported by the 1\"ational Security Agency

and by Army contract #DABT63-92-C-003:3.

REFERENCES

[1] R. J. Kee and J. A. ~Iiller. ·'A structured approach

to the computational modeling of chemical kinet

ics flowing systems," Springer Series in Chemical

Physics, vol. 47, p. 196. 1986.

[2] R. Kee. J. Grear . .\1. Smonke. ami .1. \Iiiier. ··.\

FORTH.-\:'\ program for modelinl! steady laminar

one-dimensional pwmixcd flanw~. ·· Technical

Report SA~D85-82-t0. Sandia :\ational Labora

tories. 1985.

[:3] C. Curtiss and J. Hirschfelder. ··Jmqrration of stiff

equatiom."· Pruc . .\'at/. A cad. Sci. LS. L HIL 38.

pp. 235-2-t:3. 1952.

[-t J E. Oran and J. Boris . . \"wrzcrical Simulation ~~f

Reactive Flow. :\ew York: Else\·ier. 1987.

[5] R. Kee. F. Rupley. and J . .\Iiller. ··CJJE\IKI:\-11:

A FORTRA:\ chemical kinetics packaf!"C for the

analysis of gas-phase chemical kirwtics. ·· Techni

cal Report S:\:\])89-8009. Sandia :\ational Lab

oratories. 1989.

:6J R. Kee. G. Dixon-Lewis . .1. \\.arnatz. \1. Coltrin.

and J. .\Iiller. ·· .. \ FORTH.\:\ colllJHft!•r code

package for the evaluation of gas-pha~e. multi

component tran~port pn>JWrties. ·· Techni('al Re

port SA:\D86-8-t26. Sandia :\ational Laborato

ries, 1986.

[7] \1. E. Coltrin. R. l Kt>e. and F. Rupley. ··Surface

Chemkin: A General Kinetic Formalism and Soft

ware for Analyzing Hett>rogeneous Chemical Ki

netics at a Gas-Surface Interface.·· Int.]. Chern.

Kinet .. vol. 23. p. 1111. 1991.

~8] l Grear. ··The Twopnt program for boundary

value problems."' Technical Report SA:\D91-

82:30. Sandia :\ational Laboratories. April 1992.

[9] l Donl!"arra, C. \loler. l Bunch. and G. SIPwart.

LI.\Pi.CK Lsers ·Guide. Philadelphia: Society of

Industrial and Applied .\lathematics. 1979.

[1 0 J Alliant Computer Systems Corporation (ACSA;:

F\/ FORTR·IS Programmer's I landvook. 1985.

Acton. \lA: ACSA, 1985.

[11] J. Tyler. A. Bourgoyne. D. Logan.]. Baron. T. Li.

and D. Schneider. ··A vector-parallel version of

BOAST II for the IB\1 3090." · Internal Report.

IBl\1 Kin{[ston. 1990.

[12] G. Skinner. ··Finding and exploitinl!" parallelism

in a production cmnbustion simulation pro

gram." • .\laster· s thesis. Lniversity of Illinois at

Crbana-Champaign. Center for Supt>rcomputinl!"

Research & Development, December 199:3.

[13] R E:igenrnann.]. Iloeflinger. Z. Li. and D.

Padua, '·ExpPrience in the automatic paralleliza

tion of four perfect Benchmarks programs,"' Lec

ture /Votes in Computer Science 589. :\'ew York:

Springer VPrlag. 1992, pp. 65-83.

[14] W. Blume, R. E:igenmann, L Hoe/linger. D.

Padua, and G. Jaxon. ··The Cedar Fortran

Project,·· Technit:al Report 1262. Cniversity of

Illinois at Crbana-Champaign. Center for Su

percomputing Research & Devdoprnerlt. April

1992.

[15] \"('. Blume. R. Eigenrnann, J. Hoc/linger. D.

Padua, P. Petersen, L. Rauchwerger. and P. Tu,

"Automatic detection of parallelism: A grand

challenge for high-performance computing.

IEEE Parallel and Distributed Technology. vol.

2, pp. 37-·P, 199-+.
[16] L. Rauchwerger and D. Padua, ·'The LRPD Test:

Speculative nrn-time parallelization of loops with

privatization and reduction parallelization, ''

Pror. SIGPLA:\''9.5 Con[on Programming Lang.

Design and Imp/., June 199:J.

[17] R. Eigenmann, "Toward a methodology of opti

mizing programs for high-performance com

puters," Proceedings of 1993 International Con-

CO\IBCSTION CHDHSTRY SI~fl!LATION 139

ference on Supercomputing, Tokyo, Japan.

Tokyo, Japan: ACM Press, 1993, pp. 19-23.

[18] S. Wright, "Stable parallel algorithms for two

point boundary value problems," SIAM }. Sci.

Statistica!Comput.,vol.13,pp. 742-764,1992.

[19] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Ham

marling, A. McKenney, S. Ostrouchov, and D.

Sorensen, LAPACK Users' Guide. Philadelphia:

Society for Industrial and Applied Mathematics,

1992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

