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ABSTRACT 

We used a description of a combustion simulation's mathematical and computational 

methods to develop a version for parallel execution. The result was a reasonable 

performance improvement on small numbers of processors. We applied several impor

tant programming techniques, which we describe, in optimizing the application. This 

work has implications for programming languages, compiler design, and software 

engtneenng. -~ 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

i\umerical sinwlation,:; of reactinc· flow are widelY 

used for problems such a,; controllint!' combu,;

tion-w~nerated pollutants. rt>ducint!' knockin~ in 

internal combustion ent!'ines. studyint!' the envi

ronmental impact of compounds emittf'd from 

combustion. and disposin~ of toxic wa,:;tes [ 11. 

These simulations require extensin,• computation. 

~lany can only be served by the advanced capa

bilities of a parallel supercomputer. In this article 

we describe an effort to optimize tlw parallel per

formance of a reactive flow simulation written for 

serial execution. Specifically. we examine PHntL\ 

[2]. which simulates combustion. an important 

subclass of reactive flow. 
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Reactive flow modelintr problem;;; are governed 

by equations conserving nw;;;;;. ener~·· and mo

mentum. They are coupled with a hydrodynamic 

system driven by the ener~· released or ab;;;orbed 

from the chemical reactions. Re;;;earchers seek to 

understand the chemical kinetics behavior of large 

chemical reaction svstems and the associated 

convective and diffusive transport of mass. mo

mentum, and energy. 

Complicating the numerical simulation of reac

tive flow is numerical stiffness. Stiff equations 

have one or more rapidly decayin~ solutions and 

usually require special treatment. In the context of 

chemical kinetics Cu11iss and Hirschfelder [3j fir;;t 

identified the problem of stiffness in ordinary dif

ferential equations in 1952. In reactive flow, stiff

ness often arises as a result of the differing time 

scales of the chemical kinetics and the hydrody

namics [ 4 J. Chemical reactions occur on the order 

of picoseconds, while the convective flow occurs 

on the order of seconds. Stiffness also results 

where large temperature gradients occur. To over

come these numerical difficulties researchers of

ten employ time-implicit algorithms and adaptive 

gridding schemes. 

A group at Sandia l\'ational Laboratories has 

developed a number of software tools that facili-
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tate simulation of reactive flow. Three basic pack

ages lie at the heart of their effort. The CIIE\IKI'\ 

library [5] is used to analyze gas-phase chemical 

kinetics. The TRA'\SPORT [ 6 J library is used for 

evaluating gas-phase multicomponent transport 

properties. SL RFKL\ [7] is a package for analyzing 

heterogeneous chemical kinetics at a solid-sur

face-gas-phase interface. These three combus

tion libraries undergo continual revision as part of 

an ongoing effort to provide the numerical com

bustion communitv with standardized software. 

This approach is successful because the governing 

equations for each reactive flow application must 

share a number of features. A general discu,.;sion 

of this structured approach to simulating reactive 

flow is provided by Kee and ~Iiller [ 1]. 

Several codes have been built bv Sandia to ex

ploit CHEMKI'\, TRA\SPURT. and SLHFKL\. One of 

them is PRDIIX, which is used to predict the 

steady-state temperature and species concentra

tions in one-dimensional burner-stabilized and 

freely propagating premixed laminar flames. This 

combustion is chemically interesting because the 

large energy release associated with burl!ing gives 

rise to high temperatures and many exotic chemi

cal species. The high temperatures resulting from 

the transfer of chemical energy to heat lead to 

rapid expansion of the gases which in turn affect 

convective flow. 

The goal of this article is to describe experi

ences in an effort to improve the performance of 

the PREMIX application. The machine architec

tures we considered are shared memory multipro

cessors with a modest number of CPCs, such as 

the Alliant FX series, the Convex C2 series. and 

the high ends of the Sun SP ARC station, HP 

Apollo, IB.\1 RS/ 6000, and Silicon Graphics Iris 

series. Such machines are becoming less expen

sive and more widely available. 

Only one version of the Fortran 77 source for 

PRE.'-IIX is distributed by Sandia. This code exe

cutes without significant modification on all ma

chines from a personal computer to a Cray. To 

ensure the software can still be used by the large 

established user base, modifications to the code 

are strictly backward compatible, i.e., the subrou

tine interfaces are fixed. Our main concern .. then, 

was with extracting parallelism from the chemical 

and thermodynamic computations performed by 

the CHEMKI'\ and TRA'\SPORT libraries. 

We approached PRE!\tLX with a simple goal: Re

duce the actual time a program requires to pro

duce a solution to a given problem through effi

cient use of multiprocessing hardware. To 

accomplish this .. independence must be present in 

the code so that different subproblems can be ex

ecuted by separate processors concurrently. Often 

the desired independence. if it exi;;ts, is apparent 

from the mathematical description of the physical 

problem. This conceptual independence may not. 

however, be expressed in the actual code. Two 

factors contribute to the absence of concep.tual 

independence in the final program: (1) the com

putational method chosen to approximate the 

mathematical problem may sPquentialize formerly 

independent tasks: !2) the specific implementa

tion of the computational method adds unnece"

san· svnchronizations. 

"'e therefore make a reasonably ,;harp di,-tinc

tion between the mathematical model of a prob

lem, the computational method for its solution. 

and the particular implementation of the method. 

"'e begin in the next section with a brief 0\en·iew 

of PRBIIX. In Section 3. we obsen·e how well the 

original ,·ersion of PRE\IL\. expresses parallelism 

inherent to the mathematical model and compu

tational method. In Section -i we describe the pro

gram transformation techniques applied to pro

duce an optimized version of PRE\tL\.. In Section 5 

we exhibit the resulting performance improve

ment, and in Section 6 we offer the conclusions 

drawn from this work. 

2 THE PREMIX APPLICATION 

PRE!\IIX is a typical example of a library-oriented 

production Fortran code. It is a flexible prog-ram 

developed to analyze general problems im·oh·ing 

combustion of premixed gases in a flame. PHE\11\. 

consists of a driver and four librarie:-;: CHE\IKI'\ [51. 
used to analyze gas-phase chemical kinetics: 

TRA'\SPORT [ 6], used to evaluate gas-phase multi

component transport properties; T\\ OP'\T [ 8], a 

two-point boundary value problem solwr: and 

LIWACK [9], a popular numerical linear algebra 

package. Each is a standardized, extensible li

brary intended for use on a wide variety of plat

forms. The code, approximately 30.000 lines of 

standard Fortran 77. is highly modular, robusL 

and portable. The program can be stopped at any 

of several checkpoints and restarted with a new 

configuration. 

Our testing environment was a shared memory 

MI~ID machine, an Alliant FX/80 [10] with eight 

processing units. The processors are register 

based with chained functional units and memon' 

port. The computational processors are con-
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FIGURE 1 LxPcution protile of sequential program. Times were obtained on an Al

liant FX/80 with sPrial optimizations lcompilo· command: fortran -Og -pg). Elapsed 

times (in sPconds) are superscript•~d and the number of evPnb is subscripted. Procedure 

times include time spent in eallt>d subpron·dun•s. Total elapsed time is 9 .. 305 seconds. 

The two separate invocation~ of ··fun·· are protiled together in Fi~o,'Ure 2. 

nected by a concurrency bus. which keep,.; the 

overhead for concurrency small. A ,.;equential pro

file for an execution uf the nitro~en combustion 

simulation mentioned earlier appears in Fi~ures 1 

and 2. For the teiit problem the prowam tracks :3-t 

chemical species and 1;) 1 chemical reaction,.; 

throu~h three simulated burns. The one-dimen

sional grid bein~s with 19 grid points and i;; ulti

mately refined to 61 wid points. 

The program ~pend,.; most of its execution time 

in routine,.; from tlw CI!E\IJ-..:1:\ and TH \\sPOilT li

braries. Approximately 6.)'l'o of tlw st>quentiul ex-

ecution time is consumed performing chemical ki
netics computations in CHF:\IJ-..:1:\ routines ckytx, 
ckmmwy, ckwyp, ckrat, ckhml, ckcpbs, 

ckrhoy, and ckcpms. (These subprogram 

name~ are defined in Table 1.) Another 20% of 

the execution time is consumed by transport com

putations in TRA:\SI'ORT routines mtrnpr, ckytx, 

mcadif, mcedif, mceval, and mcacon. Soh·

ing systems of linear equations consumes most of 

the remaining time. The TwoP:\T library simply 

controls the flow of the computations and thus 

contributes little to the execution time. 

_ · IUo) · )t;<,4 -t 
ckytx , .. .,,, 

-mtrnpr :
1
]] n~cad1f 2'AJt. --mcedlf 2., 4Jt; --mceval =~ziH 

me aeon~~ •o --mceval ;~lo 

r- ckhml/.~~~ 0 

r-- eke pbs 21~co -- ckcpms ~\~~t;o 

~ ckcpms i.~~co 

-temp i,",A 

FIGURE 2 Execution profile for procedure fun. 
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Table 1. Symbols Appearing in the Premixed Flame Equations 1-4. 

Symbol 

X 

T 

M 
Y, 

A 

p = pW/RT 

h, 

p 
u 

R 

QuantitY 

Spatial coonJinate along flow direction 

Temperature 

Mass flow rate (indt>pendent of~-) 

Mass fraction of the kth species 

Thennal conductivitY of the mixture 

:'11ass fraction times diffusion velocity of the 

kth species 

Mass density 

Specific enthalpy of the kth species 

Constant pressure heat capacity of the 

kth species 

Constant pressure heat capacity of the 

mixture 
.\1olar rate of production of the kth 
species per unit volume 

.'vlean molecular weight of the mixture 

Diffusion velocity of the kth species 

Molecular weight of the kth species 
Cross-sectional area of the stream tube 

encompassing the flame 
Pressure (constant) 

Velocity of the fluid mixture (constant) 

Cniver~al gas constant 

Subroutine fun 

Subroutine fun 

SubroutinP fun 

SubroutinPs mcmcdt, 

mcacon, mceval 

Subroutines mdifv, 

mcatdr, mtrnpr, mead if, 

mcedif, mceval, ckytx 

Subroutine ckrhoy 

Subroutine ckhml 

Subroutine ckcpms 

Subroutines ckcpbs, 

ckcpms 

Subroutines ckwyp, 

ckrat 
Subroutine ckmmwy 

Read from input 
Read from input 

Subroutine area 

Read from input 

Read from input 

Read from input 

i\'ote. More detail is available-from the Cllf:\fJ.;J\ and TR\:\,PoRT documentation [.S. 6'. 

3 DESCRIPTION OF THE ALGORITHM . dT 1 d ( d8 1 A ' dT 
Jf -d - - -d AA -d + - L (pAZk )c"" -d 

X Cp X X Cp k=l X 

We first give a description of the mathematical 

model and the computational method, which as

sisted us in discovering which level of outer loop 

parallelism is best to obtain a granularity suffi

cient to saturate available processors with reason

ably sized parcels of independent work [ 11 J. A 

mathematical description of the general fJroLlem 

appears in several references [2]. ·we review them 

briefly here. w·e then consider the computational 

methods employed to solve the combustion prob

lem and explore the potential for parallelism in 

these methods. Finally, we describe the particular 

implementation of these methods and explore the 

remaining potential for parallelism in the actual 

program. 

3.1 Mathematical Model 

PREMIX computes the steady-state temperature 

and species concentrations in one-dimensional 

burner-stabilized and freely propagating pre

mixed laminar flames. The steadv state is defint>d 

by the following conservation equations [2]: 

~~1 = puA = constant (mass), (1) 

(2) 

(3) 
(k = 1, . . .. K) (momentum). 

where K is the number of chemical species. Thus, 

K + 2 conservation equations govern the steady 

state of the system. The symbols appearing' in 

these equations are defined in Table 1. 

The chemical kinetics computations occur in 

evaluating the molar rates of species production 

Wk, the specific form of which is determined by the 

input data set according to the equation, 

A. 

2: llk,qi ( ... ) 
i=l 

where the vk.i are user-specified inte~er stoichio

metric coefficients and the q1 are the computed 

reaction rates. Determining the value of q1 is com

putationally intensive, consisting of numerous ex-



ponentials, logarithms. and reductions. both mul

tiplicative and additive. 

The heat generated or absorbed by these reac

tions strongly affects the gas flow. In Ptu:wx., the 

chemical kinetics are computed first from the in

put data; then the hydrodynamic system governed 

by conservation Equations 1-3 is solved in the 

presence of the chemical reactions. 

Equations 2 and 3 are discretized using finite 

difference approximations. A grid is numbered 

from 1 at the cold (input) boundary to J at d~e hot 

(output) boundary. The convective ter~s. (.U dTI 

dx) from the enere:,ry equation and (JI dl//dx) 
from the momentum equation, are modeled by ei

ther first order windward or central differences as 

necessary. The other derivatives are approxi

mated bv first and second order central differ

ences. The diffusive term of the species conserva

tion equation. dl dx(pAZk ). is approximated in the 

same manner. Appropriate boundary conditions 

are implemented for both the cold and hot bound

aries. yielding a two-point boundary value prob

lem. (See Equations 10-21 in Kee eta!. [2j and 

discussion therein for a detailed description.) The 

nitrogen combustion problem is solved first using 

windward differences for the convective terms. 

Then the initial solution is used as a starting con

dition for a run using central differences for the 

convective terms. 

The finite difference approximations reduce 

the stiff two-point boundary value problem to a 

system of nonlinear algebraic equations. The 

boundary value problem is modeled first on a 

coarse mesh. ~-hen necessary, new grid points are 

added (nonuniformly) in regions where the solu

tion or its gradients change rapidly. Assuming a 

unique solution exists. this process ends when the 

solution has been resolved to a specified degree. 

The nonlinear system is solved using the modi

fied 1\"ewton-Raphson algorithm. "-e seek avec

tor ¢ which satisfies 

F(¢) = 0. (5) 

We begin with a (usuallv poor) approximation<$ to 

¢: It is clear that F(<$) i.s not zero. The quantity 

y= F(<$) (6) 

is called the residual. 

In order to obtain a block-tridiagonal structure 

in the Jacobian, the mass flow rate, JI, is treated 

as an independent variable JI1 at each grid point, 
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and the additional equation stating that they are 

all equal, 

() = 1' ... , J) (7) 

is added with a suitable boundary condition. This 

mass conservation equation, coupled with the en

ergy conservation Equation 2 and the K equations 

of momentum conservation (3) yield a total of K + 
2 equations. The approximate solution vector cb 
has the form, 

(8) 

where 

Equation 9 corresponds to the independent vari

ables for temperature, species concentration. and 

mass flow rate for each grid point, j. 
The modified 1\"ewton-Raphson algorithm pro

duces a sequence {</> nJ, 

In the equation, 11- is a damping parameter and J is 

a finite difference approximation to the Jacobian 

matrix-. The sequence converges to the solution of 

the nonlinear equations F(<f>) given a sufficiently 

good starting estimate ¢ 0
'. It is rejected if it does 

not converge. 

Should the 1\"ewton algorithm fail to converge, a 

user-specified number of artificial time integra

tions are performed to improve the conditioning of 

the nonlinear system. The discretized time inte

gration is again a system of nonlinear equations. 

The modified 1\"ewton-Raphson method is em

ployed to solve the nonlinear system, but in this 

case it is much more likely to converge. See the 

discussion in Kee et al. [2] for more details. 

Independence Inherent to the 
Computational Method 

Each 1\"ewton or time-stepping iteration depends 

directly on the result of the previous iteration, so 

we will not discover independence necessary for 

parallelization outside the computations within a 

single iteration. We will show, however, that 1 aco

bian evaluation contains considerable indepen

dence, in that all residual differences can be com

puted simultaneously. Additionally, many of the 
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properties evaluated for each species and reaction 

within a single residual evaluation are indepen

dent in principle. Others are not independent, but 

many have the form of a reduction, a computation 

amenable to partial parallel optimization. 

Let cPin) represent the vector of independent 

variables after Kewton iteration n. Skinner [12] 

has shown that y = F(cP1"i) depends only on the 

partial vectors, 

A..(n) A..(nl A..l.n; A..:.n-nn) A..:,rl-no) A..'.n-no (11) 
'1-';-1' 'I'; ''1-';+1' '1-';-1 ''I'; . '~-';+1 . 

(The dependence on some previous evaluation 

n- no arises from the fact that the transport coeffi

cients are not recomputed for each iteration.) It 

follows that y depends only on solution vectors 

cP '" and cf> n-no. both of v.·hicl1 are available at the 

beginning of l\"ev.1on iteration n + 1. That is. y = 

F(cf> ")is a completely explicit computation. Thus. 

the computations for each grid point sectioning of 

y can be performed simultaneously. It follows that 

all the residuals needed to approximate the Jaco

bian can Le computed concurrently. 

~T e see that there exists the potential for sen'ral 

levels of significant parallelism in PR.E\11\. 1\"ote. 

however, the hierarchy is not strict. For efficiency. 

the Jacobians are often reused. Thus. a significant 

number of residual evaluations occur which are 

not part of Jacobian evaluation. In the nitrogen 

combustion simulation we used for testing, one 

third of the residual evaluations occur indepen

dent of Jacobian evaluation. This suggests that if a 

single level of parallelism is to be exploited. it 

should be done at the level of residual evaluation. 

3.2 Specific Implementation 

The control flow of PHE\11.\ can be ,·iewed as in 

Figure 3. The CHL\11\.J:\ hTERPHETEH [5 J and TR'-\!'

PORT PROPERTY FITTJ:\G CoDE [ 6 J are each external 

modules which access databases to create ··link

ing" files to be read during execution. The 

CHF:Ml\.1:\ and TRA:\SPORT libraries require access to 

many problem-specific constants, such as the 

molecular weights of the species. In addition, each 

library requires some scratch space, or memory 

locations, used to store values needed only tempo

rarily. Tracking the use of these scratch arrays is 

significant when analyzing for parallelism. 

Because the libraries are general purpose and 

used in a wide variety of applications, these work 

arrays must be of arbitrary size. Thus, a ''dy

namic" memory allocation .scheme is used. Both 

CHEMKI:\ and TRA:\SPORT implement dynamic 

I ('j,,n,I..Jn lu!orpr<ln I 

I 
L 
l 

I I'• rlo1111 tlloulilw<l \t·\\l<>lo-JI,!pli,<JII I L ]!, l1111 ,oppru'\lllloll< '"IIJII(m I 

l 

I J 
j 

'-------i-'' 
I 

lonl-lo ,,,jnli<!IIII•>T f,,,u,l 

FIGL"RE :i Flow dial!ram for PHL\11\. The nonlinear 

discretized sy:-;tem is iiohcd w;inl! the modifit>d ."\ew

ton-Raphson algorithm. Should tlw :\e\\lon all!oritlun 

fail to coiiYergc, a u~er-specilied llUIJIIwr of anificial 

time integrations are perfornwd to impnm· tht· condi

tioning of the nonlinear system. The time ~tq>pinl! alf!o

rithrn also uses the .\"e\\1011 method. 

memorv allocation in a wav common to scientific . . 
programs written in Fortran. For t>ach data typt> 

employed by one of the program libraries ,'charac

ter. integer. double-prt>cision floating poinli. a 

single. large array is can·ed into ,.;ections by a se

quence of integer offsets computed at run-time. 

The indices are computt-d during initialization 

and stored in COMMON blocb for future u,.;e. Tht-v 

are never modified after initialization. The work 

arrays for each of the libraries are passed as argu

ments down the calling tree. A COMMON block for 

each of the libraries encapsulates the pointers into 

their respective integer and floating-point work ar

rays. It is important to nott:> that the COMMON 

blocks for a particular library are declared only iu 

procedures within that library. 

Returning to Figure 3, we see that each time the 

outer control loop iterates, either the l'\t>wton 

solver or time stepping is invoked. The l'\t-wton 

solver is always inn>ked first: time stepping is only 

performed when the 1\"ewton solution phase fails 

to converge. A single Kewton iteration consists of 

the following steps [2]: 

1. Calculate the residual (fun) 

2. If necesssary, evaluate (jacob) and factor 

(dgbco) the Jacobian matrix 

3. Backsolve (dgbsl) 

Because chemical computations involve only a 

grid block and its immediate neighbors (Equation 



11 ), the chemistry is local. As the residual evalua

tions are independent of one another_ no concep

tual reason exists that the residuals cannot be 

computed efficiently in parallel. 

Computin~ the residual requires numerous 

chemical and thermodynamic property e\·alua

tions at each grid point. The computation has 

three distinct steps. First, the transport coeffi

cients are evaluated, if necessarv. Then the diffu

sion velocities are computed. Finally, the chemi

cal kinetics terms are evaluated and the residuals 

of the governing Equations 2. :3, and 7 are deter

mined. 

However, the specific implementation of the 

computational methods hides some of the poten

tial for parallelism. Concurrent evaluation of the 

residuals is hampered by the presence of shared 

local variables and work arravs. The chemical and 

thermodynamic computations for each grid point, 

which we also identified as independent in princi

ple, cannot be executed concurrently either. In 

addition to shared local variables and work ar

rays, the nearest-neighbor communication of 

density and area data forces a sequentializing 

synchronization. The next section describes tech

niques to overcome some of these problems. 

4 PROGRAMMING TECHNIQUES AND 
OPTIMIZATION 

In this section we describe the program transfor

mation techniques we applied to the specific im

plementation of PRDIL'\ and the program analysis 

that was necesssary to do this. \Ve compare these 

techniques to those applied in other application 

programs and discuss some implications on pro

gramming languages, compiler design, and soft

ware engineering issues. 

4.1 Transformation and Analysis 
Techniques 

Tpe basic program modification that enabled 

multiple processors to participate in the parallel 

e~ecution of the program was to declare a number 

of time-consuming loops to be executable concur

rently. Simply speaking, in order to do this we first 

had to recognize that the iterations of these loops 

were potentially independent, then perform some 

transformations to make them truly independent, 

and finally insert a directive informing the com

piler that the loops shall be executed in parallel. 

By far the most important transformation in 
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this process was the privatization of arrays (Fig. 4) 

that are used as temporary work spaces within 

loop iterations. In the original program all such 

loop iterations use the same array(s) for storing 

temporary results. In a parallel execution of the 

unmodified program, every iteration would have 

to wait before using this array until the previous 

iteration is done using it, which effectively would 

serialize the loop. However, by giving each itera

tion a separate copy of the array, we can avoid 

these dependences. The difficulty of this transfor

mation is in making sure that it is a truly tempo

rary array where no array element passes informa

tion from one loop iteration to the next. This is 

usually done by an array definition/use analysis 

of the program. 

An additional technique-the parallelization of 

reduction operations-we have found to be appli

cable in our program. However, we have not done 

this because we exploited an outer level of paral

lelism. The transformation will become important 

on machine architectures that support the exploi

tation of multiple levels of parallelism, e.g., ma

chines that have cluster structure so that the outer 

parallel loops can be spread across clusters while 

the inner loops exploit the parallel resources 

·within the cluster. 

For both the definition/ use analysis and the 

real temp(kk), c(jjl 

do j = 1, j j 
do k = 1, kk 

temp(k) k * b(k) 
end do 

do k = 1, kk 
c (j J c (j ) + temp (k) 

end do 
end do 

real temp(kk,jj), c(jj) 

doall j = 1, j j 

do k = 1, kk 
temp(k,j) k * b(k) 

end do 

do k = 1, kk 
c (j) c (j) + temp (k, j l 

end do 
end do 

FIGURE 4 Privatization of arrays. In the second code 

fragment, each iteration of the outer loop is provided a 

separate copy of work array 11 temp 11
• 
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detection of independence of the loops we had to 

analyze the program interprocedurally. Often. ar

ray sections were defined (i.e .. written) in one sub

routine and used (i.e .. read) in another subrou

tine. Even more difficult was the analysis of 

accessed array sections that in,·oln·d prowam in

put data. Sometimes it was only knowledge of the 

application that could ensure that. in all reason

able executions of the program. input nuial .Ies 

would relate so that the definPd array runges 

would always cover the ust->d. rangt~s or that tlw 

ranges accessed in differellt loop iteration" would 

never overlap. 

The dvnan1ic nwnwn· allocation ;.cheme. lllP!l-. . 
tioned in Section .3.2. furtlwr complicated the "it-

uation. "~e had to track array ,.;uiJ,LTipb which 

were themselves subscripted array elenwnts in or

der w detennine which ;.ectiuu;. uf the original. 

large array are read or written. Since the ,.;ubsnipt 

arravs are read-onh· after their initialization. it i" . . 
possible to determine temporary arrays and paral-

lel loops from the analysis of the program code. 

However, this process is tedious and it makes the 

interesting question of whether "uch techniques 

could be automated in a compiler quite chal

lenging. 

4.2 Tools, Languages, and Programming 
Methodology 

A profile facility that identified the mo,.;t time-con

suming loops in the program was the basic instru

ment for our program analy,.;i,.;. In addition. the 

most helpful tool was an array section analysis 

facilitv that determined the mTm· sections read . . 
and written in each subroutine and loop. This in

formation was then propagated up the calling trPe 

so that the summan· of all accessed arrm·s could . . 
be seen at each loop. 

The actual transformations were done in a con

ventional text editor. Compared to the time con

sumed by the program analysis this task was not 

overly expensive, although the mechanics of array 

privatization could be somewhat tedious as de

scribed below. 

w~ e restructured our program by explicitly 

specifying parallel activities. rather than changing 

the program so that the compiler could recognize 

the parallelism automatically. The language we 

used is Fortran 77 plus directives. The only direc

tive we used is CNCALL, which specifies that the 

loop shall be executed in parallel. Private arrays 

were specified in two forms. both using available 

Fortran 77 constructs. One form is to declare the 

arrav local to a subroutine that is called iibidP the 

parallel loop and tlw other is to Pxpand tlw array 

bv one dimension and index this dimen,.;ion with 

the loop variable. The second form is u,.;ually 

called array expan,ion. Sonwtinws. ,.;ubroutiiw 

parameter lists had to lw modilit->d in ordn to pa,;,.; 

expanded arrays from calling to the called routi!H-'. 

Common exten,.;ion,.; to Fortran ?? are coH

structs for dynamic array dt->daration. Arrays of 

arbitran· size and dimension can I w declarPd lo

cally. within a ,.;ubprogram. Had we tbt'd thi,.; ex

tension. we would not Inn e had to modify any of 

the subprogram parametPr li,;ts. lea,·ing the 

CHE\11-.:L'\ and TH \'\:-l'OHT librari<',.; J,achvanl com

patible. 

The availalJilitv of a dirPctin' that dedan·, \uri

abies private to a loop \HHild haYe bet•n Yery u,;e

ful for our purpo,es becau"e it would ha\ e allowt->d 

us to lean' tlw existing program text unchanged. 

Such a directive would al,.;o hm·e to "upport tlw 

priYatization of a partial array. \\·e encountert->d 

situations where part of an array was read-only 

and another part was used for tt>mporary storage. 

To handle this situation we split the array,.; into 

different parts and prinHized the temporarily tbed 

sections. The need for a PRIVATE dirPctiw is an 

important conclusion of our work. and it corre

sponds to findings of related work. 

The method of program optimization we haYe 

applied consists of idemifying the tinw-consuming 

loops in the program. analyzing array section" 

that are read and written in the"e loops. and de

ri,·ing privatizahle and independent array ,.;ec

tions. The parallel loops in our program could 

then be determined from thi,.; information. The 

actual transformations neces:oary to express the 

parallelism were ,.;traightfm"\\·ard. Thi,;; program

ming scheme seems generally applicable and may 

be used as a programming methodolOf.'Y that can 

be applied in a systematic way. Altlwul!h we haw 

found this to be u;;eful for optimizing other pro

grams as welL we should note that there are time

consuming optimization steps for which we don"t 

know generally applicable methods. Such steps 

are the gathering of knowledge about the applica

tion that goes beyond the analysis of the program 

text. ~·e haYe found this to be important in some 

cases for our program optimization. 

4.3 Comparison to Findings of 
Related Proiects 

In a related project of optimizing application pro

grams for parallel computers similar results were 



found. Such projPct,; includt-> tlw Ct->dar Fortran 

pnljPct [1:3. 1-i, which wa,; completf'd at our cen

tf'r in 1 <JlJ:2. and the follow-on Polari;; projPct 

[15~. Both projPct,; Hwlit>d tran,;;formation tPch

niqut>,.; that arf' rweded to iipt'f'd up real pr·o;rrams. 

This \\·a,;; dorw by hand parallt'lizin;.r a suitf' of 

codes. indudin;.r the Pt'rfPct Benchmark,;; and 

somP applications of rt'lenllH't' to the user,;; at tlw 

1\"ational Center for Super('omplltt'r Applications 

at dw CnivPrsit\ of Illinois. 

Tlw most important transformation,; idt'ntifit·d 

wert' tlw same as in our projt't'l. :\rray privatiza

tion was most t'ffectivf'. followt->d hy the parallt->1-

ization of reduction operations. Inwrproeedural 

definition/ usf' analy,;;i=- wa,.; a crucial techniqtw to 

detf'rmirw tlw applicability of the transformations. 

The transformations ~-it->ldt>d fully paralll-'1 loop,; 

whosP iteration,; could be t:"xecutt'd indept-·ndt·rHiy 

on multiplP proce,.;sor,.;. 

Our application is relt'nlllt for thest' otlwr proj

ects in that it confirms tlw rf'iittlh and thu;; show,; 

that they carry over from tlw samplf' lwnclunark 

suite to new prol!ram,;. Orw difff'renct' St't'm;; 

worth notinl!. Tlw ultirnatt' l!oal of the aiH•\e-re

lated projeeh was to lind tf'dmique,.; that can be 

automated in a paraliPiizinl! compiler. and in fact 

most of the transformation,; identified wert-> re

ported to be automatable. In our pro;.rram we havP 

found that somf' crucial information for determin

ing the applicability of the parallt'lization tech

niques is known only from the input files and thu,; 

is not availablE' at compile tirnP. Althoul!h then' 

are compilation technique=- that are ablt:' to paral

lelize such situations at run-time [161. our find

ings indicate that it will tw at lea,.;t difficult to 

detect the paralleli,;m automatically. A full di,.;cu,;

sion of this point is beyond the ,;cope of thi;; article 

and is the object of future project;;. 

A related approach to methodologit's for paral

lel programmin;.r is described by Eil!ennumn [ 171. 

Our findinl!,.; lar;.rPly al!ree with his approach. One 

difference is that he envisions a '"program-level'" 

optimization. in which all nf'ce,;sarv information 

fL!r transforming the prol!ram can. be l!athered 

from the program text. As we have mentioned. for 

optimizing PRDIL'\ therf' was sometimes a need to 

use knowledge about the mathematical and physi

cal properties of the problem that could not easih· 

be gathered from t~w spf'cific implementation o.f 

the. program. 

Our findings can also be compared with the 

parallel programming methodology that envisions 

the design of application programs from opti

mized libraries. The parallelism would be hidden 
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in thf'se libraries and the pro/!ramrninl! method for 

the user of these libraries \\·otdd be no different 

from sequential prol!nmuninl!. A further advan

tage of this approach is that the libraries could be 

optimized specifically for each machine and the 

application program would be portable. Because 

PRDII\ uses ;;tandard libraries. it would be a natu

ral candidate for such an approach. However. we 

have found that exploiting parallelism \\·ithin the 

libraries does not lead to significant speedup. The 

parallelism we exploitt'Cl is at a higher loop level 

and the libraries them;;elves executt' on one pro

cessor each. 

5 RESULTS 

"·e ;.rathered performance data on the Alliant 

FX/80 for four version,; of PRL\11.\: 

1. Original Sequential-the original PR[\11\ 

code compiled with ,;equential optimiza

tions (fortran -og:l 
2. Original Parallel-the oril!inal code opti

mized for parallel execution by the FX/ 

FORTRAl\' automatic compiler (fortran 

-Ogc) 

3. Optimized Parallf'l-Oril!inal Parallel with 

explicit parallel con,.;tmcts added. as de

scribed in Section -i 

4. Optimized Sequential-Optimized Parallel 

compiled for sequential execution (for
tran -Og) 

The profilin§! option (-pgi was disabled for these 

experiments. "·e also excluded vectorization opti

mizations from our performance tests because the 

vectors were too short to be usd'ul with the FX/80 

architecture. Enabling vectorization consistently 

resulted in greater execution times. 

The performance improvement can be seen in 

Figure 5. The third group of bars shows total exe

cution times for the four versions of PRE\11\. "-e 

see that the Optimized Parallel version of the code 

executes approximately 4.4 times faster than 

Original SequentiaL The added overhead of the 

manual parallelization, seen by comparing the ex

ecution time of Optimized Sequential to Original 

Sequential, is minimal (less than 0.3%). Auto

matic compiler optimizations, isolated in the Orig

inal Parallel version of the code, are responsible 

for about half the performance improvement. This 

result can also be seen in Figure 6, which exhibits 
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FIGURE 5 Comparative performance of four wrsions of PHE\IIX. Times were obtained 

using an eight-processor Alliant F.X./80 with the FX/FORTRA:\' parallelizing compiler. 
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FIGURE 6 Inverse execution times versus numLer of processors. Times for oril!inal 

and optimized parallel versions of PHE\11.\ were oLtained on an Alliant FX/80. An ideal 

performance improvement line is included for comparison. 
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Table 2. Elapsed Execution Times of Four Versions of PRE.~nx 

Original Original Optimized Optimized 

Sequential Para lid Sequential Parallel 
Performance 

Sec. % Sec. % Sec. % Sec. % Improvement 

(a) (b) (c) (d) (c)/(d) 

Residual 

Evaluation loop 5,472 63.2 2.28::3 5-i. 7 5.-i30 61.9 920 47.1 5.9 

Transport loop 1.651 19.1 1.118 26.8 1.7.1~ 20.0 296 1.5. 1 5.9 

Diffusion loop 170 2.0 82 2.0 167 1.9 28 1.4 6.0 

Other chemistrv ~"7 

::>. 0.0 -i2 0.0 "7"7 0.0 40 0.0 1.9 

Total chemistry 7.350 8-i.9 .3.52.3 8-i.5 7.-i09 8-i. -i 1,28-i 65.8 5.8 

Linear algebra 1.15:3 1:3.::3 .S-iO 12.9 1.180 1:3.5 518 26.5 2.3 

Two-point BVP 

Solver 68 0.8 .37 0.9 86 1.0 60 3.1 1.4 

110 and OS 1.0 70 1.7 98 1.1 89 4.6 1.1 0.2 

Total 8.6S8 100.0 '+.172 100.0 8.77:3 100.0 1.9.')1 100.0 4.5 

.Yote. The parallt·l ver~ion:""o wen· t•xeciJtt-... d u:-;lrJf! t•i,!.dlt pnwt·~ . ..;or~. 

the inver:-;e execution time,; uf the parallel ver:-;ions 

of the code for varying numbers of proees:-;ors. 

,,.e separated the linear algebra and chemi:-;try 

computations in Figure .5 to demonstrate how the 

nature of the Optimized Parallel version of the 

program has changed from dw original. w-hile 

performance of the chemical computations im

proved significantly. by a factor of almost 6. dw 

gain for the linear algebra routint>,;. which we wPre 

only able to parallelize partially. was a more mod

est 2.:3. Linear algebra commanded ouh· about 

1~3% of the Original Sequential execution .time. In 

the Optimized Parallel version linear algebra is re

sponsible for about 27%. As the number of pro

cessors grows. linear algebra computations will in

creasingly dominate execution tinw. 

Fornwrly the chemistry wa:-; so expensivP that 

the time spellt in linear algebra could be ea:-;ily 

i~mored. l\'ow that the clwmistry can be madt> rt:>l

atively cheap. the algorithmic t radP-off,., havt' 

changed. Alternativt:>;; to tllf' overall solution strat

e~· should be reviewed. Some discussion of paral

lel methods for solving two-point boundary vahH' 

problems was provided by "right [18]. The L\
P\CJ-.: effort [ 1 <} J offers parallel versions of banded 

system solvers. exploiting parallelism in multiple 

right-hand sides and blocking algorithms. "' e did 

not. however, obtain any performance improve

ment when we replaced the LL'\I'v:~-.: linear algebra 

routines with their L\P,\<:1-.: counterparts. PHE.\11.\ 

has no multiple right-hand sides to exploiL but 

blocking should have yielded some improvement. 

The reason it did not do so is still under investiga

tion. 

Table 2 shows the execution times of the four 

versions of PHE\11.\. The three loops we manually 

parallelized constitute nearly all the significant 

chemical computations in the code. As these loops 

are explicitly parallel in the Optimized Parallel 

version of the code, we have successfully modified 

the implementation to express the parallelism in

herent to the computational method. However, 

the execution times of these loops exhibit only a 

sixfold improvement on eight processors. "-e be

lieve this is largely due to an imbalance in the work 

load. The program spends much of its time work

ing with a 19-point grid. If we assume each itera

tion of the loop over the grid points executes in the 

same amount of time, 19 iterations are completed 

in the time that the eight processors could execute 

2·L This roughly 79% efficiency would reduce the 

performance improvement factor to 6.3. A further 

source of inefficiencv is the limited memorv band-. . 
width of the FX/80 machine, which provides only 

a four-way path between the eight processors and 

the shared memory, and penalizes applications 

with poor cache hit ratios. Factoring in these ineffi

ciencies models the measured performance with 

good accuracy, so that we can characterize the 

scalability of our application as follows. 

The PHDIIX application runs with reasonable 

efficiency on machines with small numbers of pro

cessors. It is potentially scalable to larger numbers 

of processors for the solution of larger problems 

with significantly more than 65 grid points. As the 

chemistry component of the application speeds 

up, the linear algebra part becomes speed limit

ing. We have not investigated possible improve

ments to this component of the application; how

ever, it seems possible to resolve this limitation 
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through appropriate changes in the used algo

rithms. 

6 CONCLUSIONS 

We performed a detailed analysis of the mathe

matical model used in PRE!\IL\ coupled with a 

study of the computational methods to gain a pic

ture of a hierarchy of parallelism inherent to the 

problem being solved. A manual analysis of the 

code followed, from which we determined to what 

extent the parallelism inherent to the implementa

tion was expressed in the original version. \\"e then 

chose an outer loop level appropriate to our target 

machine and applied a handful of manual paral

lelizations. In all, we modified less than 1 00 lines 

of code. The result was a greater than fourfold 

improvement in the simulation· s execution time 

on an Alliant FX/80 with eight processors. 

In this work we have found that the PRE\11.\ 

combustion chemistry application nms with rea

sonable speed on small numbers of processors 

and potentially scales up to more highly parallel 

systems. The most important program transfor

mation to achieve our performance improvement 

was the privatization of arrays. To determine the 

applicability of this transformation we had to do a 

careful, interprocedural analysis of defined and 

used array sections. The available language con

structs were not always adequate for expressing 

dynamically sized loop-private arrays. and we 

suggest that such constructs be included in future 

language designs. The method used for optimizing 

our program seems generally applicable and. with 

the provision of supporting tools. we beline they 

represent a step toward the understanding and 

improvement of the process of optimizing large 

application codes for high-performance com

puters. 
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