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Abstract: We propose parallel phase-shifting digital holographic 
microscopy (PPSDHM) which has the ability of three-dimensional (3-D) 
motion measurement using space-division multiplexing technique. By the 
PPSDHM, instantaneous information of both the 3-D structure and the 
phase distributions of specimens can be simultaneously acquired with a 
single-shot exposure. We constructed a parallel phase-shifting digital 
holographic microscope consisting of an optical interferometer and an 
image sensor on which micro polarizers are attached pixel by pixel. The 
validity of the PPSDHM was experimentally verified by demonstrating the 
single-shot 3-D imaging and phase-imaging ability of the constructed 
microscope. 
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1. Introduction 

In recent years, there have been great progresses in life science and biomedical technology. In 
these fields, multi-parameter imaging technologies are strongly expected. The acquisitions of 
structure, phase distribution, and dynamics are useful for the various analyses in cell biology, 
biochemistry, and other life sciences. Microscopic observation and measurement play 
important roles for the progresses in the fields. However, it is difficult for the conventional 
optical microscopy to measure change in three-dimensional (3-D) structure or 3-D behavior of 
dynamically moving specimens due to the requirement for mechanical focusing process. 
Although confocal laser microscopy is frequently used for measuring a 3-D structure, 3-D 
measurement for dynamic specimen or phenomena is difficult due to laser beam scanning or 
moving the stage. Furthermore, phase imaging of the dynamically moving specimen is quite 
difficult impossible for confocal microscopy. 

To overcome the drawbacks, digital holography has been actively researched recently  
[1–4]. In digital holography, an image sensor records an interference fringe image which 
contains 3-D information of objects. The interference fringe image is called hologram. 3-D 
image of objects can be reconstructed by numerically processing the single hologram. Thus, 
digital holography is capable of 3-D measurement for moving objects. This technique has 
such the attractive features: focused images of 3-D objects at a desired depth can be acquired 
without any mechanical focusing process, 3-D images of specimens can be measured without 
chemically labeling and stimulation, and both amplitude image and phase image can be 
acquired simultaneously. Digital holographic microscopy (DHM) [4–12] is used for analyzing 
and imaging 3-D motions as a 4-D microscopy with deep depth of field [7]. 

Because the pixel pitch of the image sensor is larger than interference fringes in general, 
in-line digital holography in which both an object wave and a reference wave perpendicularly 
illuminate an image sensor is mainly adopted [4–10]. However, unwanted images called as 
the 0-th order diffraction wave and the conjugate image are superimposed on the 3-D image 
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of objects, and then the image quality is degraded. Phase-shifting digital holography (PSDH) 
[13,14] was proposed as a technique capable of obtaining high-quality 3-D image free from 
unwanted images. However, instantaneous 3-D measurement is impossible for PSDH because 
sequential recording of several holograms is required. 

To acquire instantaneous 3-D image of object free from the unwanted images, parallel 
phase-shifting digital holography (PPSDH) [15–27] was proposed. Thanks to space-division 
multiplexing of holograms, PPSDH is capable of reconstructing high-quality 3-D image and 
achieving instantaneous 3-D measurement. By PPSDH, the image sensor simultaneously 
records the information of several holograms required for PSDH, so that PPSDH has potential 
of 3-D motion picture (4-D image) measurement. However, parallel phase-shifting digital 
holographic microscopy (PPSDHM) has not been reported yet. In this Letter, we propose the 
PPSDHM and construct a PPSDH microscope for the first time, and the validity of the 
PPSDHM is experimentally demonstrated. To implement a microscope based on PPSDH, we 
made the optical system located between microscope objectives and a digital camera compact. 
Then we used an image sensor, on which a micro-polarizer array was attached, in in-line 
DHM to generate two kinds of phase distributions of a reference wave. 

2. Parallel phase-shifting digital holographic microscopy (PPSDHM) 

Figure 1(a) shows a block diagram of the PPSDHM. A perpendicularly polarized light beam 
is emitted from the laser and is split into two beams by a beam splitter. One beam illuminates 
the specimen, and then the scattered light from the specimen is collected by a microscope 
objective. Through the polarizer which passes perpendicularly polarized light, the collected 
light arrives at the image sensor of the digital camera as the object wave. The other beam 
passes through the other microscope objective and the quarter wave plate (QWP), and then 
arrives at the image sensor as the reference wave. The micro-polarizer array is attached on the 
image sensor pixel by pixel to implement 90° phase-shift of the reference wave as shown in 
Fig. 1(b). Each cell of the micro-polarizer array corresponds with each pixel of the image 
sensor. Figure 1(c) shows the polarization orientation of the micro-polarizer array. 
Transmission axis of each cell is tilted 45° against that of the polarizer placed in the path of 
the object wave, and parallel or orthogonal to fast or slow axis of the QWP. After passing the 
micro-polarizer array, the object wave and the reference wave which passes through fast axis 
of the QWP forms a hologram, and these which passes through slow axis of the QWP forms 
the other hologram on the image sensor, respectively. Thus, a single image sensor can acquire 
the information of two phase-shifted holograms required for two-step phase-shifting 
technique [28] by the PPSDHM with a single-shot exposure. Although Fig. 1(a) shows an 
optical implementation of PPSDHM for a transparent specimen, PPSDHM can be also 
implemented for a reflective specimen by changing the configuration of the optical system. In 
the constructed system, the intensities of the reference waves are different in each hologram 
when the axes of the polarizers of the array do not correspond with the fast or slow axis of 
QWP. As a result, the system cannot completely remove the unwanted images by the 
calculation of the phase-shifting interferometry, and the image quality degrades. Then, the 
intensity distribution of the reference wave passing through the array of A was adjusted to be 
equal to those passing through the array of B. 
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Fig. 1. Schematics of the PPSDHM. (a) An example of the optical implementation, (b) 
schematic of the image sensor with the micro-polarizer array (c) the configuration of the 
micro-polarizer array. 

Figure 2 shows the processing procedure of image reconstruction of the PPSDHM for the 
recorded hologram. Two phase-shifted holograms are generated from the recorded hologram. 
The complex amplitude of the specimen on the image sensor plane is extracted by using the 
algorithm used in phase-shifting method, and 3-D image of the specimen is obtained. The 
procedure was described in Ref. 21 in detail. Regardless of whether the focused image of the 
object is on the image-sensor plane or not, the resolution for the interference fringe is reduced 
by space-division multiplexing of holograms in the parallel technique. In the system, the 
resolution for the interference fringe in the ± 45° direction from horizontal direction is 
reduced to a half because the pixel pitch is twice in the ± 45° direction. Therefore, the 
recordable object size and the resolution are reduced in the ± 45° direction. 

 

Fig. 2. Processing procedure of the image reconstruction of parallel two-step phase-shifting 
digital holography. 
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3. Experimental results 

We constructed a PPSDH microscope, and then verified the effectiveness of the PPSDHM. 
We designed the configuration of the micro-polarizer array shown in Fig. 1(b), and Photonic 
Lattice, Inc. fabricated the camera. The micro-polarizer array was made of photonic crystal 
materials [29]. The image sensor has 874 (V) × 1164 (H) pixels. The microscope photograph 
of the specimen, scaly hairs of Elaeagnus, is shown in Fig. 3. A Nd:YVO4 laser operated at 
532nm was used. Microscope objectives with × 10 magnification, and N.A. of 0.25 were 
used. 

The experimental results are shown in Fig. 4. Figures 4(a) and 4(b) are the amplitude 
image and the phase image reconstructed by the PPSDHM. Figures 4(c) and 4(d) are the 
amplitude and phase images reconstructed by the conventional in-line DHM [4] that requires 
only a single hologram in the reconstruction. Each image is that numerically focused at 17 
mm from the image sensor plane. As seen from Fig. 4, the amplitude image reconstructed by 
the PPSDHM is much clearer than that by the conventional single-shot in-line DHM that 
applies Fresnel transform alone. Also, the phase image is clearly reconstructed by the 
PPSDHM. Thus, the validity of the PPSDHM was successfully demonstrated by the 
experiment. By analyzing the phase image, instantaneous image measurement of the height or 
the thickness, and refractive index of specimen can be achieved. The analyses are under way. 

 

Fig. 3. Microscope photograph of the specimen. 

 

Fig. 4. Reconstructed image by each DHM. (a) Amplitude image, (b) phase image 
reconstructed by PPSDHM. (c) Amplitude image, (d) phase image reconstructed by the 
conventional single-shot in-line DHM that applies Fresnel transform alone. 

We demonstrate the ability of numerical focusing at a desired depth for single-shot image 
by PPSDHM. In this study, we applied the diffraction integral at the different depths to the 
complex amplitude of the object wave obtained by the parallel two-step phase-shifting 
algorithm reported in Ref. 21 at the image sensor plane for the refocusing. Figures 5(a) and 
5(b) show the amplitude images numerically focused at different depths. The images were 
reconstructed from the same hologram used for reconstructing the image in Fig. 4(a).  
Figures 6(a)–6(f) show the magnified amplitude images of those focused at different depths. 
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The magnified areas correspond with that indicated by the rectangles in Fig. 5(a). As shown in 
Fig. 6, the focused image of a part of the specimen at each depth was clearly reconstructed 
from the single hologram. The focused image of the particle of 4 �m in diameter was 
successfully reconstructed, as shown in Fig. 6(b). Thus, the capability of clearly 
reconstructing the focused images at a desired depth was verified. 

 

Fig. 5. Reconstructed images by the PPSDHM. Images numerically focused at (a) 19mm, and 
(b) 22mm from the image sensor plane, respectively. 

 

Fig. 6. Magnified images numerically focused at different depths. (a) and (b) are the upper and 
right bottom parts of the image focused at 17 mm, (c) and (d) are the upper and right bottom 
parts of the image focused at 19 mm, (e) and (f) are the upper and right bottom parts of the 
image focused at 22 mm from the image sensor plane, respectively. Insides of the circled 
ellipsoid areas indicate in-focus areas. 

4. Conclusion 

We have proposed the PPSDHM which has the ability of high-accuracy instantaneous 3-D 
image measurement. A PPSDH microscope has been constructed and experimentally 
demonstrated. Much more high quality image was successfully reconstructed by the 
PPSDHM in comparison to the image reconstructed by the conventional single-shot in-line 
DHM, and clear images have been reconstructed at a desired depth from a single hologram. 

The 3-D frame rate of the 3-D motion picture obtained by the PPSDHM is equal to the 
frame rate of digital camera used in the PPSDHM. By using a pulsed laser as a light source, 
temporal resolution of the 3-D motion picture obtained by PPSDHM is equal to the duration 
of the pulsed light. Therefore, the PPSDHM is a prospective technique which has the ability 
of imaging femtosecond order time-dependent changing ultrafast phenomena by using 
femtosecond pulsed laser. The PPSDHM will be a powerful tool as a 3-D motion picture (4-
D) microscopy for imaging and measurement of cell fluid flow, dynamically moving 
particles, behavior of living cells, biomedical reactions, and so on. 
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