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SUMMARY

This paper combines the use of high order finite element methods with parallel preconditioners of domain
decomposition type for solving electromagnetic problems arising from brain microwave imaging. The
numerical algorithms involved in such complex imaging systems are computationally expensive since they
require solving the direct problem of Maxwell’s equations several times. Moreover, wave propagation
problems in the high frequency regime are challenging because a sufficiently high number of unknowns
is required to accurately represent the solution. In order to use these algorithms in practice for brain stroke
diagnosis, running time should be reasonable. The method presented in this paper, coupling high order
finite elements and parallel preconditioners, makes it possible to reduce the overall computational cost and
simulation time while maintaining accuracy.
Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The context of this work is the solution of an inverse problem associated with the time-harmonic

Maxwell’s equations, with the aim of estimating the dielectric properties of the brain tissues of a

patient affected by a brain stroke. Strokes can be cast in two major categories, ischemic (80% of

strokes) and hemorrhagic (20% of strokes), which result in opposite variations of these dielectric

properties. In the following, we briefly describe this particular medical context as well as the

application motivating the numerical model.

During an ischemic stroke the blood supply to a part of the brain is interrupted by the formation of

a blood clot inside a vessel, while a hemorrhagic stroke occurs when a blood vessel bursts inside the

brain. It is essential to determine the type of stroke in the shortest possible time in order to start the

correct treatment, which is opposite in the two situations: in the first case the blood flow should be
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Figure 1. Imaging chamber of EMTensor (no copyright infringement intended).

restored, while in the second one we need to lower the blood pressure. Note that it is vital to make a

clear distinction between the two types of stroke before treating the patient: the treatment that suits

an ischemic stroke would be fatal if applied to a hemorrhagic stroke and vice versa. Moreover, it is

desirable to be able to monitor continuously the effect of the treatment on the evolution of the stroke

during the hospitalization.

Usually stroke diagnosis relies mainly on two types of imaging techniques: MRI (magnetic

resonance imaging) or CT scan (computerized tomography scan). These are very precise techniques,

especially the MRI with a spatial resolution of 1mm. However, a MRI machine is too big to be

carried in ambulance vehicles and it is too expensive; a CT scan, which consists in measuring the

absorption of X-rays by the brain, is harmful and cannot be used to monitor continuously the patient

in hospital.

A novel competitive technique with these traditional imaging modalities is microwave

tomography. With microwave imaging in a range of frequencies between 100MHz and several

GHz, the tissues are well differentiated and they can be imaged on the basis of their dielectric

properties. The electromagnetic emissions are lower than the ones from mobile phones and the

spatial resolution is good (5− 7mm). The first works on microwave imaging date back to 1989

when Lin and Clark tested experimentally the detection of cerebral edema (excessive accumulation

of water in the brain) using a frequency signal of 2.4GHz in a head phantom. Other works followed,

but almost always on phantoms or synthetic simplified models [1]. Despite these encouraging

results, there is still no microwave device for medical diagnosis. The techniques designed by the

University of Chalmers (Gothenburg, Sweden) [2] and by EMTensor GmbH (Vienna, Austria) [3]

rely on technologies and softwares developed only in recent years. In both cases the improvement

in terms of reliability, price and miniaturization of electromagnetic sensors is a key factor. In

this approach, it is necessary to transfer the data to a remote HPC machine. The rapid telephony

standards such as 4G and 5G allow to send the acquired measurements of the patient’s brain to a

supercomputer that will compute the 3D images. Then these images can be quickly transmitted from

the computer to the hospital by ADSL or fiber network.

Figure 1 shows the initial microwave imaging system prototype of EMTensor: it is composed

of 5 rings of 32 ceramic-loaded rectangular waveguides around a metallic cylindrical chamber of

diameter 28.5 cm and total height 28 cm, into which the patient head is introduced. Each of the 160
antennas alternately transmits a signal at a fixed frequency, typically 1GHz. The electromagnetic

wave propagates inside the chamber and in the object to be imaged according to its electromagnetic

properties. The retrieved data then consist in the reflection and transmission coefficients measured

by the 160 receiving antennas, which are used as input for the inverse problem. Since the inversion

loop requires to solve repeatedly the direct problem of the time-harmonic Maxwell’s equations

in high frequency regime, an accurate and fast solver of the direct problem is needed. In this

paper accuracy is provided by a high order edge finite element discretization, and the resulting

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2016)
Prepared using jnmauth.cls DOI: 10.1002/jnm



PARALLEL PRECONDITIONERS AND HIGH ORDER ELEMENTS FOR MICROWAVE IMAGING 3

linear system is solved efficiently with the iterative method GMRES preconditioned with a parallel

preconditioner based on domain decomposition methods.

The paper is organized as follows. In Section 2 the mathematical model of time-harmonic

Maxwell’s equations in curl-curl form is presented, together with the associated boundary value

problem to solve. In Section 3 the discretization method using high order edge finite elements is

briefly described and in Section 4 the parallel preconditioner based on domain decomposition is

introduced. Section 5 contains in the first part a comparison with experimental measurements; in

the second part we assess the efficiency of high order edge finite elements compared to the standard

lowest order edge elements in terms of accuracy and computing time.

2. MATHEMATICAL MODEL

To work in the frequency domain, we assume that the electric field E(x, t) = Re(E(x)eiωt) has

harmonic dependence on time of angular frequency ω, where E is its complex amplitude depending

only on the space variable x. Thus, considering a non magnetic medium with magnetic permeability

µ equal to the free space magnetic permeability µ0, we can get the following second order time-

harmonic Maxwell’s equation:

∇× (∇×E)− γ2E = 0, γ = ω
√
µεσ, εσ = ε− i

σ

ω
. (1)

Here εσ is the complex valued electric permittivity, related to the dissipation-free electric

permittivity ε and to the electrical conductivity σ of the medium. Notice that if σ = 0, we have

γ = ω̃, ω̃ = ω
√
µε being the wavenumber. Equation (1) is solved in the computational domain

Ω ⊂ R
3 shown in Figure 1 (right), with metallic boundary conditions

E× n = 0 on Γw, (2)

on the cylinder and waveguides walls Γw, and with impedance boundary conditions on the port Γj

of the j-th waveguide, which transmits the signal, and on the ports Γi of the receiving waveguides,

i = 1, . . . , 160, i 6= j:

(∇×E)× n+ iβn× (E× n) = gj on Γj , (3)

(∇×E)× n+ iβn× (E× n) = 0 on Γi , i 6= j. (4)

Here n is the unit outward normal to ∂Ω and β ∈ R>0 is the propagation wavenumber along the

waveguides. Equation (3) imposes an incident wave which corresponds to the excitation of the

TE10 fundamental mode E0
j of the j-th waveguide, with gj = (∇×E0

j )× n+ iβn× (E0
j × n).

Equation (4) is an absorbing boundary condition of Silver-Müller giving a first order approximation

of a transparent boundary condition on the outer port of the receiving waveguides i = 1, . . . , 160,
with i 6= j. The bottom of the chamber is considered metallic, and we impose an impedance

boundary condition on the top of the chamber.

The variational formulation corresponding to equation (1) together with boundary condi-

tions (2), (3), (4) is: find E ∈ V such that

∫

Ω

[

(∇×E) · (∇× v)− γ2E · v
]

+

∫

⋃
160

i=1
Γi

iβ(E× n) · (v × n) =

∫

Γj

gj · v ∀v ∈ V,

with V = {v ∈ H(curl,Ω),v × n = 0 on Γw}, where H(curl,Ω) is the space of square integrable

functions whose curl is also square integrable. Note that gj depends on which waveguide transmits

the signal and this corresponds to a different right-hand side of the linear system resulting from the

finite element discretization. On the other hand, the matrix of the linear system is the same for every

transmitting waveguide.
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3. HIGH ORDER EDGE FINITE ELEMENTS

To write a finite element discretization of the variational problem we introduce a tetrahedral mesh

Th of the domain Ω and a finite dimensional subspace Vh ⊂ H(curl,Ω). The simplest possible

conformal discretization for the space H(curl,Ω) is given by the low order Nédélec edge finite

elements (of polynomial degree r = 1) [4]: for a tetrahedron T ∈ Th, the local basis functions are

associated with the oriented edges e = {ni, nj} of T as follows

we = λi∇λj − λj∇λi,

where the λℓ are the barycentric coordinates of a point with respect to the node nℓ. It can be shown

that edge finite elements guarantee the continuity of the tangential component across faces shared

by adjacent tetrahedra, they thus fit the continuity properties of the electric field.

The finite element discretization is obtained by writing the discretized field over each tetrahedron

T as Eh =
∑

e∈T cew
e, a linear combination with coefficients ce of the basis functions associated

with the edges e of T , and the coefficients ce will be the unknowns of the resulting linear system.

For edge finite elements of degree 1 these coefficients can be interpreted as the circulations of Eh

along the edges of the tetrahedra:

ce =
1

|e|

∫

e

Eh · te,

where te is the tangent vector to the edge e of length |e|, the length of e. This is a consequence of

the fact that the basis functions are in duality with the degrees of freedom given by the circulations,

that is:

1

|e|

∫

e

we′ · te =
{

1 if e = e′,

0 if e 6= e′.

In order to have a higher numerical accuracy with the same total number of unknowns, we

consider a high order edge element discretization, choosing the high order extension of Nédélec

elements presented in [5] and [6]. The definition of the basis functions is rather simple since it only

involves the barycentric coordinates of the tetrahedron. Given a multi-index k = (k1, k2, k3, k4) of

weight k = k1 + k2 + k3 + k4 (where the ki, i = 1, 2, 3, 4, are non negative integers), we denote by

λk the product λk1

1
λk2

2
λk3

3
λk4

4
. The local generators of polynomial degree r = k + 1 (k ≥ 0) over

the tetrahedron T are defined as

w{k,e} = λkwe,

for all edges e of the tetrahedron T , and for all multi-indices k of weight k. Note that these high order

elements still yield a conformal discretization of H(curl,Ω): indeed, they are products between

the degree 1 Nédélec elements we, which are curl-conforming, and the continuous functions λk.

However, some of these high order generators (r > 1) are linearly dependent: the selection of a

linearly independent subset to constitute an actual basis is described in [7], which provides further

details about the implementation of these finite elements. Moreover, the duality property, which

is practical for the implementation, is not satisfied for high order generators, but it can be easily

restored as explained in [8].

Duality is needed for instance in FreeFem++, an open source domain specific language

(DSL) specialized for solving boundary value problems by using variational discretizations (finite

elements, discontinuous Galerkin, hybrid methods, . . . ) [9]. Several finite element spaces are

available in FreeFem++, and the user can also add new finite elements, provided that the duality

property is satisfied. For instance we implemented the edge elements in 3d of degree 2 and 3, which

can be used by loading the plugin "Element Mixte3d" and declaring the finite element space

fespace using the keywords Edge13d, Edge23d respectively (the standard edge elements of

degree 1 were already present in FreeFem++ and thery are called Edge03d).

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2016)
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Figure 2. The decomposition of the computational domain into 128 subdomains.

4. DOMAIN DECOMPOSITION PRECONDITIONING

The discretisation of the problem presented in Section 2 using the high order edge finite elements

described in Section 3 produces a linear system Auj = bj for each transmitting antenna j. Direct

solvers are not suited for such large linear systems arising from complex three dimensional

models because of their high memory cost. On the other hand, matrices resulting from high

order discretizations are ill conditioned as shown numerically in [5] for similar problems, and

preconditioning becomes necessary when using iterative solvers.

Domain decomposition preconditioners are naturally suited to parallel computing and make it

possible to deal with smaller subproblems [10]. The domain decomposition preconditioner we

employ is called Optimized Restricted Additive Schwarz (ORAS):

M−1

ORAS =

Nsub
∑

s=1

RT
s DsA

−1

s Rs,

where Nsub is the number of overlapping subdomains Ωs into which the domain Ω is decomposed

(see Figure 2). Here, the matrices As are the local matrices of the subproblems with impedance

boundary conditions (∇×E)× n+ iω̃n× (E× n) as transmission conditions at the interfaces

between subdomains. This preconditioner is an extension of the restricted additive Schwarz

method proposed by Cai and Sarkis [11], but with more efficient transmission conditions between

subdomains than Dirichlet conditions (see for example [12]).

In order to describe the matrices Rs, Ds, let N be an ordered set of the unknowns of the

whole domain and let N =
⋃Nsub

s=1
Ns be its decomposition into the (non disjoint) ordered subsets

corresponding to the different (overlapping) subdomains Ωs. The matrix Rs is the restriction matrix

from Ω to the subdomain Ωs: it is a #Ns ×#N Boolean matrix and its (i, j) entry is equal to 1 if

the i-th unknown in Ns is the j-th one in N . Notice that RT
s is then the extension matrix from the

subdomain Ωs to Ω. The matrix Ds is a #Ns ×#Ns diagonal matrix that gives a discrete partition

of unity, i.e.
∑Nsub

s=1
RT

s DsRs = I; in particular the matrices Ds deal with the unknowns that belong

to the overlap between subdomains.

The preconditioner without the partition of unity matrices Ds, M−1

OAS =
∑Nsub

s=1
RT

s A
−1
s Rs, which

is called Optimized Additive Schwarz (OAS), would be symmetric for symmetric problems, but in

practice it gives a slower convergence with respect to M−1

ORAS, as shown for instance in [7].

These domain decomposition preconditioners are implemented in the library HPDDM [13], an

open source high-performance unified framework for domain decomposition methods. HPDDM can

be interfaced with various programming languages and open source finite element libraries such as

FreeFem++, which we use in the simulations.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2016)
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5. NUMERICAL RESULTS

In this section, all linear systems resulting from the edge finite elements discretizations are solved

by GMRES preconditioned with the ORAS preconditioner as implemented in HPDDM. Each linear

system to solve has several right-hand sides (one per transmitter), and we use a pseudo-block

method implemented inside GMRES which consists in fusing the multiple arithmetic operations

corresponding to each right-hand side (matrix-vector products, dot products) in order to achieve

higher arithmetic intensity.

All the simulations are performed in FreeFem++ interfaced with HPDDM. Results were obtained

on the Curie supercomputer (GENCI-CEA).

In the following subsections, we first validate our numerical modeling of the imaging chamber

by comparing the results of the simulation with experimental measurements obtained by EMTensor.

Then, we illustrate the efficiency of the high order finite elements presented in Section 3 over the

classical lowest order ones in terms of running time and accuracy.

5.1. Comparison with experimental measurements

The physical quantity that can be acquired by the measurement system of the imaging chamber

shown in Figure 1 is the scattering matrix (S matrix), which gathers the complex reflection and

transmission coefficients measured by the 160 receiving antennas for a signal transmitted by one

of these 160 antennas successively. A set of measurements then consists in a complex matrix of

size 160× 160. In order to compute the numerical counterparts of these reflection and transmission

coefficients, we use the following formula, which is appropriate in the case of open waveguides:

Sij =

∫

Γi
Ej ·E0

i
∫

Γi
|E0

i |2
, i, j = 1, . . . , 160, (5)

where Ej is the solution of the problem where the j-th waveguide transmits the signal, and E0
i is

the TE10 fundamental mode of the i-th receiving waveguide (Ej denotes the complex conjugate of

Ej). The Sij with i 6= j are the transmission coefficients, and the Sjj are the reflection coefficients.

For this comparison of the computed coefficients with the measured ones, the imaging chamber

is filled with a homogenous matching solution. The electric permittivity ε of the matching solution

is chosen by EMTensor in order to minimize contrasts with the ceramic-loaded waveguides and

with the different brain tissues. The choice of the conductivity σ of the matching solution is a

compromise between the minimization of reflection artifacts from metallic boundaries and the desire

to have best possible signal-to-noise ratio. Here the relative complex permittivity of the matching

solution at frequency f = 1GHz is ε
gel
r = 44 + 20i. The relative complex permittivity inside the

ceramic-loaded waveguides is εcer
r = 59 + 0i. Here with εr we mean the ratio between the complex

permittivity εσ and the permittivity of free space ε0.

For this test case, the set of experimental data given by EMTensor consists in transmission

coefficients for transmitting antennas in the second ring from the top. Figure 3 shows the normalized

magnitude (dB) and phase (degree) of the complex coefficients Sij corresponding to a transmitting

antenna in the second ring from the top and to the 31 receiving antennas in the middle ring (notice

that measured coefficients are available only for 17 receiving antennas). The magnitude in dB is

calculated as 20 log10(|Sij |). The computed coefficients are obtained by solving the direct problem

with edge finite elements of polynomial degree r = 2. We can see that the computed transmission

coefficients are in very good agreement with the measurements.

5.2. Efficiency of high order finite elements

The goal of the following numerical experiments is to assess the efficiency of the high order finite

elements described in Section 3 compared to the classical lowest order edge elements in terms

of accuracy and computing time, which are of great importance for such an application in brain

imaging. For this test case, a non-dissipative plastic-filled cylinder of diameter 6 cm and relative

permittivity ε
cyl
r = 3 is inserted in the imaging chamber and surrounded by matching solution of

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2016)
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Figure 3. The normalized magnitude (top) and phase (bottom) of the transmission coefficients computed
with the simulation and measured experimentally.

Figure 4. Slice of the imaging chamber, showing the non-dissipative plastic-filled cylinder and some isolines
of the norm of the real part of the total field E.
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Figure 5. Slices showing the norm of the real part of the total field E in the imaging chamber with the
plastic-filled cylinder inside, for a transmitting antenna in the second ring from the top.

relative complex permittivity ε
gel
r = 44 + 20i (see Figure 4). We consider the 32 antennas of the

second ring from the top as transmitting antennas at frequency f = 1GHz, and all 160 antennas

are receiving. We evaluate the relative error on the reflection and transmission coefficients Sij with

respect to the coefficients Sref
ij computed from a reference solution. The relative error is calculated

with the following formula:

E =

√

∑

j,i |Sij − Sref
ij |2

√

∑

j,i |Sref
ij |2

. (6)

The reference solution is computed on a fine mesh of approximately 18 million tetrahedra using

edge finite elements of degree r = 2, resulting in 114 million unknowns. Slices in Figures 4 and 5

show the computational domain and the solution E for one transmitting antenna in the second ring

from the top.

We compare the computing time and the relative error (6) for different numbers of unknowns

corresponding to several mesh sizes, for approximation degrees r = 1 and r = 2. All these

simulations are done using 512 subdomains with one MPI process and two OpenMP threads per

subdomain, for a total of 1024 cores on the Curie supercomputer.

We report the results in Table I and in Figure 6. As we can see, the high order approximation

(r = 2) allows to attain a given accuracy with much fewer unknowns and much less computing time

than the lowest order approximation (r = 1). For example, at a given accuracy of E ≈ 0.1, the finite

element discretization of degree r = 1 requires 21 million unknowns and a computing time of 130
seconds, while the high order finite element discretization (r = 2) only needs 5 million unknowns,

with a corresponding computing time of 62 seconds.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2016)
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Table I. Total number of unknowns, time to solution (seconds) and relative error on the computed Sij with
respect to the reference solution for edge finite elements of degree 1 and 2 on different meshes.

Degree 1

# unknowns time (s) error

2 373 214 22 0.384
8 513 191 53 0.184

21 146 710 130 0.117
42 538 268 268 0.083
73 889 953 519 0.068

Degree 2

# unknowns time (s) error

1 508 916 39 0.243
5 181 678 62 0.099
12 693 924 122 0.057
26 896 130 236 0.036
45 781 986 396 0.019
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Figure 6. Time to solution (seconds) and relative error on the computed Sij with respect to the reference
solution, using edge finite elements of degree 1 and degree 2 for different mesh sizes. The total number of

unknowns in millions is also reported for each simulation.

6. CONCLUSION

This work shows the benefits of using a discretization of the time-harmonic Maxwell’s equations

based on high order edge finite elements coupled with a parallel domain decomposition

preconditioner for the simulation of a microwave imaging system. In such complex systems,

accuracy and computing speed are of paramount importance, especially for the application

considered here of brain stroke monitoring.

Ongoing work consists in incorporating high order methods in the inversion tool that we are

developing in the context of this application in brain imaging, for which promising results have

already been obtained with edge finite elements of lowest order for the reconstruction from synthetic

data of a numerical brain model.

We are also now in a position to test our inversion algorithm on various data sets acquired by the

measurement system prototype of EMTensor.

From the numerical point of view, promising techniques are available that will allow us to

speed up the solution of the inverse problem. First, recycling and block methods can be very

helpful in such a context. The inverse problem is solved by a local optimization algorithm which

consists in solving a sequence of slowly-varying linear systems, and a recycling algorithm such as

GCRO-DR (Generalized Conjugate Residual method with inner Orthogonalization and Deflated

Restarting) [14] can significantly reduce the total number of iterations over all linear systems,

by recycling the Krylov subspace from one linear system solve to the next. Moreover, each

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2016)
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10 M. BONAZZOLI, V. DOLEAN, F. RAPETTI, P.-H. TOURNIER

iteration in the inversion loop corresponds to solving a linear system with multiple right-hand sides

available simultaneously, with one right-hand side per transmitting antenna. Each direct problem

with multiple right-hand sides can thus be solved efficiently by block methods such as Block

GMRES, or by combining block and recycling strategies in a Block GCRO-DR algorithm. Block

methods provide higher arithmetic intensity and better convergence.

Finally, choosing a suitable coarse space for the design of a scalable two-level preconditioner

for Maxwell’s equations is still an open problem. Indeed, enriching the one-level preconditioner

presented here with an efficient two-level preconditioner would lead to better convergence when

using many subdomains, resulting in a highly scalable parallel solver.
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