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Abstract. The dynamic behaviour of a large interconnected electric power 
system is characterized by a simultaneous set of nonlinear algebraic and 
ordinary differential equations. The solution is obtained by numerical 
methods and the simulation of the transient behaviour for a few seconds 
after a fault is the standard analytical procedure used in planning and 
operational studies of the system. The need for on-line simulation in near 
real time for more efficient operation has encouraged the search for faster 
solution methods and the use of parallel computers for this purpose has 
attracted the attention of many researchers. The success of paraUelization 
depends on three factors: the problem structure, the computer architecture, 
and the algorithm that takes maximum advantage of both. In this problem, 
the generator equations are only coupled through the electrical network 
providing some parallelization in (variable) space, and a solution is needed 
at each time step leading to some parallelization in time (waveform rela- 
xation). However, since the problem formulation is not completely 
decoupled, parallel algorithms can only be developed by trading off any 
relaxation with a degradation in convergence. The fastest sequential algorithm 
used today is the combination of implicit trapezoidal integration with a 
dishonest Newton solution. The Newton algorithm is not parallel at all 
but has the fastest convergence while a Gauss-Jacobi algorithm is 
completely parallel but converges very slowly. A relaxation of the Newton 
algorithm appears to be a good compromise. As for the parallel hardware, 
the coupling seems to require significant communication between 
processors thus favouring a data-sharing architecture over a message- 
passing hypercube. Special architectures to match the problem structure 
have also been an area of investigation. This paper elaborates on the 
above issues and assesses the present state-of-the-art. 

Keywords. Power systems; transient stability; parallel computation; 
parallel algorithms. 

1. Introduction 

The simulation of power system dynamics is a standard analytical procedure used 
in the planning and operation of power systems. The large number of dilterential- 
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algebraic equations and their nonlinearities that represent power system dynamics 
make time simulation the only viable alternative for such extensive engineering 
analysis. Production grade programs have been developed over the years to make 
this tool support various analytical requirements. Experience has also provided com- 
parisons of various algorithms. Since these simulations are computationally expensive, 
and hence time consuming, the search for more efficient algorithms continues to this 
day. If such analysis can be done faster than real time, its use can be extended from 
purely analytical studies to on-line control applications. 

The development of algorithms over the last three decades makes it less likely that 
major breakthroughs will dramatically change simulation speed. However, computer 
hardware improvements are making faster processors available at lower prices, thus 
speeding up the solution time for the same algorithm. This trend in the processor 
speed as well as the trend to develop multiprocessor computers are raising expectations 
of being able to conduct such simulation in the on-line environment. To take full 
advantage of the multiprocessor architectures the present algorithms may not be the 
most efficient because they were particularly optimized for the uniprocessor environ- 
ment. Thus a need to reexamine the algorithms for parallelism arose as parallel 
computers became a reality. 

New parallel algorithms for power system dynamics are needed to take advantage 
of the new parallel architectures. This task is made difficult by the situation that 
multiprocessor architecture design is still fluid. In fact, it is possible to design archi- 
tectures to suit particular problem structures but such customized designs are usually 
not commercially viable alternatives. It is more likely that some generic architectures 
will evolve as the best alternatives and algorithms will have to be optimized for them. 

In this paper, we examine the structure of the power system dynamics problem 
and the best known sequential algorithm, which uses an explicit integration and a 

modified Newton solution. Several types of parallel algorithms, Gauss-Jacobi and 
relaxed Newton, are then applied to the problem. These algorithms are implemented 
on two diffet:ent types of multiprocessor machines that are commercially available 

today. Results on.a realistic power system problem show that a mildly relaxed version 
of the present Newton method provides the most speedup. 

It should be mentioned that the work presented here is not meant to be conclusive. 
Anyone with some experience in the application of algorithms to complex problems 
can verify that variations of these algorithms are almost infinite and some of them 
could prove to be more effective. Also, the variations in multiprocessor architectures 
and their compilers can have significant effect on the performance of a particular 
algorithm. In that respect this work has just scratched the surface of a very large 
area of investigation. We hope, however, that the combination of the theory and  
implementation in this paper will leave the reader with a clearer impression of the  
different levels of complexity of the problem, and also provide some insight on some 
methodology to investigate this problem. 

2. Problem formulation 

2.1 Model 

In an interconnected power system, the complete description of the system models 
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consists of a set of nonlinear differential equations: 

= f ( X ,  V), (t) 

and a set of algebraic equations: 

1 - Y ( X ) *  v = o, (2) 

where X are the generator variables that describe the dynamics of the system and V 
are the node voltages of the network. There are two basic integration approaches, 

the explicit and the implicit. The latter is preferred because it provides better stability 
and can avoid the difficulty of stiff problems. Hence, (1) can be discretized by the 
trapezoidal rule and rearranged as: 

Ro = X , -  X , _ ,  - (h /2 ) { f (X , ,  1f',)+ f ( X , _ ~ ,  V t_ ~)} = O, 

R N = I (X , ,  V,) - Y (X , )  V~ = O, 

(3) 

(4) 

where t = 1,2,..., T, denotes time steps, while h represents the step length. The 
structures of (3) and (4) can be seen more clearly in their linearized forms: 

where 

R a = _ B A X  = _ j  

RN Y+ Y~a A V  A V  

A~ = ORJOx,  B = aR~/c~V, 

C = OR,v/OX, J N = Y + Ytn = ORN/OV" 

O) 

(6) 

A more detailed Jacobian can be shown as: 

-AG1 I B1 - -  

Aoi I B~ 
J =  " " b (7) 

A~ i " 

C1 �9 Ci " C,, " J N =  Y +  Yld 

Ao~ is a square matrix with dimension q ranging from 2 for the classical model to 
20 for the detailed representation including exciter, governor, stabilizer and prime 
mover. Y is the network admittance matrix while Yza is a diagonal matrix obtained 
from the derivatives of nonlinear load currents with respect to nodal voltages. After 
Gaussian elimination we get: 

Rn = R N -  C A S t R o ,  (8) 

�9 I N = J N - C A ~ I B ,  (9) 

- 3 , , a v =  (lO) 

and then perform backward block substitution to obtain: 

AX = A~ l(Ra - BAV). (11) 

Many production grade programs for sequential computers iteratively solve these 
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equations using the very dishonest Newton (VDHN) method which does not update 
the Jacobian unless the system undergoes significant change or the iteration number 
exceeds a pro-determined threshold value. Thus, computation time is saved by not 
only keeping the Jacobian constant over the iterations at the same time step but also 
over many time steps. The slowdown in the convergence is more than compensated 
by this time saving. To avoid divergence, the iteration count is tracked and the 
Jacobian updated if this exceeds a threshold. Since this method is the fastest and the 
most numerically stable for sequential computers, the improvement achieved by any 
parallelization must be measured against this sequential method. 

2.2 Parallel algorithms 

To devise parallel algorithms for this problem the most obvious approach is to apply 
the Gauss-Jacobi (G-J) method to (3) and (4). This will decouple all the equations, 
that is, all variables X and V, within one time step (parallel-in-space) (LaScala et al 

1989): 

X~+I k =X,_~ +(h/2)Lf(X~ -1 , Vtk)+ f(X~_ z, Vt~ 1)3, (12) 

k k 
= Yoss v, + I (x , ,  (13 )  

This is also similar to the Picard iteration. Yo and Y~Lr are the diagonal and off- 
diagonal admittance matrix Y. During each iteration period, there is no data exchange 
until the end of the iteration where variables are updated. In addition, following the 
procedure for the waveform relaxation method (WRM), all the time-step solutions can 
be solved in parallel (parallel-in-time) (Ilic-Spong et al 1987). In practice, only a 
limited number of time steps can be solved simultaneously and this is referred to as 
a time window. Thus, all the equations for all the time steps in a time window can 
be solved in parallel. As is shown below, the convergence of this approach is very 
slow and, when compared to the sequential VDHN method, the improvements are 
not that significant. The main problem is that the G-J is m o r e  than 6 times slower 
than the VDHN on a single processor. When parallelized in time, this slowdown factor 
increases nearly linearly. 

An alternative approach is to examine the structure of the VDHN formulation, 
(8)-(11). The structure of the Jacobian in (7) shows that the equation for each generator 
is coupled to the others only through the network. Thus if the matrices B and C are 
relaxed the generators can be decoupled from the network as well as from each other 
(LaSeala et al 1990): 

AVtk+1 ~(o)-~ tvk k , Vt ~, Vzk z), (14) 
~ V N  * ' N  \"x  t ,  X t  - 1 

k k+ (15) AX~+I=A~-tZ(R~,+B, AVt 1). 

Note the Jacobian JN computed by (9) is not updated (hence the very dishonest 
Newton) unless the number of iterations exceeds a threshold value or the system 
undergoes a topological change. The execution of LDU factorization and 
forward/backward substitutions is sequential. In fact, the biggest block of equations 
then is that of the network (14) and the effectiveness of the parallelization depends 
on the solution of this block (Enns et al 1990; Lau et al 1990). This parallelization 
in space can also be augmented with parallelization in time by simultaneously solving 
the time steps in a window. As is shown below, this parallelization is quite effective 
in speeding up the solution despite the bottleneck of the large network solution. This 
method is referred to as the parallel VDHN method. 
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This raises the obvious question as to whether the VDHN equations can be relaxed 
further than that of (14)-(15). Two such relaxations are tried here to obtain further 
parallelization. The successive over-relaxed Newton (SOR-Newton) method uses only 
the diagonal part of the Jacobian instead of the full Jacobian, while the Maclaurin- 
Newton method (MNM) takes advantage of the truncated Maclaurin series to 

approximate the inverse of the Jacobian. 
To avoid the time-consuming computation of inverting the network Jacobian 

matrix, the one-step SOR-Newton algorithm uses an approximation for the whole 
Jacobian matrix containing only diagonal elements. The iterative equations can be 

stated as 

' k 

t3/'q(X~, V,~)/c3Sv., = ~c3qjq(X,, vtk), P = q, (16) 
�9 [ 0 ,  p ~ q .  

The (k + 1)th updated values of any variable in (X,, V,) are given by: 

S k ' '  = S k - Wq[J'q(X~, V k)/(?~J'q(X~, V k)], (17) 
q,! q,t 

where S represents the total elements of X and V, and Wq is the relaxation factor for 

the qth element of S. 
The parallel iterative MNM algorithm can be stated as: 

i ~ " j k -  L ^k 
av, k+' Jorl} o RN, (18) 

k - 1  " k  k k + l  Axk+I~w,~Aa, (Rot + B, AV ~ ), (19) 

where w~ and ~x are acceleration factors. ,Io is the diagonal matrix of the Jacobian 
and Jo//is the off-diagonal matrix which is the same as the off-diagonal matrix of 
the network admittance matrix Y. The multiplication of a matrix and a vector can 
be easily parallelized. A further improvement can be obtained if a secondary iteration 

technique is utilized. 
As is shown below, both these relaxed methods run approximately as fast as the 

VDHN, but are benefitted by large parallelism. The methods do not require any bus 
ordering to minimize the fill-ins, which reduce the programming complexity. Their 
drawbacks are the large number of iterations required for convergence relative to 

the regular Newton algorithm and their sensitivity to the severity of the faults and 
the locations. Further investigation into this type of algorithms is needed for future 
industrial applications. 

3. Implementation 

The success of any iterative algorithm for solving large problems depends largely on 
implementation techniques. This is even more so when implementing parallel algorithms 
on muitiprocessor computers. Implementation techniques are usually not amenable 
to theoretical analysis. The following implementation techniques and their variations 
have been tried by us and other researchers. Their advantages and limitations are 
discussed here in the light of our experience in utilizing these with various algorithms 
and architectures. 

3.1 Partitioning 

Partitioning a network or a group of generators into subgroups among processors 
is the common way to achieve parellelism. If the task scheduling is done by dividing 
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the total generators and buses evenly among processors, the overhead due to uneven 
computations can be considerable because the network buses have very different 
connectivity and the differential equations for each generator are very different both 
in size and complexity. The alternative way is to divide the load according to the 
total number of equations, but this increases programming difficulty and message 
exchange which in turn increases the overhead, thus lowering efficiency. The efficient 
method is to assign different numbers of generator blocks and buses to processors, 
taking into account the bus connectivity and complexity of the differential equations, 
so that each processor has roughly the same computational load. The penalty is the 
increased programming difficulty, especially for the general-purpose programs (Brasch 
et al 1978; Lee et al 1989). 

A more sophisticated partitioning scheme is the dynamic partitioning which divides 
the whole network into different sized regions according to their electrical distance 
from the perturbation, and groups the generators according to their coherency. 
Different model representations for various regions can be used with changeable step 
lengths. This localized response significantly improves the execution speed, but with 
the lower parallelism (due to inter-model switch) and the interpolation of the variables 
at different level groups (due to multiple time-step sizes) require considerable message 
exchange and some sequential executions. For limited parallelism this dynamic multi- 
level partitioning has the advantage. 

3.2 Windowin 9 

It is now well established that parallelizing in time (as in WRM) helps speed up the 
computation. However, the convergence is sequential, i.e. later steps converge later 
because results from the previous steps are required. This means that processors for 
the earlier steps idle after convergence and thus introduce inefficiencies. The 
compromise is to use a few steps in parallel at a time and once the steps in this 
window have converged, the next window of steps is initialized and processed. 
Obviously, there is an optimal window size, which was shown, in a typical imple- 
mentation, to be 8 time steps (step size = 0.02s) for a 662 bus system (Chai et al 1991) 

3.3 Asynchronization 

The asynchronization in parallel processing is generally considered a good means to 
reduce the massive communication overhead, especially for the relaxed iterative 
method. The asynchronous message passing and receiving in Gauss-Jacobi iterations 
can considerably increase the solution speed because little time is wasted in syn- 
chronization at the end of each iteration and the immediately available updates can 
be used. This method becomes a kind of quasi-Gauss-Seidel method. There are two 
bottlenecks associated with this asynchronization. The first is the difficulty ol the 
convergence control. Processors may exit even before the real convergence is reached 
since all processors may not receive the message in time and thus think that the 
increments are zero. Another possibility is that some processors receive the updates 
in time, which are close to the old values, but some other processors which should 
have received significantly different updates may not get the message, and thus come 
to the wrong conclusion that convergence was reached. 

The second bottleneck is the unpredictability of the solution speed and iteration 
number for the same case tested at different times. A tiny difference in computing 
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speed and execution sequence will change the order of message-passing and receiving, 
and thus affect the number of iterations required for convergence, which is particularly 
true in a multi-user environment. 

For fast convergent algorithms such as Newton-type methods, the reduction of 
residuals or increments after one iteration is usually near an order of magnitude. If 
the iteration is not synchronized, the variables, those that do not receive and those 
do receive messages in time, have a large difference. This incompatibility will cause 
serious convergence problems, and often a divergence will occur. The author and his 
colleagues have tested many cases with quadratic and quasi-quadratic convergence 
algorithms using asynchronization, and found that none of the cases have convergent 
results. The asynchronization approach may be unfortunately limited to the slow 
convergent parallel algorithms such as the Gauss-Jacobi. 

3.4 Multi-grid approach 

The multi-grid approach is usually used for waveform-relaxation type (or parallel in 
time) methods. A more general classification may include multi-rate network parti- 
tioning or space multi-grid methods. The multi-grid methods involve different models 
for coarse and fine grids. The coarse-grid solutions provide better estimates for the 
fine-grid initialization and thus the solution speed is improved. However, sometimes 
the multi-grid strategy may instead suffer in convergence because of the inter-grid 
Change of models and the interpolation introducing new errors which cause the 
slowdown. 

Again, due to the fast convergence of Newton-type algorithms, the multi-grid 
method has been ineffective in improving the execution speed. Different models and 
step sizes used in different grids and the inter-grid interpolation make the parallelization 
very difficult, especially when using parallelism both in space and in time. The advantage 
of multi-grid methods is more limited to the Gauss-type algorithms for the relatively 
simple models and non-serious stiff problems. 

3.5 Toroidal implementation 

The parallelism in space and in time with the windowing technique has been quite 
effective in speed-up improvement as compared with pure parallelism in space. Within 
the window, the processors which have completed the convergence for the initial time 
steps of a window may just sit idle or do redundant calculations while processors in 
later time steps are busy with computation. To reduce this processor idling, a travelling 
window technique or the toroida! method is introduced here. When one time step 
reaches convergence, that group of processors send a signal to the other processors 
that they are starting to simulate the next (t + window) time step, which is actually 
at the beginning of the new window. This new window is one time step forward, and 
hence the name 'travelling window'. All processors are busy until the last window of 
the study interval, where the cP units at different time steps exit in the order of their 
convergence and the last step cPU exits last. 

The main bottleneck in this toroidal implementation is its complicated inter-processor 
coordination. Many signals need to be passed to the processors both prior to and 
after the current time step, creating costly overhead. Generally, the toroidal method 
has about 5~o to 50~ improvement over the windowing technique, depending on 
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how much parallelism in space and in time is used, the cases simulated and also the  

types of the algorithms used. Detailed simulation results are given in later sections. 

4. R e s u l t s  

In this section, results of implementing the above methods using some of the imple- 
mentation techniques mentioned are shown. The tests are conducted on a 662 bus 

power system that represents a portion of the mid-western United States. Realistic 

models of the generators, exciters and loads are used to ensure that the algorithms 
are exercised on all the usual nonlinearities and time constants. These results were 

obtained on two different types of multiprocessing computers. One type was a 32 

processor iPSC hypercube machine that transfers data between processors by passing 

messages. The other type transfers data through a shared memory and was represented 
by an Alliant 8 processor computer and a Sequent 26 processor computer. 

To measure the effectiveness of a parallel algorithm, let G be defined as parallel 
speedup of a particular algorithm: 

G =  
run time of sequential algorithm on 1 cPu 

run time of parallel algorithm on N cPu 

This measure only shows the efficiency of the parallelization in terms of the a lgor i thm 
itself but not a comparison with the best sequential algorithm. Thus a more realistic 

measure is defined as the speedup of the parallel algorithm against the sequential 
VDHN method: 

sP = 
run time of serial VDm,r on 1 cPu 

run time of parallel algorithm on N CPU 

Table 1 clearly shows the difference between these two measures when examining 
the numerical results for the Gauss-Jacobi as implemented on a 32 node iPsc  

hypercube. The speedup G increases monotonically and even reaches as high as 25 

times with 2 processors computing parallel in space and 16 parallel in time. But th is  

measure G, although used by many researchers, can be misleading because the real  
speedup sP against the sequential VDHN can be seen to be quite modest. 

The reason for this discrepancy between G and sP can be seen in table 2. The G - J  

method is 6 times slower than the VDHN on one processor without parallelization in  

time and even more so as more time steps are solved in parallel. This is because t h e  

updating of trajectories propagates through time and larger time windows provide 
better parallelization efficiency at the cost of higher overall run time. 

Table 1. Speedups of parallel G-J algorithm using 
32 c? units. 

Window 

Gain 1 2 4 8 16 

G 5.43 7"52 15"57 21 .78  24.92 
sv 0.88 1-03 1-79 2:27 2-19 
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Table 2. Serial G-j on 1 node (iPsr study interval = 0-48s. Step 
size = 0.02s. US Midwestern 662 bus system. 

823 

Window 
(Step #) 1 2 4 8 16 

Run time (s) 1237.6 1457"2 1736-5 1916.3 2275"1 
Slowdown 6.2 7'3 8-7 9.6 11.4 

For the G-J method, the more meaningful measure sP increases as window sizes 
increase, but peaks at window equal to 8 time steps with speedup of 2.3. The disadvantage 
of the G-J  algorithm is clearly displayed even though it is 100% parallelizable. When 
large parallelism in space is used, the calculation time of the subtasks assigned to 
each cPu is much shortened and easily overwhelmed by the massive communication 
overhead. Any significant improvement in speed relies mainly on fast communication 
channels. 

The results obtained when using the parallel VDHN method is much better than 
the G-J.  As was said before, the bottleneck in this method is the size of the network 
calculations. For the 662-bus system, this sequential portion takes about 7% of the 
entire iteration time. Using Amdahl's (1967) rule the maximum" theoretical speedup 

is given by: 

= + Cfp/N) + fo,] < l/L, 

which, in this case, is 14.3 (1/7). The f~ represents the percentage of the execution 
time for the sequential portion, while fp is for parallelizable parts, and fob is overhead. 
The actual speedup gain G(G = sP for this algorithm) is always less and for this case, 
shown in table 3, it is only about 5.6 when implemented on a 32-node hypercube if 
only parallelism in space is used (Chai et al 1991). Any large increase in CPu numbers 
will have little improvement in this saturated speedup. With the parallelism in space 
and in time technique, the speedup G is enhanced to 8.79 times using 4 in space and 
8 in time. It is further improved by using the toroidal (travelling window) technique, 

as shown in table 3. The largest improvement in speedup is only around 3 (from 5-9 
for windowing to 8.9 for toroidal) with 2-in-space-and-16-in-time implementation. 
The difficult part still lies in the sequential solution of the linear network equation (10). 

The sequential execution speed of the SOR-Newton method is slightly slower than 
the VDHN method, and also has the disadvantage of being more sensitive to the severity 
and location of the faults. The method is parallel and thus speedup gain obtained 

on an Alliant shared memory machine is an impressive 7.41 times on 8 CPU units, 
as shown in table 4. The implementation results in an iPsc 32 node machine are much 

Table 3. Gain of parallel VOHN using windowing 
and toroidal methods on a 32-node hypercubr 

Window 

Method 1 2 4 8 16 

Windowing 5"6 6"8 8.2 8"8 5'9 
Toroidal 5'6 7.1 9.2 10.2 8.9 
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Table 4. Speedups of soa-Newton against vr~H,'q. 

cpu # 1 2 4 8 i6 32 

ipsc G 1 1.67 2.6 3.48 4.01 3-62 
sp 0.93 1.55 2.42 3.24 3.73 3-37 

Alliant G 1 1.99 3-91 7.41 N/A N/A 
sP 0.87 1.73 3.40 6.45 N/A N/A 

lower than expected. The reason is that the SOR-Newton requires many iterations to 

converge, but the execution time of each iteration is very short. The massive data 

exchanges at the end of each iteration consume more time than the calculation itself 

and cause a significant degradation in speedups. Without doubt, if the toroidal method  

were used in implementation, the parallel efficiency would improve. 
Although the SOR-Newton method is an improvement over the parallel VDHN, its 

major drawback, however, is not evident in the tabulated results. The severe relaxation 

of the Jaeobian elements significantly weakens the convergence of the method. 
Although convergence was obtained in these tests, often some tuning of the relaxation 
factors was needed to do so. Since such case dependent tuning cannot be done during 

production use, this is a severe disadvantage of this method. 

The Maclaurin_Newton method is very similar to the son-Newton in its charac- 
teristics. The speedup vs. the number of processors for MNM on three different 

multiprocessors is shown in figure 1. The results were obtained with parallelizing 
only the equations (i.e. in space). The gains obtained from the iPsc and symmetry 
machine are quite close when a small number of cP units are involved, while the 

gains from the Alliant are much lower. This is because the Alliant parallel compiler  
cannot "see" some part of the parallelizable code due to the sparsity coding technique, 

and hence "artificially" creates a sequential portion which drives down the efficiency. 

This invisibility from an unsophisticated software is a serious bottleneck in exploiting 
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Figure I. Specdups of MNM VS. CPU number on three machines. 
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large parallelism, espcially for the production grade programs. The gain of 11.8 out 

of 26 units on the symmetry is mainly attributed to enormous programming efforts 
by decoinposing the tasks manually. On using auto-parallel directives provided by the 
manufacturer, the gain is much lower. The speedups on the iPSC can reach 8.48 for 

parallelism in space, which is much higher than 5.6 for the VDHN as shown in table 
3, because the MNM is not only computationally intensive but also completely parallel. 
However, the gains do quickly get saturated when more than 8 units are used. The 
upperbound seems to be around an order of magnitude if parallel algorithms are 
implemented on a message-passing machine. 

The parallelism in time plus in space provides better efficiency in spite of a large 

number of iterations required. As an example, the choice of window sizes vs. speedup 
G for the MNM using 32 nodes of the iPsc, is plotted in figure 2. But the increase of 
G for the MNM method is not very significant, as compared with the speedups for 
the VDHN (Chaiet al 1991). The main reason is that the acceleration factors used in 
MNM cause a large swing in residuals when the current step process constantly receives 
new updates from the previous step. The slow adjustment of the residuals due to 
parallelism in time decreases the speedup gains. The curve of speedup G vs. window 
size is thus quite fiat. With the toroidal technique, some improvement is achieved at 
large window sizes, but because of this sensitivity of the residuals to the acceleration 
factors and updates from the previous step, the gains are not enhanced on a large scale. 

From the above results, it can be seen that the relaxed Newton methods are better 

than the Gauss-Jacobi, which is naturally parallel. However, the extent of the 
relaxation on the Newton algorithm does affect its convergence characteristics. Thus, 
the completely parallel SOR-Newton and the MNM, although faster than the parallel 

VDHN, are susceptible to divergence under n'iany more conditions. The parallel VDHN, 

however, appears to be quite robust while providing speedups of more than a 
magnitude over the sequential VDHN, 
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5. Conclusions 

The research in parallel computation for power system dynamics is relatively recent 
although the pressing need for on-line analysis has engendered a high level of interest. 
Most of the early work available is in the development of parallel algorithms them- 
selves without actual implementation tests. Since the architecture of the multiprocessor 
computer has a major effect on the success of the algorithm, the matching of the 
possible algorithms to available architectures becomes a daunting task. This is further 
aggravated by the fact that parallel-computer architectures are still evolving rapidly 
and it is difficult to predict what commercially available multiprocessors will look 
like in the future. There is also the possibility of developing specialized architectures 
to fit the algorithms but it is generally believed that this may not be a commercially 
viable approach. 

In this paper, an overview is presented from the.perspective of using multiprocessors 
that are at present commerically available. Message-passing hypercube and memory- 
sharing architectures are used to test the viability of parallel algorithms. Comparison 
is made with the fastest known sequential algorithm, the very dishonest Newton 
method (VDHN), which is used in most of the production grade programs. Three types 
of parallel algorithms are compared. The completely parallel Gauss-Jacobi method 
has too slow a convergence to take much advantage of the simultaneous computation. 
The simple decoupling of the generator equations in the VDHN method provides 
computational speedup of about an order of magnitude. Higher speedups can be 
obtained by further relaxing the Jacobian matrix of the VDHN method using the 
SOR-Newton or the Maclaurin-Newton, but only at the cost of making the 
convergence less robust. 

It is also shown that the parallelization of the equations can be augmented by 
parallelizing the computation at different time steps. Since the convergence is uni- 
directional in time, this parallelization in time does not pay if too many time steps 
are solved simultaneously. It appears that a time window of four to eight time steps 
gives the best results. Some indication of the suitability of architectures is also 
obtained. Hypercube type architectures can produce better results for some algorithms 
because the actual assignment of computation between the processors can be controlled 
more precisely, but only at the cost of more custom programming. Memory-sharing 
computers, on the other hand, are more flexible in handling different programs without 
much modification. This makes it the more commercially viable alternative, although 
much improvement on existing compilers is certainly needed. 

All the results mentioned in this paper were obtained by Dr Ning Zhu and Dr Jason 
Chai, who were my research associates. 
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The constants C~, C=, C3, C4 are determined by the initial conditions. The exponents 
).t and k2 are the eigenvalues of the Jacobian matrix 

b I 

and can be obtained by solving i J - kI[ = 0 (where a, b, c, d are the partial derivatives 

of f~ and f2 evaluated w.r.t, x and y at the equilibrium point). 

kl ,  = =�89 • D �89 

Yr(J) = a + d; A ---- discriminant = Tr(J) 2 - 4 det(J). 

Except for three critical cases: (i) de t ( j )=  0; (ii) Yr ( J )=  0; de t ( J )>  0; (iii) de t ( J )=  0; 

Tr(J) = 0; the integral curves of the nonlinear system have the same behaviour as 
those of linearized systems in the neighbourhood of the equilibrium. These results 
are summarized with the values of the trace and determinant of the corresponding 
Jacobian matrix as shown in the phase diagram (figure l). For linear systems in R 3 
Reyn (1964) made sound classification and arrangement of phase portraits. 

However, in the three critical cases mentioned before, the structure of orbits in the 
state space will change qualitatively. Such a qualitative change in called a bifurcation. 
This bifurcation may be due to variation of certain parameters in the system. The 
critical value of the parameter where the bifurcation occurs is the bifurcation value 
of the parameter. 

The paper is organised as follows: Section 2 describes the general principles involved 
in the study of bifurcation behaviour of an n dimensional dynamical system. Sections 
3, 4 and 5 discuss the recent advances in the numerical techniques that can be 
effectively used to identify various bifurcation points. 

I 
Tr(J) I . \ I / . ~  

I " ~ - ~ _  unstable 
I ~ node A>O 

. t ,r/~ ~ -  klk2=O~ A = 0 
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point .,~ 
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I ~ ~od~ ~>o 

I "---nonIinearit y governs 

t the stabi[ i ty Figure I. Phase diagram. 
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2. Bifurcation of dynamical systems 

Consider a dynamical model of a system described by autonomous differential 
equations of the vector form in n-dimensional space 

x' = F(x, 2), xeR"; ).~R k. (5) 

Here x denotes the state variables. For power system models these are: generator 
angles, generator angular velocities, load voltage magnitudes, or angles etc. ;t is a 
vector of time invariant scalar parameters. At an equilibrium point (x0,20) , the left 
hand term x' of equation becomes zero, i.e., the steady state solution of (5) satisfies 
the set of nonlinear algebraic equations F(xo, 20) = 0. If the eigenvalues of the Jacobian 
OF/Ox become non-zero, then according to implicit function theorem the equilibria 
of(5) can be expressed as the smooth function of x = x(2). The function x(2) is called 
the branch of equilibria. However if the Jacobian has an eigenvalue with zero real 
part occurring at some 2, say 2c, the system x' = F(xc, 2~) is structurally unstable and 
several branches of x = x(2) can come together at (x~,2,) in R "§ The parameter set 
;t~ where the system loses its stability is called a bifurcation set. The point (xr 2r is 
called bifurcation point. (In general, in engineering systems a one-parameter family 
with k - 1  relations between the parameters /.t1,#2,#3 . . . .  can be represented as a 
curve, 2, in the k-dimensional parameter space.) Thus the principle of linear stability 
differentiates between two categories of equilibrium solutions. For the hyperbolic 
fixed points (.where the eigenvalues have non-zero real parts), linear stability analysis 
suffices completely. For nonhyperbolic fixed points (the points where at least one 
eigenvalue has zero real part), a linear stability analysis is not applicable and a full 
nonlinear analysis has to be carried out. There are techniques available to simplify, 
without any significant loss of information, the representation of the flow in the non- 
linear dynamical systems in the neighbourhood of nonhyperbolic points. One of these 
techniques is the centre manifold theory. This theory closes the gap left by Har tman-  
Grobman theorem (HGT). According to HGT, if the Jacobian OF/Sx has no eigenvalues 
with zero real part, then the family of trajectories near an equilibrium point (Xo, 20) 
of a nonlinear system x' = F(x, ;t), and those of the locally linearized system have the 
same topological structure, which means that in the neighbourhood of (x0, ;to) there 
exist homeomorphic mappings which map trajectories of the nonlinear system into 
trajectories of the linear system. Should, however, an eigenvalue with a zero real part 
exist, the open question arises how this effects the flow in the neighbourhood of the 
equilibrium point. It is this gap left open by HGT that is dosed by the centre manifold 
theory. 

2.1 Centre manifold 

(Carr 1981) Let (Xo,2o) be the equilibrium point of F(x,2), and E s, E" and E c the 
corresponding generali~.ed eigenspaces of the Jacobian matrix OF/OxlXo, where the 
real part of the eigenvalues (#) defines the eigenspaces, 

Re(#) 0 - E ~ 

0 - E" 

Then there exist stable W', unstable W" and centre manifold W c, which are tangential 

to E s, E ~, E c respectively at (xo, 20). If one is interested in the long term behaviour 
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(i.e., t--, oo) the overall dynamics in the neighbourhood of an equilibrium point are 
reproduced by the flow on the centre manifold W c. This reduction of the dynamics 
to those in the W ~ subspace is the subject of centre manifold theory. In order to 
calculate the flow of the reduced dynamics on W e, the nonlinear vector field can be 
transformed to the following form. We can assume that unstable manifold W u is 
empty, This makes the presentation simple, without loss of generality. 

x' = Acxc + f(x , xs); xcER (6) 

x' = Asx ~ + g(x~, xs); x,  e R ' .  (7) 

The matrix A,(n:, n,) contains nc eigenvalues with zero real parts. A, matrix (n,, n,) 
contains n, eigenvalues with negative real parts. The nonlinear functions f and g 
should be continuously differentiable at least twice and vanish together with their first 
derivatives at the equilibrium point, x~ correspond to centre manifold and are some- 
times called active variables, x, correspond to stable manifold and are called passive 
variables. Due to nonlinear couplings the influence of x, in the equation for x, cannot 
be ignored. Hence the correct way of analysis is to compute the centre manifold. 

Xs = (8) 

by expressing the dependence of x~ on x, from (7) and then to eliminate from (6) to 
obtain the bifurcation equation 

x', = A x, + f(xo, h(xo)). (9) 

Then the equivalence theorem (Guckenheimer & Holmes 1983) states that for l --, co, 
the dynamics of(9) in the neighbourhood of the equilibrium point is equivalent to the 
dynamics of the initial system x' = F(x, 2) with 2 fixed at the value 2 c. In order to 
solve (9), one has to know the function h(x~). This can be obtained as follows 

dxf fdt  = dh(xc)/dt = Oh/Ox c x dx,/dt;, (10) 

from (6) and (7), (10) can be written as 

A,h(xc) + 9(xc, h(xc) ) = (cgh/axc) [ A~x ~ + f (xr h(xc))] 
o r  

(ah/Oxc) [Ar162 +.f(x~, h(x,))] - A~h(xc) - •(x,, h(xr = O. (11) 

The functions h and (ah/Ox,) are zero at the equilibrium point. Equation (1 i) is in 
general a partial differential equation which cannot be solved exactly in most cases. 
But its solution can sometimes be approximated by a series expansion near the 
equilibrium point. The aforementioned reduction technique of the centre manifold 
theory, which is dearly shaped by a geometrical ititerpretation of dynamics in the 
phase space, has its physical counterpart in the slaving principle associated with the 
synergetic approach founded by the physicist Herman Haken in the early seventies 
(Haken 1983). n also divides the dynamics into stability groups on the basis of a 
linear stability analysis in accordance with the classification of the eigenvalues. 

In summary, if x is nonhyperbolic then there exist invariant centre manifolds 
tangential to the centre subspace and its dimension is equal to the number of 
eigenvalues of the Jacobian matrix having zero real parts. Then the practically 
interesting local stability behaviour is completely governed by the flow on the centre 
manifold. 
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Effect of small perturbations of the critical parameters around the bifurcation point 
can also be studied by unfolding the centre manifold. This can be achieved via the 
method of normal forms (Arnold 1972, 1983; Bruno 1989; Wiggins 1990). Normal 
forms play an essential role in bifurcation theory because they provide the simplest 
system of equations that describe the dynamics of the original system close to the 
bifurcation points. Even away from the bifurcation point Poincare's theory of normal 
forms reduces the initial nonlinear equations into the simplest possible forms without 
distorting the dynamic behaviour in the neighbourhood of fixed points or periodic 
solutions. The transformations, which yield to a reduction to normal forms, can be 
generated by developing the deviations from a state of equilibrium or from periodic 
motion into power series. Symbolic manipulation packages like MACSYMA, and 
MAPLE, are helpful in the development of normal forms. Application of normal form 
theory to power system examples is given by Vittal et al (1992, pp. 2553-56) and 
examples of the application of centre-manifold theory to power systems are given by 
Rajgopalan et al (1989), Chiang et al (1989) and Ajjarapu & Lee (1992). 

The number of possible types of bifurcation increases rapidly with increasing 
dimension of the parameter space. The bifurcations are organised hierarchically with 
increasing co-dimension, where co-dimension is the lowest dimension of a parameter 
space which is necessary to observe a given bifurcation phenomenon. In this paper 
we discuss only the dynamical system with a single parameter variation. Changing 
this parameter may drive the system into a critical state at which (i) a real eigenvalue 
becomes zero or (ii) a pair of complex conjugate eigenvalues becomes imaginary. In 
case (i) new branches of stationary solutions usually arise and are called static 
bifurcations. (Typical static bifurcations are (i) saddle node or fold, (ii) trans-critical, 
and (iii) pitchfork.) Case (ii) may lead to the birth of a branch of periodic solutions 
called dynamic bifurcations. Typical dynamical bifurcation is Hopf. 

In many practical engineering problems, identification of these bifurcations is 
important, For example, buckling load of elastic structures (Riks 1979) and steady 
state voltage collapse in power systems (Chiang et al 1989; Ajjarapu & Lee 1991) is 
related to saddle-node bifurcations. Hopf bifurcation and bifurcation of periodic 
solutions are observed in chemical engineering (Halvacek 1986), mechanical 
engineering (Moon 1987; Thomson & Stewart 1986) and electrical engineering 
(Holmes 1980) to name a few. The next section concentrates on the numerical 
identification of these bifurcations. 

3. Detection of bifurcation points 

3.1 Static bifurcations 

3.1a Fold bifurcation: In mathematical literature these are sometimes called turning 
points. To calculate these turning points several methods have been suggested. These 
methods based their analysis basically on two approaches. 

�9 Direct methods, 
�9 Indirect methods. 

In direct methods, the original system of equations is suitably augmented by an extra 
set of equations in such a way that the turning point becomes the solution of this 
system. Indirect methods start around the neighbourhood of a turning point and 
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several different solutions of F(x, 2) = 0 are calculated by continuation. At the same 
time a certain test function is monitored along the solution path which gives informa- 
tion about  the  turning point. Both these approaches are described in the foUowing 
sections. 

(i) Direct methods - In many physical problems it is necessary to solve a system of 
nonlinear equations of the form, F(x, ,~.)= 0. If 2 is varied, the corresponding state 
vector x changes. As mentioned before, as long as F~ is nonsingular equilibrium point 
x can be obtained for a given value of the parameter 2. However, sometimes we are 

interested in the maximum allowable variation of 2. Unfortunately, in most of the 
physical problems the Jacobian F~, becomes singular, when the parameter approaches 
its maximum value. When F~, becomes singular, F (x ,2 )=  0 cannot be solved by 

ordinary Newton -Raphson  method. To avoid this singularity several methods have 
been published e.g. Abbot (1978), Seydel (1979), Moore & Spence (1980). They cleverly 
augmented the original system of equations in such a way that for this enlarged 

system, the turning point becomes regular. For example, if 

Y [  = [x,, 2o h] solves 

(- v(x,a) J G(Y)=| h -I =0. 
LFx(x,~.)h 

Then (xc, 2,) is a turning point of F(x,, ;t) = 0. This procedure basically augments the 

original equations of F ( x , 2 ) =  0 by F~(x,).)h = 0, with hk = 1. This augmentation 
makes the Jacobian Gx of enlarged system G(Y) non-singular and guarantees a 
solution. The proof can be found in Seydel (1979). This approach has some drawbacks. 
The dimension of the nonlinear set of equations to be solved is twice that of the 
original number.  The approach requires a good estimate for the vector h. However, 
convergence of the direct method is very fast if the initial operating point is close to 
the turning point. The enlarged system can be solved in such a way that it requires the 

Table 1. Static bifurcation types. 

Bifurcation type Transversality condition Prototype equation Bifurcation diagram 

~F 02F 
Fold 0--~ # 0; ?,x2 ~- 0 2 - x 2 = 0 

a~F a2F �9 
Transcritical - -  # O; - -  ~ 0 ).x - x 2 = 0 

~;,.ax Ox 2 

32F 32F 
Pitch fork ~ :/: 0; ~ x  3 ~ 0 ,Ix - x 3 = 0 

02 0x 

x f  

. . . . . . .  unstable mode; stable mode 
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solution of n x n (n is the dimension of the Jacobian Fx(x, 2)) linear systems, each 
with the same matrix. This method needs only one LU decomposition. At this turning 
point, rank Fx(xc, 2~)= n -  1 and Fz(xc, 2c)erange Fx(x,, ~-~), that is rank F~,(x,, ,~-c)/ 

Fa (xc~ 2c)= n. These are called transversality conditions. Depending on the type of 
transversality condition, different types of static bifurcations can occur. Fold or saddle 
node is generic or the most commonly occurring static bifurcation. Table 1 summarizes 
the type of static bifurcation and corresponding transversality condition for a 
one-dimensional scalar system. Details can be found in Wiggins" (1990) book. The 
application of this method to pQwer system voltage stability is reported by Ajjarapu 

(1991) and Alvarado & lung (1989). 

(ii) Indirect methods- In this section we consider as before the calculation of a 

solution branch of the problem 

F(x, 2) = 0. (11) 

System (10) consists of n scalar equations defining a curve in (n + 1) dimensional (x, 2) 
space. Continuation means tracing this curve. If F ~ = F~,(x o, 2 o) is non-singular then 
we can solve (10) for 2 = 20 by Newton's method to obtain Xo, and the iterations 
will converge quadratically with a good-enough initial guess. Further, the non- 
singularity of F~ at 20 guarantees, by the implicit function theorem, that for 2 in a 

neighbourhood of 2o there is a unique local branch of solutions x(2) with X(2o) = xo. 
Thus given the solution xo at 20 we can compute the solution xl at 21 by taking 
total derivative of (10) as follows: 

(OF/Ox) x (dx/d2) + (aF/a2) = 0, (12) 

(dx/d2) = - (OF/Ox)- l(aF/c~x), (13) 

by integrating this system, starting from the initial value (xo,2o), one obtains the 
branch parametrized by 2. This procedure, as it was proposed in Davidenko (1953), 
fails at turning points because one encounters a singularity of F~. However an 
important special case resulting from (12) is the tangent to the branch. If we abbreviate 
this tangent with the symbol t. Then 

ti=dxt(l~<i~<n), tt+ 1=d2.  

Equation (12) represents n equations, whereas the tangent vector t contains (n + 1) 
unknowns. A normalization has to be imposed to give t a non-zero length. One can 
write for example 

e L T t  - -  - -  t k = 1 ,  

where eL is the kth unit vector of the (n + 1) dimensional space. With this the tangent 
t can be obtained as the solution of the linear system 

ek 

It can be shown (Rheinboldt & Burkhardt 1983; Rheinboldt 1986) that the Jacobian 
of the resulting (n + 1) by (n + 1) system of (14) is non-singular. This tangent vector 
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r k + l  qk+l) t can be used to predict the next solution ~xp , % for a given initial solution 
(x ~+ t,2k+l) as 

(xk+ 1,2,k+ i) = (x k, 2k) + o.t a, p "p 

where tr is an appropriate step length. This tangent predictor can be considered as 
an Euler step for solving a differential equation that describes the branch. This 

predicted solution is utilized to correct the solution to satisfy F(x ~'+ 1, 2t+ 1)= 0. This 
process is explained in the next section with a power system example. 

3.2 Application to power system example 

If F is used to denote the whole set of steady state power flow equations, then to 
solve the problem, the.continuation algorithm starts from a known solution and uses 
a predictor-corrector scheme to find subsequent solutions at different load levels. 
Here 

x = [6, 

6 = load voltage angles, 
v--load voltage magnitudes, 
2 = load parameter. 

3.2a Predictor. Once a base solution has been found (2 = 0) a predictor of the next 

solution can be made by taking appropriately sized steps in a direction tangential 
to the solution path. If t = [drdvd2] r is used to denote the tangent vector, then 

(is) 

Once the tangent vector has been found by solving (15), the prediction can be made 
as follows 

V* " -  + O" dV , 

d,~ 

where "*" denotes the predicted solution for a subsequent value of 2 (loading) and 
o- is a scalar that designates the step size. 

3.2b Pararaetrization and the corrector. Now that a prediction has been made, a 
method of correcting the approximate solution is needed. Actually, the best way to 

present this corrector is to expand on the parametrization, which is vital to the 
process. Each continuation technique has a particular method of identifying each 
solution along the path being traced. But the local parametrization proposed by 
Rheinboldt & Burkhardt (1983) looks promising. In local parametrization the local 
original-set of equations is augmented by one equation that specifies the value of the 
parameter or the value of one of the state variables. In the case of the power system 
example this means specifying either a bus voltage magnitude, a bus voltage angle, 
or the load parameter 2. Since the ,~ is also included as a state variable, the new set 
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oT " . .  dictor ~'a' "~correctorx 

~1 crit'lC c1[ point-~. �9 

= Figure 2. An illustration of the predic tor -cor rec tor  
load scheme used in the continuation power flow. 

of equations would be 

I F(x) ] =  [0]. (16) 
x k -  r/_j 

Selection of the continuation parameter corresponds to the state variable that has 
the largest tangent vector component. More simply put, this corresponds to the state 
variable that has the greatest rate of change near a given solution. Therefore x k at 
a particular step is the maximum of ([tll, Jt2l, Jtal, lt41""ltml). Now, once a suitable 
index k and value of r/are chosen, a slightly modified Newton-Raphson iterative 
process can be used to solve the above set of equations (16). The general form of the 
iterative corrector process at the jth step is 

L ek _1 

The corrector Jacobian can be seen to have the same form as the predicted Jacobian. 
Actually the index k used in the corrector is the same as that used in the predictor 
and r/will be equal to x*, the predicted value of x~. In the predictor it is made to 
have a non-zero differential change (dxk = tk = + 1) and in the corrector its value is 
specified so that the values of other state variables can be found. Figure 2 demonstrates 
the predictor-corrector process used in the continuation power flow. This 
methodology to investigate steady state voltage collapse is reported in Ajjarapu & 
Christy (1992). 

4. Hopf bifurcation 

4.1 Existence of Hopf bifurcation point 

(Marsden & McCracken 1976; Hassard et al 1981.) If (i) F(xc, 2c) = 0, (ii) the Jacobian 
matrix (dF/Ox) has a simple pair of purely imaginary eigenvalues, p(2c)= ++_jw, 
(iii) d(Re~(2c)))/d2 SO. 

Then there is a birth or death of limit cycles at (xc, 2~) depending on the sign of 
the derivative in (iii). 2c is the value of the parameter at which Hopf bifurcation 
occurs. Requirement (iii)guarantees there is a transversal crossing of the imaginary 
axis by the pair of complex conjugate eigenvalues. Numerical determination of the 
Hopf bifurcation point involves determination of the point (x,, 2,). A costly way of 
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identifying the point is to evaluate all the eigenvalues of the Jacobian matrix. However, 
as in the static approach there are efficient ways of identifying the Hopf point by 
direct methods as well as by indirect methods. 

4.1a Direct methods: Direct methods (Kubicek & Marek 1983) calculate the Hopf 
point by solving one single suitably chosen equation. At the Hopf point, one pair of 
complex eigenvalues crosses the imaginary axis. Let this pair be 

with 
#(1) = + 

 (io) = o; 0; (da/d2) 2 c # 0. 

For an eigenvalue # of the Jacobian matrix F~,[= (OF/dx)], the following equation 
is valid 

F~: W =/.zW, (13) 

where W = u +jr is an eigenvector corresponding to the eigenvalue ~. Since ~(Xc) = 0, 
(13) can be written as 

F,(u +jr) = ( + /#)(u +jr), 

FxU + jFxv = - fly + jflu, 

Fxu +/~v = 0, 

F~,v-~u =0, 

(14) 

( i s )  

where u and v are vectors of dimension n. We have in fact 3n nonlinear algebraic 

equations (14), (15) and F(x, 2) = 0 with 3n + 2 unknowns (xl, x2 .. . .  x,, u l, u2,.., u,, or, 
vz,.., v,,2,/~). However the other two unknowns can be obtained by putting two 
normalizing conditions that force W to be non-zero. This means that practically we 
can choose two components of the vectors u and v arbitrarily. The Newton iterations 
method can be effectively used to solve this 3n by the 3n system to get the Hopf 
point. An efficient algorithm based on the direct approach is provided by Giewank 
& Reddien (1983). The application of the boundary value problem for direct computa- 
tion of the Hopf points was proposed by Seydel (1981). 

4.1b Indirect methods: The Hopf bifurcation point (xc, 2c) can also be located by 
an indirect approach. This can be achieved by obtaining the information collected 
during any continuation method described before, i.e. an iteration technique is used 
to solve the algebraic equation Re(~(2)) = 0 by means of the secant method. A change 
of sign of the real part ~(2) indicates that 2c has been passed. Therefore the check, 

< o, 

should be performed after each continuation step 2~_ t ~ )-j. 

A good comparison of various methods of computing Hopf bifurcating points is 
given by Roose (1985). Application of Hopf bifurcation to power system problems 
can be found in Rajgopalan et al (1989, 1991), Abed & Varaiya (1984) and Ajjarapu & 
Lee (1992). 
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5. Complex bifurcation 

Further variation of the parameter beyond the Hopf point may lead to other complex 
phenomena; basically one has to trace the monodromy matrix of a periodic orbit 
for different values of the parameter. The stability of periodic solution is determined 
by Floquet multipliers which are the eigenvalues of the monodromy matrix. For a 
particular value of 2, the monodromy matrix has n-Floquet multipliers. The magnitude 
of one of them is always equal to unity. The other n - 1 Floquet multipliers determine 
(local) stability by the following rule (Arnold 1983; Seydel 1988). 

x(t) is stable if [.ujI < 1, for j =  1 , . . . n -  1, 

x(t) is unstable if l~ull > 1, for some j. 

On the stable periodic orbit, the n -  1 multipliers are always inside the unit circle. 
The multipliers are the functions of the parameter under consideration. When we 
vary the parameter, some of the multipliers may cross the unit circle. The multiplier 
crossing the unit circle is called the critical multiplier. Different types of branching 
occur depending on where a critical multiplier or pair of complex conjugate multipliers 
leave the unit circle. Three associated types of branching are (i) the critical multiplier 
goes outside the unit circle along the positive real axis, with I#(Po)I = 1, (ii) the 
multiplier goes outside the unit circle along the negative real axis with I#(Pc)l = - 1 

and (iii) a pair of complex conjugate multipliers crosses the unit circle with a non-zero 
imaginary part. All these types refer to a loss of stability when 2 passes through 2~. 
(On the other hand, if a critical multiplier enters the unit circle, the system gains 
stability.) In the case (i) typically, turning points of the periodic orbit occur with a 
gain or loss of stability. Transcritical or pitchfork type bifurcations in periodic orbits 
are also possible for this case. In the case (ii), the system oscillates with period two. 
In the case (iii), the phenomenon of bifurcation into a torus occurs, which is also 
called secondary Hopf bifurcation, or generalized Hopf bifurcation. The period 
doubling bifurcation often occurs repeatedly which generally leads to chaos. Lyapunov 
exponents are generally used to identify the chaos (Hao Bai Lin 1990). This exponential 
serves as a measure for exponential divergence or contraction of nearby trajectories. 
Chaos is characterized by at least one positive Lyapunov exponent, which reflects 
a stretching into one or more directions. In general, chaos has the following ingredients 
(Hao Bai Lin 1990): (i) the underlying dynamics is deterministic; (ii) no external noise 
has been introduced; (iii) seemingly erratic behaviour of individual trajectories depends 
sensitively on small changes of initial conditions; (iv) in contrast to a single trajectory, 
some global characteristics are obtained by averaging over many trajectories or over 
a long time (e.g., a positive Lyapunov exponent) that do not depend on initial 
conditions; (v) when a parameter is tuned, the erratic state is reached via a sequence 
of events, including the appearance of one or more subharmonics. In the last few 
years, a great number of conferences and workshops devoted to chaotic dynamics 
have been organized. In most of them, papers by researchers from various branches 
of science and engineering have been presented. Research in chaos is well documented 
by Hao Bai Lin (1990). Numerical methods to identify chaos can be found in Parker 
& Chua (1989). Observations of chaos in power systems are reported in Chiang et al 

(1992), Ajjarapu & Lee (1992) and Nayfeh et al (1990). Figure 3 gives the overall 
possible bifurcation scenario. 
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6. Conclusions 

The founding father of the bifurcation theory was the outstanding French mathmatician, 
Henri Poincare. Poincare sketched a general bifurcation theory and qualitative 
dynamics. He was the first p~rson to realize that simple deterministic systems can be 
unpredictable. Since that time, this theory has undergone tremendous development 
with infusion of new ideas and methods from dynamical system theory, singularity 
theory, group theory, and computer-assisted study of dynamics. If one varies the 
parameters of a dynamical system, the phase portrait of that system may deform 
slightly without altering its qualitative features, or sometimes the dynamics may be 
modified significantly, producing a qualitative change in the phase portrait. 
Bifurcation theory studies these qualitative changes in the phase portrait, e.g., the 
appearance, or disappearance of equilibria, periodic orbits, or more complicated 
features such as strange attractors. The methods and results of bifurcation theory 
are fundamental to an understanding of nonlinear dynamical systems, and the theory 
can be potentially applied to any area of nonlinear engineering systems. In power 
systems this theory received considerable attention especially with respect to 
understanding voltage collapse phenomena. Intensive research activity is going on 
with respect to theoretical as well as numerical aspects of bifurcation theory. The 
developments of this very interesting field will be helpful to natural scientists and 
engineers in their studies of nonlinear systems of both theoretical and practical interest. 
In this paper no attempt has been made to give a complete list of all the available 
references on the application of nonlinear dynamical system theory to engineering 
problems. 
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