
International Journal of Integrated Engineering, Vol. 10 No. 1 (2018) p. 74-84
© Penerbit UTHM
DOI: https://doi.org/10.30880/ijie.2018.10.01.012

*Corresponding author: jms@usm.my
2018 UTHM Publisher. All right reserved.

penerbit.uthm.edu.my/ojs/index.php/ijie

74

Parallel Processing of Image Segmentation Data Using Hadoop

M. Nishat Akhtar1, Junita Mohamad Saleh2*, C. Grelck3

1School of Aerospace Engineering

Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
2*School of Electrical and Electronics Enginnering

Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
3Informatics Institute, University of Amsterdam,

 Science Park 904, Amsterdam, The Netherlands

Received 30 November 2017; Accepted 19 February 2018, Available online 30 April 2018

1. Introduction

In order to process terabytes and petabytes of data, the

Map-reduce framework proposed by Google is a viable

model. Moreover, Map-reduce framework is now a key

feature of Hadoop which is an open source software

framework for writing applications using parallel

programming technique [1]. Map-reduce have become

highly popular over a wide range of applications for

intense data analysis. The performance of Map-reduce

depends upon many factors i.e. network configuration of

the cluster (which determines whether it is single node or

multi-node cluster), controllable parameter in the Hadoop

framework (setting the split size of number of mapping and

reducing for task distribution). It is considered to be very

essential to tune the Hadoop framework so as to achieve

maximum performance. Besides this, performance also

depends upon the system/machine/nodes configuration

i.e., multi-core CPU with high frequency will definitely

give a better performance than single-core CPU with lower

frequency.

Nowadays, high scale image analysis done using

distributed and parallel computing is widely being

recognized across the industrial and research field. This

type of image analysis is also used for video data, which

continuously generates sequential images and related data

which includes associated time and frame information.

Since video cameras are also used in surveillance

application which leads to the generation of huge image

datasets. Therefore there arises a great need to come up

with a solution which can analyze these huge image data

files in parallel. Moreover, in order to process multiple

image files, sequential programming could become time

consuming when the size of the dataset expands. Hadoop

Image Processing Interface (HIPI) is considered to be an

essential API for analyzing bundle of images in parallel

[2]. The advantages of distributed and parallel processing

of large image database using HIPI API of Hadoop

framework should be taken into consideration.

Furthermore, if the computational resources can be

acquired easily and cheaply, then HIPI is most suitable for

handling large image database in an economic manner.

The foremost contribution of this manuscript is to

implement parallel image segmentation using Map-reduce

technique with HIPI to analyze the threshold of the data

size at which the proposed parallel image segmentation

Abstract: The use of sequential programming is slowly getting replaced by distributed and parallel computing which

is widely being used in computing industries to handle tasks with big data and various high-end computing

applications comprising of huge image and video data banks. Moreover, image processing using parallel computation

is also gaining momentum in today's technological era. Nowadays researchers are coming up with various

methodologies to tackle high scale image processing applications by implementing parallel computing

methodologies to carry out the specified image processing application task and simultaneously checking its

performance against sequential programming. At the same time there are constraints on what can be done to

maximize the task performance using high end multi-core CPU's with advanced buses and interconnects that offer

high bandwidth with low system latency. It is to be noted that there is no availability of standardized image processing

task which can be used to evaluate a single node system. In this paper, we propose an efficient parallel processing

algorithm to perform the task of image segmentation with the foremost aim to analyze the threshold of data size at

which the proposed method outperforms sequential programming method in terms of task execution time by

analyzing the distribution of average CPU cores usage and its threads over the execution time. The proposed

methodology could be useful for researchers, as it can perform multiple image segmentation in parallel, which can

save a lot of time of the user. For the purpose of comparison, we also implemented the same image segmentation

task using sequential method of programming in an integrated development environment platform.

Keywords: Parallel computation, Image segmentation, Hadoop, HIPI, Map-reduce, Input split

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 75

method outperforms the same image segmentation task

performed using sequential programming. For our

proposed experiment, we are not dealing with any

benchmark performance evaluation by taking multiple

nodes to process terabytes and petabytes of data. Instead

we are emphasizing on single node to analyze its optimum

performance.

The second task is to illustrate the performance of the

proposed parallel image segmentation method in terms of

task mapping and task reducing for job/task completion.

 The rest of the paper is organized as follows; Section 2

gives a brief overview of related works done by researchers

in the field. Section 3 gives the methodology of how

parallel image segmentation is implemented with Hadoop

Map-reduce algorithm. Finally, section 4 and section 5

present the results and conclusion, respectively.

2. Related Works

Over the years multiple image segmentation algorithms

have been used to analyze images. Nowadays a wide range

of algorithms is being used to carry out the process of

image segmentation as texture is an essential feature which

reflects important information about an image surface. The

aim of image segmentation is to cluster the entire pixels

into specified salient image regions, i.e. regions

corresponding to individual objects, surfaces or natural

part of objects. It is an essential process of object

recognition, image compression, image database lookup

and occlusion boundary estimation within stereo or motion

system.

Researchers these days are dealing with the problem of

over segmentation of images which ultimately leads to

inaccurate results and therefore leaves a room for

enhancing this problem [3]. The basic image properties

dealt with image segmentation are its dissimilarity and

similarity. Sharp changes in the intensity of image causes

dissimilarity whereas similarity corresponds to the process

of combining and matching the pixels with the neighboring

one based on its gray level pixel value match. Some of the

widely recognized techniques to implement image

segmentation are; Otsu's threshold method for automated

image segmentation [4], region growing and region

merging technique [5], edge detection method [6],

watershed transformation [7] and histogram thresholding

based algorithms [8]. Amongst all the techniques Otsu's

method is a widely renowned method to carry out the

process of image segmentation. Since it is an automated

process, therefore it is easier to be applied on bulk image

data simultaneously. Since we are dealing with multiple

image datasets, therefore it is appropriate to use Open

Source Computer Vision (OpenCV) library and it is also to

be noted that Otsu's threshold technique has high degree of

compatibility with OpenCV. Furthermore, OpenCV has

the capability to exploit high degree of parallelism due to

its available rich set of libraries. These scenarios make the

condition more favorable for parallel image processing in

an efficient manner.

 For parallel image processing platform, HIPI is an

extensive Application Program Interface (API) which is

only compatible with Hadoop Map-Reduce framework [2].

HIPI has full potential to accommodate high throughput

image processing using Hadoop Map-Reduce algorithm

which can be implemented on a cluster of nodes. Hadoop

has its own file system for data storage which is called

Hadoop Distributed File System (HDFS) and HIPI

facilitates the solution to store big image data on HDFS for

efficient data processing. Moreover, HIPI provides

integration with OpenCV, which is the most popular open-

source library to carryout high end image processing tasks

[2].

Processing big image datasets using Principal Component

Analysis (PCA) was also very much known in terms of

classical method for which Cadima and Jolliffe [9] came

up with an efficient method to interpret big datasets using

PCA by reducing the dimensionality of the image datasets

and at the same time increasing its interpreting ability.

However, the disadvantage of PCA is that even the

simplest invariance is unable to be captured by this process

unless the information is provided explicitly by the training

data [10]. Moreover, any covariance matrix is also difficult

to be evaluated in a precise manner [10]. If suppose the

intensity level of an image falls evenly outside the range of

levels in the background region , then threshold techniques

is highly compatible to be applied as it analyses the image

on the basis of the local pixel information. If a principal

component analysis is done on any image, then

segmentation process is the foremost step which needs to

be applied. In order to carry out the process of image

segmentation, the images are split into multiple blocks i.e.

each pixel can be represented by a block which contains its

neighboring pixel. This is due to the fact that most of the

points in any high intensity image are spatially coherent

with their neighboring pixel point. PCA is used to analyze

the variation of patterns in any image. It expresses the

pattern data in such a way that it highlights their

similarities and differences. As discussed in the above

paragraph, that in order to apply PCA, image data are to be

divided into blocks so as to analyze the image. The

foremost focus of the researchers in this field these days

are that how to process this image data blocks in parallel.

This study would in turn give a new paradigm of

benchmark study in the area of cloud computing and big

data.

 In order to evaluate Map-Reduce systems, Sangroya et al.

[11] developed a MRBS benchmark. MRBS in turn

provides five sub-bench marks to analyze several

application domains and a broad range of execution

conditions [11]. For the purpose of parallel image

processing, Slabaugh et al. [12] used Open Multi-

Processing (OpenMP) technique to apply image

transformation, image morphology and median filtering.

Using OpenMP technique, multiple thread(s) of CPU cores

were brought to use to increase the level of parallelism.

From their conducted experiment, image processing

(image transformation, image morphology and median

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 76

filtering) performed using OpenMP multi threaded

technique emphatically outperformed image processing

performed using single threaded technique. According to

the research of Kang et al. [13] on performance

comparison of OpenMP, Message passing Interface (MPI)

and Map-Reduce programming for computing all-pairs-

shortest-path problem, OpenMP gave the best results

followed by MPI and Map-Reduce. As per their research,

OpenMP is considered to be the de facto standard model

for shared memory systems, MPI is the de facto model for

distributed processing system and Map-Reduce is the de

facto standard framework for high end data processing.

The disadvantage of OpenMP is that it only runs in shared

memory computers and requires a compiler that supports

OpenMP. However, MPI can be implemented on both

shared and distributed memory architectures. On the other

hand, the MPI performance is limited by the bandwidth of

communication network between the nodes.

3. Methodology

The proposed parallel image segmentation program is

designed using HIPI which is made compatible to Hadoop

2.6.1 version. The most interesting feature of HIPI is its

integration with OpenCV, which is a prominent open

source library comprising of various computer vision

algorithms. In addition to this HIPI has the capability to be

deployed on the cluster of nodes. Storage of large

collection of image is an issue; however HIPI sorts out this

problem by using the memory storage of HDFS and makes

it accessible for efficient distributed image processing.

 For the proposed image segmentation program designed

using HIPI, the input data should be in HIB format which

stands for HIPI Image Bundle and is the foremost

representation of image collection on HDFS. HIB exploits

the Hadoop Map-Reduce feature to its maximum which is

designed to support the efficient processing of large flat

files. The HIB class provides the basic functions for

reading, writing and concatenating HIB files. In order to

create HIB, the HIPI distribution comprises of several

useful tools [26], which also includes a Map-Reduce

program that has the capability to build up a HIB from

multiple images downloaded from the internet directly.

 The initial process which HIPI uses to filter out the

images is known as culling process. The process of culling

is based on various user defined conditions i.e. spatial

dimension or resolution associated to image meta-data.

The culler class extends the Map-Reduce framework and

enables the culling process through HIB runtime mode

prior to its delivery to the Mapper in a complete decoded

format.

Soon after the culling process, the image are assigned to

the individual Mapper's in order to implement the map task

so as to attempt to maximize the data locality, which sends

the Map-Reduce code to each data node in the cluster. The

following Section 3.1 elaborates the design consideration

for building HIPI on Hadoop framework.

3.1 Design Consideration

For any Map-Reduce task, its execution time determines

its performance. The factors which influence the

performance of Map-Reduce task are uniform data

distribution, input split size parameter, number of Map-

Reduce task along with resource utilization of the node.

These factors are discussed in the following sub-sections.

3.1.1 Uniform Data Distribution

Once the Mapper receives the HIB file with a specific input

key-value pair, then it transforms that input key-value pair

to a group of intermediate key-value pair. Soon after, the

obtained intermediate key-value pair is shuffled and is

passed to the Reducer where they are consumed.

Moreover, this distribution of key-value pair to the

Reducer can either be skewed or even. An even balanced

load can reduce the task execution task execution time

drastically by deploying all Reducers to complete the job

at the same time. However, in order to achieve this, the

chunk of HIB file has to be in even division which is not

attained easily, therefore there is some room left for the

skewed load, where most of the Reducers finish up the task

quickly whereas some of them take a little longer time. The

uniform data distribution is considered to be an important

parameter for the designed image segmentation program.

3.1.2 Input Split Size

The split size divides the files into multiple blocks

according to its block size. The Map-Reduce job submitter

generates the number of splits which is equal to the number

of block size of the file. For any given data size, the

number of time the Mapper and the Reducer function is

called can be determined by the size of the intermediate

key-value pair. The proposed parallel image segmentation

technique provides support for the three parameters as

follows; key size, value size and the total number of key-

value pairs. These parameters altogether can determine the

total data to be processed from each specific map and

moreover, it also determines the total data size to be

shuffled. According to “Hadoop, the Definitive Guide”,
the default value of the maximum split size is the

maximum value that can be represented by a java long

data type.

The configuration parameters i.e., mapred.min.split.size

and mapred.max.split.size are used to define the

minimum and the maximum split size of the input data.

The final split size could be calculated using the formula:

max(mapred.min.split.size,min(mapred.

max.split.size, HDFS.block.size))

By default:
mapred.min.split.size<HDFS.block.size<

mapred.max.split.size

It is also noted from the Hadoop log files that for every

size of image data, if:

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 77

Number of allotted Mapper=number of

map task launched=1

Then the input split size for each Mapper is same as the

input file size.

Similarly, if:

Number of allotted Mapper=number of

map task launched= 1+n

Then the input split size for each Mapper is 1/(1+n) of

the input file size.

Therefore, it can be said that the split size is equivalent to

the block size. However, it only has an effect when split

size is lesser than the block size.

3.1.3 Mapping and Reducing

Google introduced the Map-Reduce framework in order to

allow a distributed processing on multiple clusters [1].

Unlike other distributed processing framework, where the

data are pushed to specific nodes that belong to a particular

cluster for processing, the Map-Reduce system follows a

different approach [1]. In this case, the data are distributed

among the nodes and the tasks are pushed to the particular

node that stores the data. Map-Reduce framework is a two

step process and is based on the concept of key, value pair ⟨𝑘, v⟩. The Map function or the Mapper takes one pair of

data with a type in single data domain as input ⟨𝑘x,in, vx,in⟩
and returns a list of pairs as output in different domain

which could be written as:

 (k1
x,out , v1

x,out), (k1
x,out , v(M-1)

x,out),............, (kn
x,out , v2

x,out),

(kn
x,out , vM

x,out)

The key emitted by the Mapper is not unique, therefore the

Reducer which is also known as the Reducer function,

groups up the values together for each Mapper domain.

This could be written as:

 (k1
x,out , [v1

x,out,............, v(M-1)
x,out])(k1

y,out , v1
y,out)

Depending on the implementation of the Map-Reduce

framework, the Reducer could also produce multiple key,

value pairs as output. Thus, the function of Map-Reduce

framework is to transform a list of (key, value) pairs into a

list of values. This model is different from the typical

functional programming of Map-Reduce combination,

which can only accept a list of arbitrary values and returns

just one single value that altogether combines the values

returned by the Mapper.

Section 3.2 will elaborate on how to build HIPI on Hadoop

framework.

3.2 Building HIPI on Hadoop

1. Setting up of Java

HIPI is composed in Java and has been tried with Java 7

and 8. Java version has to be checked using the following

command:

 java -version

2. Setup Hadoop

Unzip Hadoop using tar command: tar -xvzf

hadoop-2.6.1.tar.gz

HIPI works with a standard establishment of the Apache

Hadoop Distributed File System (HDFS) and Map-

Reduce. HIPI has been tried with Hadoop version 2.6.1.

The verification of the main Hadoop script has to be

checked from the path using the following command:

which Hadoop

3. Setup Gradle

The HIPI distribution utilizes the Gradle construct

automation framework to organize package and

compilation assembly. HIPI has been implemented with

Gradle adaptation version 2.5.

Introduce Gradle on the Hadoop framework by checking

the path using the command:

which gradle

4. Introduce HIPI

For the proposed research, HIPI has been downloaded

from GitHub. The most ideal approach to get the most

recent version of HIPI is by cloning the official GitHub

repository (GitHub, 2008) and building it alongside the

majority of the tools required to execute the framework.

The following command is used to clone the GitHub

repository:

git-clone

git@github.com:uvagfx/hipi.git

The git clone command construct the HIPI Library and its

associated tools.

In order to build the HIPI library along with all of its

associated tools, simply run gradle from the HIPI root

directory. Fig. 1 shows the detailed steps to demonstrate

how HIPI library is built using Gradle.

 Fig. 1 Building up of HIPI library

1. Change directory to HIPI

2. Issue Gradle build command

3. Java compiler gets built

4. Java process resources gets built

5. HIPI tools gets built

6. Finish building the HIPI library along with

all tools and examples.

7. BUILD SUCCESSFUL

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 78

The following Section 3.3 demonstrates the designing of

Map-Reduce algorithm to implement parallel image

segmentation.

3.3 Image Segmentation on Hadoop Framework

Thresholding is considered to be an important technique

for image segmentation which has got potential to identify

and extract the target portion of an image from its actual

background on the principal of distribution of gray levels

in an image object. According to Otsu’s method, an image
is considered to be a two-dimensional grayscale intensity

function which contains N pixels including gray levels

ranging from 1 to L [4]. As per Otsu’s analysis, the number

of pixels having gray level i is denoted by fi. Therefore the

probability function (Pi) of gray level i in an image could

be written as [4]:

 Pi = fi / N (1)

For the analysis of bi-level thresholding of an image, the

pixels could be divided into two classes C1 and C2

respectively. C1 consists of first tier of gray level (1........,t)

and C2 consists of second tier of gray level (t+1............,L).

Therefore, the gray level probability distribution for the

two classes could be written as:

 C1: P1 / ω1(t)...................Pt / ω1(t) (2)

And C2: Pt+1 / ω2(t),Pt+2 / ω2(t),...,.PL / ω2(t) (3)

Where ω1(t) = ∑t
i=1 Pi and ω2(t) = ∑L

i=t+1 Pi

Otsu’s method could also be applied for M number of

classes assuming that there are M-1 thresholds,

{t1,t2............,tM-1} which divide the original image into M

classes: C1 for [1......,t1], C2 for [t1+1........,t2].......,Ci for [ti-

1+1.........,ti] and Cm for [tM-1+1..........,L].

In order to implement image segmentation using Hadoop,

the image file in a bundled form is converted into HIPI

format with HIB extension before it becomes the part of

main configuration files for mapping and reducing. Once

the image file is successfully converted to the OpenCV

compatible format (Mat), then the image file is passed to

the Mapper so as to enable the task distribution to the java

threads. Before processing the image data, the Mapper

ensures that the images are in the single channel format

(grayscale format). To smoothen up the images, the

Gaussian blur is applied after setting the Kernel size. Once

the Gaussian blur is applied to the images, the Region of

Interest (ROI) boundary is set so as to apply the Otsu’s
threshold. After applying the Otsu’s threshold, the ROI

pixels are stored in a variable before it is passed to the

Reducer. Fig. 2 represents the functioning of the Mapper.

 Fig. 2 Illustration of Mapper

From Fig. 2, it could be inferred that once the Mapper is

done with the ROI pixels storage in the variable, then the

variable is passed to the Reducer. In Fig. 3, the functioning

of the Reducer is shown.

 Fig. 3 Illustration of Reducer

The Reducer receives the variable and stores it in an array

list and sums up all the pixel value of the ROI in that

particular array. In order to get the average pixel value of

the ROI from all the segmented images, the Reducer

divides the total summed up pixel value from the total

number of variable passed by the Mapper.

Fig. 4 and Fig. 5 show the pseudocode of Mapper and

Reducer respectively to design parallel image

segmentation algorithm:

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 79

 Fig. 4 Pseudocode for Mapper

 Fig. 5 Pseudocode for Reducer

4. Results

The technologies used in the methodology section are

scalable and can be used on a cluster of machines.

However, the experiments are not performed on a cluster

but on a single quadcore machine with 3.40 GHz clock

frequency and 8 GB RAM running on Ubuntu 14.04-

Linux 64 bits (used for both parallel and sequential mode)

to test the single node performance and the version of

Hadoop used is 2.6.1. The image datasets are taken from

CVonline image database which is commonly used by

researchers for downloading the image datasets [14]. Our

aim is to analyze the performance of the proposed image

segmentation method to investigate the threshold data size

point at which it outperforms sequential programming

mode in terms of task execution time using multiple

threads of CPU cores. If initially, we can achieve the

optimum performance in the single node, then it will be

easier for us to replicate it on the cluster of machines to

process bigger datasets.

For this study, the tasks were run for image segmentation

comprising of 100 MB, 200 MB, 250 MB, 257 MB, 260

MB, 300 MB, 350 MB, 400 MB, 450 MB and 500 MB

image dataset using Hadoop distributed mode with HIPI

and OpenCV sequential. This should provide a clear

understanding on the execution time of parallel

programming mode and sequential programming mode.

The platform used to implement OpenCV sequential mode

is Visual Studio Integrated Development Environment

2010 version.

Fig. 6 shows the results of task execution time for the

image datasets with varying size ranging from 100 MB to

500 MB to determine the data size threshold at which

proposed image segmentation algorithm using HIPI

outperforms OpenCV sequential programming. The graph

in Fig. 7 summarizes the maximum CPU cores usage

attained by different size of image datasets.

Fig. 6 Task execution time for different image datasets

Fig. 7 Maximum CPU core usage for different image

datasets

1. Input image .JPG format
2. Covert image to HIB.Dat
3. Pass image to Mapper<HipiImageHeader,

FloatImage, IntWritable, IntWritable>
//IntWritable is a HIPI data type

4. Get image resolution

5. Check image channel
 if(! GRAYSCALE)
 covert to grayscale

6. Set kernel size (width x height pixels) for
Gaussian blur parameter

7. Apply Gaussian blur
 opencv_imgproc.GaussianBlur(SourceImage,
 TargetImage, size, (0,0)); //(0,0 is the anchor
 point)

8. Apply OTSU's threshold
 opencv_imgproc.threshold(SourceImage,
 TargetImage, 0, 255,
 opencv_imgproc.THRESH_OTSU);

9. Count non-zero pixels

10. Emit Resultant image Mat to Reducer
 context.write(new IntWritable(1),new
 IntWritable (non_zero pixels));

1. Reducer receives image Reducer<IntWritable,

IntWritable, IntWritable, Text>

2. Initialize a counter and iterate over

IntWritable/int records from Mapper

3. Check the count of total image samples to

determine the average pixel value // Emit output

of job which will be written to HDFS

context.write(key, new Text(result));

4. Output the resultant average pixel value

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 80

In terms of task execution time for smaller size of image

datasets i.e., less than 257 MB, OpenCV sequential mode

performs better than Hadoop distributed mode which could

be observed clearly from Fig. 6. This is due to the fact that

the master thread worker takes a fixed amount of time slot

to process each chunk of image data sequentially without

any thread context-switching where as in case of Hadoop

distributed mode, the factor of split size comes into

consideration which causes delay in task execution. The

input split size set for the proposed experiment is 128 MB.

This is the most compatible split size with Hadoop 2.6.1

version to obtain the optimum output [1]. For smaller

datasets, i.e., lesser than 257 MB, Hadoop spawns either 1

or 2 mapping task. If the dataset size is lesser than 128 MB,

then Hadoop spawns only 1 map task and if the dataset size

is more than 128 MB, then Hadoop spawns 2 map tasks.

Unsurprisingly, image segmentation done using sequential

programming has a relatively stable CPU core usage which

averages around 13% over the entire execution. However,

a theoretical CPU core usage is of 14%. The 1% difference

is due to the I/O disk usage operation. It is also to be noted

that the image segmentation implemented sequentially is

totally cache bound. However, if the application wants to

access the memory that is not in the cache then it might

have to compete with the other memory access of

numerous cores an if the application wants to write to the

memory location, then there might arise a cache eviction(s)

for other cores.

To analyze our study further in terms of CPU core usage,

and task execution time, we will use 50 MB to 500 MB

image dataset.

4.1 Evaluating the Performance of 100 MB and 500

MB Image Data on Task Execution Time and CPU

Core Usage

Firstly, the performance result using 50MB image dataset

to evaluate the impact of CPU cores usage along with task

execution time of Map-Reduce job is shown. This

evaluation was done using BytesWritable data type and a

constant key-value pair size of 1 KB. Analysis of the cores

usage along with different segment of task execution time

is done. As per Fig. 7, the maximum CPU core usage

attained for 50 MB image dataset is 27.01%. Fig. 8 shows

the distribution of CPU cores usage over various time

segments for the implementation of 50 MB to 500 MB size

of image dataset.

It is clear from the Fig. 8 that the maximum CPU cores

usage for 50 MB image dataset is attained at the 11th

second which is the middle value of the total task execution

time.

Fig. 8 Distribution of CPU cores usage over time for 50

MB to 500 MB image dataset in Hadoop distributed mode

Smaller datasets which are lesser than 100 MB are unable

to exploit the multiple cores threads due to the fact that the

split size set for the block for the proposed experiment is

128 MB. Therefore, for the implementation of 50 MB

image dataset, the number of input split(s) and the number

of spawned map task is only 1. In addition to this, not even

half of the threads of the single Hadoop block are allotted

to execute the job, as a result of which multiple CPU cores

threads are unable to get harnessed. From Fig. 7, it could

be observed that, the maximum CPU cores usage value

attained for 100 MB image dataset is 33.23%. As per Fig.

8, which shows the CPU cores usage distribution for 100

MB image dataset over various time segments, it could be

observed from the graph that the maximum CPU cores

usage is attained at the 15th second which is again almost

the middle value of the total task execution time. There is

an additional 6.22% increment in the CPU cores usage for

100 MB image data if compared with 50 MB image data.

It is worth to be noted that for 100 MB image data, majority

of the threads of the 128 MB block is put into action to

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 81

execute the job. However, since the size of the image

dataset does not cross 128 MB, therefore, the number of

input split and number of spawned map task is only 1.

Now let us focus on the 200 MB image dataset, from Fig.

7, it could be observed that the maximum CPU cores usage

attained for 200 MB image dataset is 59.90%. Moreover,

from the graph in Fig. 8, the CPU cores usage distribution

of 200 MB image dataset, it could be observed that there is

a wide gap between the maximum CPU cores usage

between 100 MB image data and 200 MB image data.

Since the 200 MB image dataset is greater than the single

block size of 128 MB. Therefore, 200 MB image dataset is

divided into 2 Hadoop blocks, as a result of which 75 % of

the Hadoop threads in total of two blocks together are

allotted to complete the task execution of 200 MB image

dataset as per the Hadoop log files record. For 200 MB

image dataset, the number of split and the spawned map

task is 2 since it is allotted 2 blocks. It is worth to be noted

from the graph in Fig. 8, that for the size of 200 MB image

dataset, maximum CPU cores utilization is achieved at 20th

second which again lies at the middle of the total task

execution time. It is worth to be noted that for all the three

image datasets, i.e., 50 MB, 100 MB and 200 MB, the

maximum CPU cores utilization is achieved at the middle

of the task execution time.

4.2 Image Datasets Between 200 MB and 500 MB

This section will analyze the CPU cores usage distribution

for 250 MB, 300 MB, 350 MB, 400 MB, 450 MB and 500

MB image datasets. At first the CPU cores usage

distribution for the size of 250 MB image dataset would be

discussed. From the graph in Fig. 7, the maximum CPU

cores usage attained for the size of 250 MB image dataset

is 74.69% and its associated distribution of CPU cores

utilization could be observed from Fig. 8.

The 250 MB image dataset totally gets divided into 2

Hadoop blocks, each comprising of 128 MB. Therefore,

the total number of input splits and the number of spawned

map task is equal to 2. Since 250 MB image dataset is

almost divided exactly into 2 Hadoop blocks, therefore, all

the Hadoop threads of two blocks are utilized to execute

the job as a result of which CPU cores usage is more than

50% at most of the time interval segments post 15th second.

For 250 MB image data also, it is observed from the graph

in Fig. 8, that the maximum CPU cores usage of 74.69% is

attained at the 25th second which again lies near the middle

value of the total task execution time. Now let us come to

the 300 MB image dataset. From the graph in Fig. 7 it

could be observed that the maximum CPU cores usage

attained for 300 MB image dataset is 80.34%. The 300 MB

image dataset totally gets divided into 3 Hadoop blocks of

128 MB each.

Therefore, the number of splits and the number of spawned

map task is equal to 3 due to which Hadoop threads from

3 blocks are brought to action to execute the job as results

of which the CPU cores are utilized up to 80% if compared

to the maximum CPU cores utilization for 250 MB image

dataset which was 74.69%. This shows that there is an

increment of 5.31% of CPU cores usage when image

dataset is divided into 3 Hadoop blocks. For 300 MB image

data also, the maximum CPU cores usage is attained at the

10th second which again lies near middle value of the total

task execution time as observed from Fig. 8, and after

attaining the maximum CPU cores usage, there is a stable

CPU cores utilization of more than 60 %.

 Similarly for 350 MB image dataset, the maximum CPU

cores utilization is 82.47% which could be observed from

the graph in Fig. 7. For 350 MB image dataset, the

maximum CPU cores usage is attained at the 14th second

after which there is a stable CPU cores usage of more than

75% as shown in Fig. 8. The 350 MB image dataset again

gets divided into 3 Hadoop blocks of 128 MB each.

Therefore, the total number of input split and the total

number of spawned map task is equal to 3. Therefore, all

the threads of the first two Hadoop blocks and

approximately 75% threads of the third block is utilized to

execute the 350 MB image segmentation job in parallel

using PAA deployed on Hadoop framework as per the

Hadoop log files record.

For the 400 MB image data, it could be observed from the

graph in Fig. 7 that the maximum CPU cores usage attained

is 83.58%. It could also be observed from the graph in Fig.

8 that for 400 MB image dataset, the maximum CPU cores

usage is attained at the 12th second which lies again near

the mid-point of the total task execution time and then after

a stable CPU cores usage of more than 80% is observed till

the finish time. For 400 MB image dataset, the number of

split size and the number of spawned map task is equal to

4 which clearly specifies that the 400 MB image dataset is

divided into 4 blocks. Therefore, 100% threads of the first

three blocks and less than 20% threads of the fourth block

are utilized to execute the job as per the Hadoop log files

record. Since minimum number of threads from the fourth

block is used, therefore the difference in the maximum

CPU cores usage is not much if compared to 350 MB

image dataset.

Now let us move to the 450 MB image dataset. From the

graph in Fig. 7, it could be observed that the maximum

CPU cores usage attained is 85.92 %. From the graph in

Fig. 8, it could be observed that the maximum CPU cores

usage for 450 MB image dataset is attained at 25th second

and after attaining the maximum value there is a stable

CPU cores usage of more than 82%. The 450 MB image

dataset totally gets divided into 4 Hadoop blocks of 128

MB each as a result of which 100% thread usage of the first

three blocks and more than 50% thread usage of the fourth

block is done to execute the job of image segmentation in

parallel using PAA as per the Hadoop log files record.

Similarly for 500 MB image dataset, the maximum CPU

cores usage attained is 86.06% which could be observed

from the graph in Fig. 7. Since the Hadoop block size set

for the proposed experiment using Hadoop framework is

128 MB, therefore, the 500 MB image dataset is divided

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 82

into 4 Hadoop blocks, as a result of which 100% threads of

the first three blocks and more than 80% threads of the

fourth block is allotted to execute the job as per the Hadoop

log files record. It is worth to be noted from the graph in

Fig. 8, that after attaining the maximum CPU cores usage

at 25th second, there is a stable CPU cores usage of around

85% till the job finishes at 68th second.

4.3 CPU Cores Usage Analysis for Image Segmentation

Using Sequential Programming

In this section, the analysis of the CPU core usage for the

implementation of image segmentation using sequential

programming mode along with different segment of task

execution time is done.

The graphs in Fig. 9 show the distribution of CPU cores

usage for the execution of various sizes of image datasets

using sequential programming. It could be observed from

all the graphs that there is a stable CPU core usage of 13%-

14% for all the size of image dataset due to the fact that

sequential programming does not take multi-cores usage

into consideration. The initial spike like trend in all the

graphs arises in sequential implementation only when the

degree of Input-Output bound process increases. It is also

worth to be noted that if the users want to leverage on a

lower end machines to carry out image processing tasks

with lower size of image dataset, then the sequential

computing is preferable over parallel computing.

 Fig. 9: Distribution of CPU cores usage for (a) 50 MB to 200 MB image dataset in sequential programming mode, (b)

250 MB to 350 MB image dataset in sequential programming mode, and (c) 400 MB to 500 MB image dataset in

sequential programming mode

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 83

5 Conclusion

To evaluate the threshold of the data size at which the

proposed parallel image segmentation method outperforms

sequential programming method, we draw a comparison

between parallel programming approach using Hadoop

Map-Reduce distributed method and sequential

programming approach using OpenCV. From the above

results, it could be clearly inferred that for scaled-up image

datasets, the proposed parallel image segmentation method

tends to be far more superior compared to OpenCV

sequential mode due to the fact that parallel image

segmentation maximizes the CPU cores usage to increase

the degree of task parallelization. However, it is also

advisable to evaluate smaller image datasets (i.e. up to 250

MB) using sequential programming rather than going for

parallel programming. Moreover, a uniform task mapping

and reducing could be observed as the image dataset starts

expanding. In addition to this, our focus is also on

increasing the efficiency of a single node in terms of

performance.

However, the conventional wisdom in academics and

industry is to scale out using a cluster of commodity

computer machines for better distribution of workloads

rather than going for scaled-up systems by adding more

resources to it. In our case, we have emphasized on task

execution time, CPU core usage, input split size and task

mapping and reducing for single node. However, the

performance characteristics of Hadoop could be

fundamentally different, if it is implemented on networked

cluster of machines for which the resulting

bandwidth/latency characteristics will have an important

impact. As of now Hadoop is only compatible with

Ethernet networks which follow TCP/IP protocol.

Moreover, in order to increase the network throughput

efficiency, Hadoop is working on InfiniBand too. In a

nutshell, it could be clearly stated that in order to process

small scale dataset (up to 250 MB), sequential processing

could be effective if compared to parallel programming

algorithms. However, since the technology is heading

towards big data challenges, it is highly encouraged that

programmers should try to adopt parallel programming

method to process high scale data.

ACKNOWLEDGEMENT

The authors would like to acknowledge School of

Aerospace Engineering, Universiti Sains Malaysia and the

Institute of Postgraduate Studies (IPS), Universiti Sains

Malaysia for the Global Fellowship

[USM.IPS/USMGF(06/14)] financial support to carry out

this research. This research is also supported by the School

of Electrical and Electronic Engineering of Universiti

Sains Malaysia and Informatics Institute, University of

Amsterdam.

References

[1] T. White, Hadoop: The definitive guide: "

O'Reilly Media, Inc.", 2012.

[2] C. Sweeney, L. Liu, S. Arietta, and J. Lawrence,

"HIPI: A Hadoop image processing interface for

image-based Map-Reduce tasks," Chris.

University of Virginia, vol. 2(1), pp. 1-5, 2011.

[3] B. Rajitha, A. Tiwari, and S. Agarwal, "Image

segmentation and defect detection techniques

using homogeneity," in Futuristic Trends on

Computational Analysis and Knowledge

Management (ABLAZE), 2015 International

Conference on, 2015, pp. 678-683.

[4] N. Otsu, "A threshold selection method from

gray-level histogram," IEEE Transactions on

System Man Cybernetics, vol. 9, pp. 62-66, 1979.

[5] Ali, M., Siarry, P. and Pant, M., "Multi-level

Image Thresholding Based on Hybrid

Differential Evolution Algorithm. Application on

Medical Images", Metaheuristics for Medicine

and Biology, vol. 8(1), pp. 23-36, 2017.

[6] Costantini, L. and Nicolussi, R., "Performances

evaluation of a novel Hadoop and Spark based

system of image retrieval for huge

collections",Advances in Multimedia, vol. 20(1),

pp.11-16, 2015.

[7] Durad, H., Kazmi, W. and Akhtar, M.N., "Parallel

lossless image compression using

MPI", VAWKUM Transactions on Computer

Sciences, vol. 4(2), pp.11-19, 2015.

[8] Firdousi, R. and Parveen, S.,"Local Thresholding

Techniques in Image Binarization", International

Journal of Engineering And Computer

Science, vol. 3(3), pp.4062- 4065, 2014.

[9] J. Cadima and I. T. Jolliffe, "Loading and

correlations in the interpretation of principle

compenents," Journal of Applied Statistics, vol.

22, pp. 203-214, 1995.

[10] U. Demšar, P. Harris, C. Brunsdon, A. S.
Fotheringham, and S. McLoone, "Principal

component analysis on spatial data: An

overview," Annals of the Association of American

Geographers, vol. 103, pp. 106-128, 2013.

[11] A. Sangroya, S. Bouchenak, and D. Serrano,

"Experience with benchmarking dependability

and performance of Map-Reduce systems,"

Performance Evaluation, vol. 101, pp. 1-19,

2016.

M.N. Akhtar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 74-84

 84

[12] Slabaugh, Greg, Richard Boyes, and Xiaoyun

Yang. "Multicore image processing with openmp

[applications corner]." IEEE Signal Processing

Magazine 27(2),134-138, 2010.

[13] Kang, Sol Ji, Sang Yeon Lee, and Keon Myung

Lee. "Performance comparison of OpenMP, MPI,

and Map-Reduce in Practical

problems." Advances in Multimedia, vol.7, pp 1-

7, 2015.

[14] CVonline Image Database [Online]. Available:

http://homepages.inf.ed.ac.uk/rbf/CVonline/Ima

gedbase.htm

http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm

