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Abstract 
 
    This paper presents a design for the parallel 
processing of synthetic aperture radar data using 
one or more Field Programmable Gate Arrays 
(FPGAs). Our design supports real-time computation 
of a two-dimensional image from a matrix of echo 
pulses and their corresponding response values. 
Components of this design include: (a) central 
processing pipeline to perform back projection 
calculations, (b) pre-fetch cache to minimize 
external memory access latency, (c) memory bridge 
that serves as the primary on-chip storage for pulse 
data, and (d) a pixel queue to direct image data in 
and out of the pipeline. Design parameters may be 
adjusted to achieve optimum performance, and 
multiple instances of this design may be replicated 
on-chip to achieve prespecified performance 
objectives. We provide a complexity analysis as a 
function of the input and output parameters. 
Simulation results based on an implementation of 
this design show that our design achieves 160 GOPs 
per instance on a simulated Altera Stratix III 
EP3SL150 FPGA, and scales well for output image 
size ranging from 500 x 500 pixels to 5,000 x 5,000 
pixels. 
 
Introduction 
 
     The use of radar for area surveillance has been of 
keen interest to scientists and engineers in fields 
such as medical tomography, meteorology and 
geology [4]. One such application, radar based 
terrain mapping, has recently become the subject of 

increased interest in the field of high- performance 
parallel computing.  Terrain mapping involves the 
use of radar devices to generate high-resolution 
images of one or more ground objects (e.g., land or 
forest), as well as manufactured object(s). As shown 
in Figure 1, a radar transmitter at known location L 
broadcasts a pulse at time T0. Responses from 
objects within the sensor’s field of view are 
measured as a function of time. Reflective objects 
further from the pulse location will cause echoes 
that arrive later than echoes for proximal objects.  
In the example shown, the response for P1 will 
appear at an earlier time than P2, and P2 will appear 
earlier than P3, and so forth.  The time these 
responses arrive can be readily computed by 
dividing the distance between L and Px by the speed 
of light c:  
 

 
 

 

Figure 1: A radar pulse is transmitted, and response 
intensity is measured as a function of time. Responses 
from more distant objects traverse a longer path and 
will return to the sensor at a later time. 



 
Figure 2. Configuration of Figure 1 shown in top view. An 
object at P4 is the same distance from L as P1, and will 
have the same response time.       
 
Unfortunately, while prediction of arrival time for a 
given reflected pulse component is simple, the 
inverse computation that establishes an object map 
from multiple pulses is more challenging, as shown 
below. 
    For example, in Figure 2, an additional point at P4 
will have the same distance, and response time, as 
the point at P1. Given the response data for only 
one pulse, it is impossible to generate a physically 
accurate  representation of the original image, 
because reflective objects could only be echo-
located to the nearest range band (shown in Figure 
2 as concentric circles centered at the pulse 
emitter). 
     Given multiple views of a ground object, 
synthetic aperture radar provides a method of 
reconstructing the object map, by measuring and 
mathematically combining multiple return pulses at 
multiple locations over time, to increase effective 
aperture. In the example of Figures 1 and 2, the 
sampling process would be repeated with L in 
several different locations around P1, P2, and P3. 
This helps resolve spatial ambiguity between P1 and 
P4, allowing reflective objects to be more accurately 
and precisely mapped to their correct locations. In 
addition, the effect of sampling error (e.g., due to 
interference and environmental factors) is reduced 
by the averaging inherent in repetitive sampling, 
and by superposition during reconstruction. 
However, the rendering of output images from 

pulse response data is computationally more 
expensive as the number of pulses increases. For 
example, a 500 x 500 pixel SAR image took over four 
hours to compute on a consumer-grade Hewlett 
Packard 2 GHz Centrino processor.   
     Although parallel architectures have greater 
availability and utility, the cost of developing high 
performance sequential hardware has remained 
substantial. Also, since sequential processing 
solutions for SAR image reconstruction tend to be 
I/O-bound primarily and compute-bound 
secondarily, parallel computing is further indicated.  
We have found that Field Programmable Gate 
Arrays (FPGAs), which support parallelism through 
replication of spatial algorithms, are useful for SAR 
reconstruction. In simulations with Altera Quartus II 
software, on an Altera Stratix III EP3SL150 FPGA, we 
have obtained 228 seconds execution time from 
one instance of our design. Increasing the number 
of instances operating in parallel resulted in a linear 
decrease in execution time. We next consider the 
SAR image reconstruction algorithm employed in 
this study.   

 
The Filtered Backprojection Algorithm 
 
     Several published algorithms are available for 
reconstructing SAR imagery [1,3]. The filtered back 
projection algorithm is known for its large 
computational cost and high quality output images 
[1] The algorithm, whose details are beyond the 
scope of this paper, is overviewed as follows. 
     Firstly, the time dimension of the response data 
for each pulse is divided into range bins. This 
typically occurs at collection time, to convert the 
real time response data stream to a discrete format 
amenable to storage in memory.  Secondly, for each 
pixel in the output image, for every pulse in the 
response data: (i) the spatial distance of that pixel 
from the pulse location is computed; (ii) the range 
bin that corresponds to this distance is determined;  
and (iii) the contribution of this range bin is 
summed with the pixel's current value. 



     We note that that this representation of the 
filtered back-projection algorithm describes only 
the data access pattern and the algorithmic 
complexity of computational and I/O operations. 
Implementational details are given in [1] and 
illustrated schematically in Figure 5. 
 
Benefits of FPGA Implementation  
 
     As noted previously, the back-projection 
algorithm is computationally expensive because it 
requires every pixel to be summed with the 
contribution of every pulse. In practice, given a 
large image and a large pulse data matrix, this 
process can yield high latencies.  Fortunately, the 
process of rendering pixels is inherently data-
parallel. As a result, it is possible to achieve a 
proportional decrease in overall latency by 
replicating available hardware: low resolution times 
can be realized via a high degree of parallelism. 
Unfortunately, modern microprocessors are 
complex mainly-sequential devices, designed to be 
applicable in the solution of virtually any 
mathematical problem. These general-purpose 
capabilities consume large amounts of space on-
chip, which tends to be wasted when a 
microprocessor is used to perform simple 
calculations. Since most microprocessors are 
inherently sequential, they tend to contribute little 
to the performance of fine-grained parallel 
implementations, as predicted by Amdahl’s Law. 
     Field Programmable Gate Arrays are 
fundamentally different from microprocessors, as 

FPGAs  allow designers to define a logical 
relationship between hardware inputs and 
hardware outputs in terms of spatial relationships 
on-chip, rather than in the temporal dimension as 
sequential instructions. This supports parallel 
computation of operations that are not serially 
dependent.  
     In implementing SAR image reconstruction via a 
back projection algorithm, the same set of 
operations are performed for every (R,P) pair, 
where P is a pixel in the reconstructed image, and R 
is the range bin in a given pulse that corresponds to 
P. These operations can be implemented in 
hardware as shown in Figure 5. 
 
  

 
Figure 4. The microprocessor implementation of   
(A * B + C / D) can only perform one operation at a time, 
resulting in three iterations through the execute cycle. In 
addition, the unused subtraction and Boolean operations 
of the processor are wasted. The FPGA implementation 
computes multiplication and division operations in 
parallel, requires only two operation delays, and uses the 
minimal hardware necessary to implement the algorithm. 
 
 
 

Figure 3. Data access pattern for the computation of a single pixel. The corresponding range bins for each of the 
four pulses are summed to produce the value of the output pixel. 



 

Figure 5. Dataflow diagram of algorithm for computing the contribution of a single pulse for a given reconstructed output 
pixel, where computations are performed natively in hardware. 

 

Effect of Response Matrix Size 
 
     In addition to computational complexity, the 
back-projection algorithm presents significant data 
movement challenges. Both the pulse response 
matrix and the output image can be very large, and 
most FPGA chips cannot store these structures in 
their entirety. However, in order to sum the 
contribution of a given pulse to a pixel, both the 
correct range bin and pixel must be on-chip at the 
right time. Fortunately, the data access pattern of 
the back projection algorithm ensures two 

properties that are helpful in reducing the cost of 
data input and output: 

     Property 1. Let function  f(P, X) map pixel X to its 
corresponding range bin in pulse P. As X is varied 
from left to right, or right to left, across any row of 
the output image, one of the following will be true: 
1. f (P,X) will be increasing. 
2. f (P,X) will be decreasing. 
3. f (P,X) will be increasing up to some pixel Y; 

beyond Y, f (P,X) will be decreasing. 
4. f (P,X) will be decreasing up to some pixel Y; 

beyond Y, f (P,X) will be increasing. 



 This property holds as X is varied across any 
column of the output image from top to bottom, 
or bottom to top, as shown in Figure 6. Recall 
that range bin access is directly proportional to 
the distance of a pixel from its corresponding 
pulse. In the simple cases (L1 and L3), as X is 
varied along any straight line on the image, the 
distance between X and the pulse will increase 
or decrease. In the case where the pulse location 
is not beyond the endpoint of the line (L2 is 
directly above the line), then at some point Y, 
the distance between Y and the pulse location 
will be at a minimum. From this property, it 
follows that if only a subregion of the output 
image is considered, only a proportionally 
smaller subregion of the echo matrix will be 
needed to render the output image subregion. 

     Property 2.  Let the function N(P, S) be the 
number of range bins for a given pulse required to 
completely generate a square subregion S of the 
output image. For any square subregion S and pair 
of pulses (P1 , P2), we have 

 ( ) ( ) ( )SPNSPN 2,1, 2≤ . 

This property can be explained by recalling that the 
range bin needed for a given pixel is linearly related 
to its distance from the pulse location. For any two 
points, the factor relating the difference in their 
physical locations to the difference in their 
corresponding range bins is constant.  In particular, 
this difference D equals the total distance sampled 
divided by the number of range bins. Observe that 
the least number of range bins will be required 
when the look angle is either parallel or 
perpendicular to the base of the square subregion. 
Likewise, the maximum number of range bins is 
required when the look angle equals 45O, such that 

 BD=Bins , 
where B denotes the length of the square base. For 
the 45O case, 

 ( )DB=LengthBxDiagonal=Bins 2   

The final step is proven using the Pythagorean 
Theorem. 
  

 
Figure 6. (A) Three pulse locations, L1, L2, and L3 are 
shown above. As a pixel is varied from left to right along 
the row indicated by the horizontal line, range bin 
access: (L1) increases; (L3) decreases (L2) decreases then 
increases. (B) A square subregion is resolved from two 
pulses at location L1 and L2.  The look angles of each 
pulse are indicated by a solid line. Range bin access is 
minimized when the look angle is parallel to the base of 
the subregion (L1) and maximized when it is 45O (L2). 

 
Design 
 
    The proposed algorithm design partitions the 
output image into a set of small tiles. Each tile is 
square, having width and height K. The process of 
generating an output image can then be 
decomposed into the process of generating each of 

the ( )2/ KN tiles independently. 

     The back projection algorithm states that each 
pixel of an output image is computed as the sum of 
the contributions of each pulse in the echo matrix, 
where the contribution of a pulse for a given pixel is 
the value of the range bin corresponding to that 
pixel. To reconstruct the image, the correct range 
bin of each pulse must be paired with the 
corresponding pixel or pixels in the output image. 
   In the proposed design, shown in Figure 9, the 
pairing of a single pulse range bin and pixel value 
occurs in each box labeled Projection Element (PE). 
PEs are arranged in a vertical pipeline having width 
W and depth D. Pixels are stored in an external 
memory device labeled Output Image, and are 
loaded into the Read Pixel Queue, then processed 
through the pipeline. At each pipeline stage, a pixel 
is paired with the pulse that has been loaded into 
that stage. After leaving the pipe, the processed 
pixels are stored in a Write Pixel Queue, where they 
are transferred back to the external memory device.



 

 
Figure 7. The first design considered consisted of a 
systolic array of processing elements (PEs). The width of 
this array is equal to the width of the image tile, and the 
height is configurable. Rows are passed vertically through 
the pipe as shown.  
 

   The size of the echo data matrix tends to 
confound this type of data movement. When a pixel 
reaches a given stage of the pipeline, the 
corresponding range bin must be loaded into local 
memory so its contribution can be summed with 
the existing pixel value. Due to long latencies in 
external memory accesses, performance would be 
greatly improved by loading the echo matrix into an 
on-chip cache. However, the echo matrix is 
significantly larger than available on-chip memory, 
so only a small portion of the echo matrix can be 
stored on the FPGA. Fortunately, range bin access 
within each pulse is predictable for a K x K tile. 
Within each pulse, the number of range bins 
needed to compute each tile is proportional to K/N, 
where N is the size of the output image. In Figure 9, 
for example, only the shaded region of the Echo 
Matrix is used to generate the pixels shaded in the 
Output Image.  
   Several designs were considered to effectively 
exploit this access pattern. One such design 
consisted of a systolic array of processing elements 
as shown in Figure 7. Each row of pixels from an 
output image tile would pass through the array 
vertically, while the necessary range bins would 
move horizontally. The movement of a row to 

 
Figure 8. A second considered design is similar to that 
shown in Figure 7, except that range bins are no longer 
exchanged in a horizontal network. In this design, the 
range bins from a given pulse are stored in a shared 
memory shown at the left of the figure. Every processing 
element (PE), has a connection to every range bin in its 
shared memory. 
 
the next level of the array would cause processing 
elements to exchange range bins, ensuring the 
correct bin matched up with the correct pixel. This 
design effectively exploited the sequential nature of 
echo matrix data access patterns among a set of 
images. Range bins could efficiently be shifted from 
one column to the next to meet the demands of 
each output image row.  

However, this design had a serious shortcoming, 
namely, it ignored the fact that the number of range 
bins needed for each pulse does not necessarily 
have a one-to-one relationship with the width of 
the tile. In the case where the number of range bins 
exceeds with the width of the tile, not all bins would 
be needed to process every row. In the case where 
the sample look angle is perpendicular to the row, 
and the sample distance is much larger than the 
width of the tile, only a single range bin is needed to 
render the entire output row. By design, there was 
no mechanism available for storing the unused bins 
for use by subsequent rows. When the inclusion of 
such a storage mechanism became obvious, we 
improved the interconnection network, to increase 
performance of our design.  
   The second design (shown in Figure 8) considered 
addressed this question directly. Here, we replaced  



 

Figure 9. The proposed design 
consists of one or more vertical 
pipelines. Pixels pass through a 
pipeline from top to bottom, 
meeting a new pulse at each 
level. Processing elements are 
connected to one bucket of a 
circular memory bridge. If the 
needed range bin is not in that 
bucket, the processing element 
can assert a signal requesting 
the memory bridge to rotate 
until the needed bin is in the 
correct bucket. The pipe width 
can be adjusted to increase pipe 
throughput. 
 
 
 
 
 
 

 

the horizontal component of the systolic array with 
a shared memory for each pulse. This memory is 
connected to each processing element via a 
multiplexer, allowing the processing element to 
select which bin is needed for the pixel being 
computed. This design had the advantage of 
achieving optimal throughput, as no time would be 
needed for elements to exchange data with 
neighbors, but consumed significant on-chip real 
estate, as FPGAs are not designed to act as crossbar 
switches. This design also does not exploit the 
sequential nature of range bin access across 
neighboring pixels of the output image. In contrast, 
an optimal design would use this predictability to 
achieve a more efficient interconnection network. 
     The current design, shown in Figure 9, replaces 
the shared memory component with a circular 
memory bridge (similar to a round-robin queue). 
Prior to computation of an output (reconstructed) 
tile, each memory bridge is loaded with the range 
bins that will be needed to compute the entire tile. 
Each processing element is then connected to a 

single storage location, or bucket, on the circular 
structure. If a processing element is not connected 
to a bucket holding the correct range bin, it can 
request a clockwise or counterclockwise rotation. 
By Properties 1 and 2, it can be shown that if 
adjacent pixels are passed through the pipeline, 
then rotation distance will be small relative to the 
size of the memory bridge. In fact, for a single row 
of the image, rotations will always occur in the 
same direction with changes to that direction 
occurring at most one time. (See the first property 
above.) Not more than one full rotation is needed 
to compute any given row. This design exploits both 
the locality and predictable pattern of range bin 
access and uses an interconnection network that 
achieves an efficient trade-off between size and 
speed. 
   An additional characteristic of the design shown in 
Figure 9 is the pre-fetch cache. This feature masks 
the latency of external memory by permitting the 
loading of the memory bridge to be executed in 
parallel with the computation of a tile. If the



memory bridge were loaded directly from external 
memory, then the pipeline would need to be stalled 
for several cycles until the load was completed. 
Using the prefetch-cache, it is possible to transfer 
data from cache to the memory bridge in as little as 
one clock cycle. As long as the time required to 
process a tile is greater than the time required to 
load the cache, the memory access delays are 
effectively masked from the total latency of the 
design. An analogous prefetch cache is also used to 
mask memory latency of the pixel queue. 
 
Design Analysis and Parameters  
 
Complexity of the design is measured in terms of 
time, space, and IO complexity. 
 
Latency 
 
In order to derive an expression for the latency of 
rendering an N x N image, it is necessary to consider 
the two operations that are occurring in parallel 
during the steady state operation of this design: (1) 
loading the prefetch cache with a new pulse, and (2) 
rendering a K x K image tile with the current pulse. 
We write the former operation as a function of K: 
 

memmemstartMB CKL+L=L     (1) 

 
where Lmemstart and Lmem refer to the startup time 
and access speed of the host memory device. The 
constant C is determined by the sampling resolution 
and size of each range bin, which are held constant 
for the purpose of this analysis. We then write the 
latency of rendering a single K x K image for one 
pulse, as follows: 
 









memfillRender LK,

W
Kmax+L=L 2

2

  (2) 

 
where Lfill is the initial hardware time required to 
start the pipe after reloading the memory bridge, 

and 2K is the tile size. The maximum function in 

this equation reflects the fact that the rate at which 
pixels is limited by both the processing speed and 
the memory access speed. Since each pixel must be 
read from and written to memory, the rate at which 
pixels can move through the pipe is bounded below 
by K2 / Lmem. The time to process these pixels is K2 / 
W, where W is the width of the pipe. Alternatively, 
W can denote the number of pixels that are 
rendered in parallel. 
    In steady state operation, the larger of LMB and 
LRender will dominate the latency of rendering a 
single K x K tile for a given pulse. Repeating this 
process for all tiles in the image, and distributing 
the load across J implementations each with a pipe 
depth of D, the total time required to generate the 
entire N x N image using A pulses is: 
 

( )RenderMB L,Lmax
K
N

JD
A=L

2









  (3) 

 
Space 
 
The design implemented in Figure 9 consists of four 
central components: a processing element, a 
memory bridge, a prefetch cache, and a pixel 
queue. The prefetch cache and memory bridge are 
of equal size, and the pixel queue is negligibly small 
compared to the other elements. Under this 
assumption, we express the space consumed by J 
implementations each with a pipe depth D, pipe 
width of C, and memory bridge size CK, as follows: 
 

( )CK+WSJD=S PE 2     (4) 

 
Memory Access - IO 
 
Firstly, we observe that memory access 
requirements to render a single K x K tile on a single 
pulse, then write that pulse back to memory, is 
given by: 
 

CK+=IOtile
22K     (5) 

 



Using J parallel implementations of the design 
shown in Figure 9, the IO requirements of rendering 
one tile on D pulses then becomes: 
 

( )DCK+J=IOpar
22K    (6) 

 
This equation reflects the fact that increasing the 
pipe depth D results in a linear increase in echo 
matrix IO requirements for each pass of a tile 
through the pipe. Increasing J, the number of 
parallel implementations, produces a linear increase 
in the both echo matrix IO and image IO.   
     
Design Analysis - Optimizing Parameters 
 
Minimizing the Value of J 
 
    From Equations 3 and 4, we note that pipe depth 
D and degree of parallelism J are both inversely 
related to latency, and directly related to space. In 
fact, these values appear as a product JD in both 
equations. This is intuitive, as greater parallelism 
can be obtained by lengthening the pipe, or 
operating multiple pipes simultaneously. Regarding 
only spatial and temporal efficiency, neither option 
is preferable to the other. However, when Equation 
6 is considered, it is clear that increasing D results in 
lower IO requirements. For that reason, J should 
always be chosen to be the lowest possible value. 
Figure 11 in the section titled Partitioning the Echo 
Matrix - Facilitate Parallel IO describes an 
architecture where J = 1 even when the design 
would be  distributed across multiple FPGA boards. 
 
Selecting the Right Value of K 
 
     We have observed from Equation 3 that when 
chip real estate is not bounded above, latency is 
inversely related to tile size K. In an environment 
where space is unlimited, it is then preferred to let 
K = N and process the entire image in a single tile. In 
practice, however, available space on an FPGA is 
finite. From Equation 4, it can be seen that, for  

 
some fixed S, increasing the value of K decreases 
the value of JD. This reduces parallelism and 
increases latency. It is necessary, then, to find an 
optimal value of K such that latency is minimized. 
    In selecting the optimal value of K, we optimize 
each of the limiting factors described in Equation 3. 
This separates the analysis into a distinct case for 
each of the limiting factors: processing speed, 
image memory access, and echo matrix memory. 
    The first two cases can be treated together, as 
neither the processing speed nor access speed of 
the memory device can be improved by changing K. 
We define the larger of these latencies to be the 
latency of rendering 1 pixel on 1 pulse and denote it 
Lpix. Echo matrix memory access is ignored, as it is 
the faster of two parallel operations. Then, treating 
the FPGA chip space available as a constant and 
substituting Equation 4 in to Equation 3, the 
expression for latency is: 
 

( ) ( )pixfillPE LK+L
K
N

S
ACK+WS=L 2

2

2 







      (7) 

 
When this expression is expanded, its highest and 
lowest order terms have order 1 and -2 
respectively. We observe that the graph of this 
function decreases quadratically toward some 
minimum value, and then increases linearly as K

 
Figure 10. As K is increased toward N, (A) latency 
limited by memory access decreases. (B) latency 
limited by processing speed achieves a minimum and 
then increases linearly. 

 

 



approaches N. The optimal value of K occurs at the 
minimum of this graph. 
    The third case assumes that echo matrix memory 
access is the limiting factor in throughput. Echo 
matrix memory access requirements can be 
reduced by increasing the value of K, which 
decreases the value of JD and the number of 
prefetch caches that are loading data from memory. 
By treating chip space as a constant and 
substituting Equation 4 into Equation 3, we obtain: 

( ) ( )memmemstartPE CKL+L
K
N

S
ACK+WS=L

2

2 







 

      (8) 
This expression decreases on the interval (0, N], 
reflecting the fact that echo matrix memory access 
is minimized when the image is processed as a 
single tile. This is consistent intuitively, because 
rendering an image in tiles causes some areas of the 
echo matrix to be fetched multiple times, while 
rendering a single tile results in only one pass over 
the echo matrix. 
    We note that in the third case, Equation 8 is a 
decreasing function that is greater than Equation 7 
as the optimal tile size dictates by cases 1 and 2. 
Recalling that Equation 7 increases for values of K 
larger than its optimum, the optimal value of K for 
case 3 occurs at the point of intersection. 
 
Selecting the Optimal Value of W 
 
    In selecting a pipe width W, we first observe that 
increasing the pipe width allows multiple pixels to 
be sent down the pipe in parallel. Increasing W also 
has a much lower spatial cost than increasing pipe 
depth, because it does not require the addition of 
memory bridges. However, an increase in W only 
reduces the observed latency of the projection 
elements (PEs), and does not impact memory 
access. An increase in W is then helpful when pipe 
processing latency (K2 / W) is the limiting factor in 
device performance,.  However, in the case where 
image or echo matrix memory dominates the 

expression for latency, increasing W does not result 
in any additional throughput. 
    In general, an optimal pipe width can be obtained 
by increasing W until echo matrix or image memory 
access limits device throughput. 
 
Partitioning the Echo Matrix - Facilitate Parallel IO 
 
    In the event of large memory accesses, the 
performance of external memory can be improved 
by partitioning the echo matrix across multiple 
independent memory devices. This partitioning, 
shown in Figure 11 is done on the pulses (rows) of 
the echo matrix. Each set of pulses is then sent to a 
smaller memory device which is directly connected 
to the algorithm instances that act on the specified 
collection of pulses. Data access within a partition 
shares its communication bus only with other 
implementations in the same partition. As a result, 
the access requirements on each memory device 
are inversely related to the number of partitions. 
We have found that there is no theoretical limit to 
the number of partitions. Due to the fact that only 
read operations are performed on the echo matrix, 
it is possible to increase the number of partitions 
beyond the number of pulses. A single pulse can 
thus be copied to multiple partitions. By continuing 
to parallelize the memory access in this manner, it is 
possible to increase throughput of the external 
memory architecture by an arbitrary factor. 
Memory access to the echo matrix is thus scalable, 
as the requirements on any one memory device 
does not depend on the number of pulses or 
implementations. 
    The I/O requirements of the image data may also 
be improved by arranging algorithm instances in a 
pipeline rather than connecting them to a single 
shared memory. In this arrangement, the I/O 
requirement of each implementation does not 
change. Each image tile must be read from external 
memory, processed, and then written back. 
However, instead of reading and writing from a 
single memory device, read operations are 
performed from the preceding instance in the pipe  



 

Figure 11. The echo matrix may be 
distributed across multiple memory 
devices to reduce IO costs when many 
instances of the algorithm operate in 
parallel. In addition, each 
implementation may receive its pixels 
from a neighboring implementation, 
rather than a single shared memory. Each 
box marked Implementation is an 
independent instance of the design 
illustrated in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 

and writes are performed to the next instance. Only 
the first and last instances have connections to the 
shared memory. As a result, access requirements on 
this device do not increase as the number of 
implementations in increases. 
    The external memory architecture described 
above ensures that, from the perspective of a single 
memory device, the I/O requirements of the 
proposed design scale to an arbitrary number of 
parallel instances and pulses. 
 
Design Considerations for High Performance 
 
     The analysis provided in the previous three 
sections has established the following two 
important facts:  
(1) An increase in the amount of chip space 

available results in a linear decrease in the 
latency of processing an image provided that 
memory access speed is not the limiting factor 
in throughput. 
 

(2) Using the external memory architecture 
described in Figure 11 with an appropriate 
number of partitions, memory will not be the 
limiting factor in throughput. 

 
     It should also be noted that parallel 
implementations of the proposed design operate 
independent of one another. There is no 
requirement that each implementation resides on 
the same FPGA as its neighbors. As long as each 
implementation is connected to the memory buses 
shown in Figure 11, the design will operate 
correctly. 
     As a result, it is possible to achieve significantly 
reduced latencies by increasing the number of FPGA 
devices. This permits the possibility of real time SAR 
image processing using a network of FPGAs. The 
size of these FPGAs and the speed of external 
memory is not important. Using the proposed 
design, shortcomings in hardware performance can 
be overcome by increasing the number of parallel 
instances and supporting memory. 



    The efficiency of an FPGA design may be analyzed 
by considering the amount of time that processing 
elements are computing output data, as compared 
to the amount of time they are stalled. In this 
design, the pipe can stall for three reasons: 

(1) The memory bridge is being loaded. 
(2) The pixel queue is being loaded. 
(3) The memory bridge is rotating. 

    
The pre-fetch cache mechanisms attached to 

the memory bridge and pixel queue effectively 
mask the external memory latency, as long as the 
time required to load the pre-fetch cache for an 
image tile is less than or equal to the time required 
to generate the tile. If this observation does not 
hold, then the device can stall. In practice, the 
memory access requirements of the pixel queue will 
be much less than that of the memory bridge. If the 
requirements of the pixel queue or memory bridge 
surpass the speed of the memory device, then the 
throughput of the design will be limited by the 
speed of the memory. This was examined previously 
in Design Analysis and Parameters. 
    A stall can also occur any time the memory bridge 
rotates to align a requested range bin with its 
corresponding processing bucket. The frequency of 
stall signals for this reason is proportional to the 
sampling resolution divided by the image 
resolution. This relationship is shown notionally in 
Figures 12 and 13. Simply put, an increase in the 
output image resolution will reduce the frequency 
in stall signals, as will a decrease in the sampling 
resolution. 
    From Figures 12 and 13, it is seen that 
oversampling an area can cause the memory bridge 
to rotate more frequently. If the area is greatly 
oversampled, it is possible that the several rotations 
could be required for transition from one pixel to 
the next between each pixel. In this situation, a 
circular memory bridge that is only capable of 
rotating one bucket at a time would perform poorly. 
If one desires to render low resolution images from 
high resolution sample data, then a memory bridge  
 

 
capable of rotating several buckets in a single clock 
cycle would be preferred.  
 
Simulation Results 
 
    To estimate the throughput of our design, the 
elements shown in Figure 9 were implemented 
using Altera DSP Builder and Matlab Simulink 
software. They were then imported into Altera's 
Quartus II simulation software, then analyzed to 
determine the theoretical optimum throughput. 
The sample radar data used to generate these 
results contained 42,120 pulses, 424 range bins per 
pulse, and sampled a circular area with a simulated 
radius of 7 km. For all computations, it was 
assumed that the tile size was one-tenth the size of  

Figure 12. When the sampling resolution is low, and the 
image resolution is high, pixels often map to the same 
range bin, or the adjacent range bin, as their neighbors. 

Figure 13. When the sampling resolution is high, and 
the image resolution is low, pixels map to range bins 
that are further from the range bins used by their 
neighbors. 



 

Altera Device Information Latency (S): Square Image of Width N 

FPGA Family Device LEs N = 500 px 5,000 px 10,000 px 20,000 px 

Stratix III EP3SL50 47,500 26.8 830 2909 10815 

Stratix III EP3SL150 142,000  8.98 277 973 3617 

Stratix IV EP4S40G2 228,000 5.59 173 606 2253 

Stratix IV EP4S100G4 353,600 3.61 111 391 1455 

Cyclone III EP3C55 55,856 22.8 706 2474 9197 

Cyclone III LS EP3CLS100 100,448 12.7 393 1376 5114 

Cyclone III EP3C120 119,088 10.7 331 1160 4313 

Table 1. Theoretical optimal latencies of seven representative FPGA devices, with four common output image sizes. 
 
 
the output image (i.e., 100 tiles per output image). 
It is also assumed that a sufficiently fast external 
memory device is available to ensure that memory 
access does not limit design throughput. 
    The theoretical optimal latencies of seven 
representative FPGA devices are shown in Table 1 
using four common output image sizes. The output 
image is assumed to be square, with a width equal 
to that shown in the table. All latencies are given in 
seconds. 

    It is important to note that the Table 1 lists 
simulated latencies of our design acting on a single 
FPGA device with differing degrees of parallelism J. 
However, since parallel instances of the design do 
not communicate with each other, there is no 
reason why they cannot exist across multiple FPGAs 
operating in parallel. In practice, as long as each 
implementation can fit on a single FPGA, the 
number of independent FPGAs is unlimited in 
principle. For a Stratix III EP3SL150, the number of 
FPGA devices required to generate a 500 x 500 pixel 
output image in 0.5 seconds is 18. 

   A common metric for evaluating the performance 
of computational devices is the equivalent number 
of operations per second. Considering the case of a 

5,000 x 5,000 pixel output image, the total number 
of operations when executed sequentially is 4.42 x 
1013. Given a single Stratix III EP3SL150 operating at 
1.60 x 1011 operations per second, 6,000 such 
FPGAs operating in parallel could achieve a 
performance near 1 petaflop.  
 
Related Work 
 
    The algorithm and design presented herein are 
tailored to the rapid parallel processing of synthetic 
aperture radar data, as well as the reconstruction of 
a corresponding two-dimensional output image. 
However, these techniques could also be applied to 
any domain where echo response data is projected 
back to form an image of a surface, object, or area. 
One such application is tomography, or the 
construction of three-dimensional models from a 
set of cross-sectional views. Here, each atomic 
volumetric unit or voxel demonstrates the same 
properties observed by the pixel. Namely, for a 
given cross-sectional view, each voxel will be 
associated with a response value that is spatially 
near the response of its neighboring voxel. Similarly, 
a given volume of output data will require a 



predictable quantity of response data for each cross 
section. The preservation of these properties 
ensures that a circular memory bridge could also be 
used as an effective storage mechanism for the on-
chip caching of sectional data. 
    Previous study in the field of tomography has 
shown FPGAs to be reliable platforms for 
deployment of back projection algorithms in the 
rendering of three- dimensional images. Gac (et al) 
[2] showed that is possible to obtain response times 
comparable to that of a Graphics Processing Unit 
(GPU) using a single System on Programmable Chip 
(SoPC). The techniques described in this document 
could supplement these developments, allowing 
designs to be mapped to a large number of 
independent FPGAs, as needed. 
 
Conclusions and Future Work 
 
     We have presented a design for an efficient 
mechanism for reconstructing images given 
synthetic aperture radar data. Our design consists 
of a pre-fetch cache for masking the latency of 
external memory, a circular memory bridge for 
providing rapid access to range bins data, a pixel 
queue for the direction of image data through a 
processing pipe, and a core processing element for 
pairing of pixels with their corresponding range bin. 
This design partitions the output image into small 
tiles, relying on the fact that the amount of 
response data required for processing each tile is 
predictable and proportional to the size of the tile 
divided by the size of the image. The selection of an 
optimal tile size is dependent of the size and speed 
of the hardware, as well as the size of the problem 
to be solved (per Equations 7 and 8). 

External memory access time may be a limiting 
factor in design performance, but can be mitigated 
via reduced pipeline depth, at the expense of 
increased spatial overhead per parallel 
implementation. The optimal depth is the largest 
value that allows the pre-fetch cache to effectively 

mask memory latency. Oversampling the 
observation area can also decrease design 
performance, but small alterations to the hardware 
of the memory bridge can minimize this effect. 
Simulations show that high throughput can be 
obtained by increasing the amount of hardware 
used, either by choosing large FPGA devices, or by 
connecting multiple devices to the same shared 
memory architecture. 
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