
Parallel Processing Techniques for the Processing of Synthetic
Aperture Radar Data on FPGAs

William Chapman, Sanjay Ranka, Sartaj Sahni, and Mark Schmalz

University of Florida, Department of CISE, Gainesville FL 32611-6120

Uttam K. Majumder
Air Force Research Laboratory Sensors Directorate

2241 Avionics Circle, Wright-Patterson AFB, OH 45433

Abstract

 This paper presents a design for the parallel
processing of synthetic aperture radar data using
one or more Field Programmable Gate Arrays
(FPGAs). Our design supports real-time computation
of a two-dimensional image from a matrix of echo
pulses and their corresponding response values.
Components of this design include: (a) central
processing pipeline to perform back projection
calculations, (b) pre-fetch cache to minimize
external memory access latency, (c) memory bridge
that serves as the primary on-chip storage for pulse
data, and (d) a pixel queue to direct image data in
and out of the pipeline. Design parameters may be
adjusted to achieve optimum performance, and
multiple instances of this design may be replicated
on-chip to achieve prespecified performance
objectives. We provide a complexity analysis as a
function of the input and output parameters.
Simulation results based on an implementation of
this design show that our design achieves 160 GOPs
per instance on a simulated Altera Stratix III
EP3SL150 FPGA, and scales well for output image
size ranging from 500 x 500 pixels to 5,000 x 5,000
pixels.

Introduction

 The use of radar for area surveillance has been of
keen interest to scientists and engineers in fields
such as medical tomography, meteorology and
geology [4]. One such application, radar based
terrain mapping, has recently become the subject of

increased interest in the field of high- performance
parallel computing. Terrain mapping involves the
use of radar devices to generate high-resolution
images of one or more ground objects (e.g., land or
forest), as well as manufactured object(s). As shown
in Figure 1, a radar transmitter at known location L
broadcasts a pulse at time T0. Responses from
objects within the sensor’s field of view are
measured as a function of time. Reflective objects
further from the pulse location will cause echoes
that arrive later than echoes for proximal objects.
In the example shown, the response for P1 will
appear at an earlier time than P2, and P2 will appear
earlier than P3, and so forth. The time these
responses arrive can be readily computed by
dividing the distance between L and Px by the speed
of light c:

Figure 1: A radar pulse is transmitted, and response
intensity is measured as a function of time. Responses
from more distant objects traverse a longer path and
will return to the sensor at a later time.

Figure 2. Configuration of Figure 1 shown in top view. An
object at P4 is the same distance from L as P1, and will
have the same response time.

Unfortunately, while prediction of arrival time for a
given reflected pulse component is simple, the
inverse computation that establishes an object map
from multiple pulses is more challenging, as shown
below.
 For example, in Figure 2, an additional point at P4
will have the same distance, and response time, as
the point at P1. Given the response data for only
one pulse, it is impossible to generate a physically
accurate representation of the original image,
because reflective objects could only be echo-
located to the nearest range band (shown in Figure
2 as concentric circles centered at the pulse
emitter).
 Given multiple views of a ground object,
synthetic aperture radar provides a method of
reconstructing the object map, by measuring and
mathematically combining multiple return pulses at
multiple locations over time, to increase effective
aperture. In the example of Figures 1 and 2, the
sampling process would be repeated with L in
several different locations around P1, P2, and P3.
This helps resolve spatial ambiguity between P1 and
P4, allowing reflective objects to be more accurately
and precisely mapped to their correct locations. In
addition, the effect of sampling error (e.g., due to
interference and environmental factors) is reduced
by the averaging inherent in repetitive sampling,
and by superposition during reconstruction.
However, the rendering of output images from

pulse response data is computationally more
expensive as the number of pulses increases. For
example, a 500 x 500 pixel SAR image took over four
hours to compute on a consumer-grade Hewlett
Packard 2 GHz Centrino processor.
 Although parallel architectures have greater
availability and utility, the cost of developing high
performance sequential hardware has remained
substantial. Also, since sequential processing
solutions for SAR image reconstruction tend to be
I/O-bound primarily and compute-bound
secondarily, parallel computing is further indicated.
We have found that Field Programmable Gate
Arrays (FPGAs), which support parallelism through
replication of spatial algorithms, are useful for SAR
reconstruction. In simulations with Altera Quartus II
software, on an Altera Stratix III EP3SL150 FPGA, we
have obtained 228 seconds execution time from
one instance of our design. Increasing the number
of instances operating in parallel resulted in a linear
decrease in execution time. We next consider the
SAR image reconstruction algorithm employed in
this study.

The Filtered Backprojection Algorithm

 Several published algorithms are available for
reconstructing SAR imagery [1,3]. The filtered back
projection algorithm is known for its large
computational cost and high quality output images
[1] The algorithm, whose details are beyond the
scope of this paper, is overviewed as follows.
 Firstly, the time dimension of the response data
for each pulse is divided into range bins. This
typically occurs at collection time, to convert the
real time response data stream to a discrete format
amenable to storage in memory. Secondly, for each
pixel in the output image, for every pulse in the
response data: (i) the spatial distance of that pixel
from the pulse location is computed; (ii) the range
bin that corresponds to this distance is determined;
and (iii) the contribution of this range bin is
summed with the pixel's current value.

 We note that that this representation of the
filtered back-projection algorithm describes only
the data access pattern and the algorithmic
complexity of computational and I/O operations.
Implementational details are given in [1] and
illustrated schematically in Figure 5.

Benefits of FPGA Implementation

 As noted previously, the back-projection
algorithm is computationally expensive because it
requires every pixel to be summed with the
contribution of every pulse. In practice, given a
large image and a large pulse data matrix, this
process can yield high latencies. Fortunately, the
process of rendering pixels is inherently data-
parallel. As a result, it is possible to achieve a
proportional decrease in overall latency by
replicating available hardware: low resolution times
can be realized via a high degree of parallelism.
Unfortunately, modern microprocessors are
complex mainly-sequential devices, designed to be
applicable in the solution of virtually any
mathematical problem. These general-purpose
capabilities consume large amounts of space on-
chip, which tends to be wasted when a
microprocessor is used to perform simple
calculations. Since most microprocessors are
inherently sequential, they tend to contribute little
to the performance of fine-grained parallel
implementations, as predicted by Amdahl’s Law.
 Field Programmable Gate Arrays are
fundamentally different from microprocessors, as

FPGAs allow designers to define a logical
relationship between hardware inputs and
hardware outputs in terms of spatial relationships
on-chip, rather than in the temporal dimension as
sequential instructions. This supports parallel
computation of operations that are not serially
dependent.
 In implementing SAR image reconstruction via a
back projection algorithm, the same set of
operations are performed for every (R,P) pair,
where P is a pixel in the reconstructed image, and R
is the range bin in a given pulse that corresponds to
P. These operations can be implemented in
hardware as shown in Figure 5.

Figure 4. The microprocessor implementation of
(A * B + C / D) can only perform one operation at a time,
resulting in three iterations through the execute cycle. In
addition, the unused subtraction and Boolean operations
of the processor are wasted. The FPGA implementation
computes multiplication and division operations in
parallel, requires only two operation delays, and uses the
minimal hardware necessary to implement the algorithm.

Figure 3. Data access pattern for the computation of a single pixel. The corresponding range bins for each of the
four pulses are summed to produce the value of the output pixel.

Figure 5. Dataflow diagram of algorithm for computing the contribution of a single pulse for a given reconstructed output
pixel, where computations are performed natively in hardware.

Effect of Response Matrix Size

 In addition to computational complexity, the
back-projection algorithm presents significant data
movement challenges. Both the pulse response
matrix and the output image can be very large, and
most FPGA chips cannot store these structures in
their entirety. However, in order to sum the
contribution of a given pulse to a pixel, both the
correct range bin and pixel must be on-chip at the
right time. Fortunately, the data access pattern of
the back projection algorithm ensures two

properties that are helpful in reducing the cost of
data input and output:

 Property 1. Let function f(P, X) map pixel X to its
corresponding range bin in pulse P. As X is varied
from left to right, or right to left, across any row of
the output image, one of the following will be true:
1. f (P,X) will be increasing.
2. f (P,X) will be decreasing.
3. f (P,X) will be increasing up to some pixel Y;

beyond Y, f (P,X) will be decreasing.
4. f (P,X) will be decreasing up to some pixel Y;

beyond Y, f (P,X) will be increasing.

 This property holds as X is varied across any
column of the output image from top to bottom,
or bottom to top, as shown in Figure 6. Recall
that range bin access is directly proportional to
the distance of a pixel from its corresponding
pulse. In the simple cases (L1 and L3), as X is
varied along any straight line on the image, the
distance between X and the pulse will increase
or decrease. In the case where the pulse location
is not beyond the endpoint of the line (L2 is
directly above the line), then at some point Y,
the distance between Y and the pulse location
will be at a minimum. From this property, it
follows that if only a subregion of the output
image is considered, only a proportionally
smaller subregion of the echo matrix will be
needed to render the output image subregion.

 Property 2. Let the function N(P, S) be the
number of range bins for a given pulse required to
completely generate a square subregion S of the
output image. For any square subregion S and pair
of pulses (P1 , P2), we have

 () () ()SPNSPN 2,1, 2≤ .

This property can be explained by recalling that the
range bin needed for a given pixel is linearly related
to its distance from the pulse location. For any two
points, the factor relating the difference in their
physical locations to the difference in their
corresponding range bins is constant. In particular,
this difference D equals the total distance sampled
divided by the number of range bins. Observe that
the least number of range bins will be required
when the look angle is either parallel or
perpendicular to the base of the square subregion.
Likewise, the maximum number of range bins is
required when the look angle equals 45O, such that

 BD=Bins ,
where B denotes the length of the square base. For
the 45O case,

 ()DB=LengthBxDiagonal=Bins 2

The final step is proven using the Pythagorean
Theorem.

Figure 6. (A) Three pulse locations, L1, L2, and L3 are
shown above. As a pixel is varied from left to right along
the row indicated by the horizontal line, range bin
access: (L1) increases; (L3) decreases (L2) decreases then
increases. (B) A square subregion is resolved from two
pulses at location L1 and L2. The look angles of each
pulse are indicated by a solid line. Range bin access is
minimized when the look angle is parallel to the base of
the subregion (L1) and maximized when it is 45O (L2).

Design

 The proposed algorithm design partitions the
output image into a set of small tiles. Each tile is
square, having width and height K. The process of
generating an output image can then be
decomposed into the process of generating each of

the ()2/ KN tiles independently.

 The back projection algorithm states that each
pixel of an output image is computed as the sum of
the contributions of each pulse in the echo matrix,
where the contribution of a pulse for a given pixel is
the value of the range bin corresponding to that
pixel. To reconstruct the image, the correct range
bin of each pulse must be paired with the
corresponding pixel or pixels in the output image.
 In the proposed design, shown in Figure 9, the
pairing of a single pulse range bin and pixel value
occurs in each box labeled Projection Element (PE).
PEs are arranged in a vertical pipeline having width
W and depth D. Pixels are stored in an external
memory device labeled Output Image, and are
loaded into the Read Pixel Queue, then processed
through the pipeline. At each pipeline stage, a pixel
is paired with the pulse that has been loaded into
that stage. After leaving the pipe, the processed
pixels are stored in a Write Pixel Queue, where they
are transferred back to the external memory device.

Figure 7. The first design considered consisted of a
systolic array of processing elements (PEs). The width of
this array is equal to the width of the image tile, and the
height is configurable. Rows are passed vertically through
the pipe as shown.

 The size of the echo data matrix tends to
confound this type of data movement. When a pixel
reaches a given stage of the pipeline, the
corresponding range bin must be loaded into local
memory so its contribution can be summed with
the existing pixel value. Due to long latencies in
external memory accesses, performance would be
greatly improved by loading the echo matrix into an
on-chip cache. However, the echo matrix is
significantly larger than available on-chip memory,
so only a small portion of the echo matrix can be
stored on the FPGA. Fortunately, range bin access
within each pulse is predictable for a K x K tile.
Within each pulse, the number of range bins
needed to compute each tile is proportional to K/N,
where N is the size of the output image. In Figure 9,
for example, only the shaded region of the Echo
Matrix is used to generate the pixels shaded in the
Output Image.
 Several designs were considered to effectively
exploit this access pattern. One such design
consisted of a systolic array of processing elements
as shown in Figure 7. Each row of pixels from an
output image tile would pass through the array
vertically, while the necessary range bins would
move horizontally. The movement of a row to

Figure 8. A second considered design is similar to that
shown in Figure 7, except that range bins are no longer
exchanged in a horizontal network. In this design, the
range bins from a given pulse are stored in a shared
memory shown at the left of the figure. Every processing
element (PE), has a connection to every range bin in its
shared memory.

the next level of the array would cause processing
elements to exchange range bins, ensuring the
correct bin matched up with the correct pixel. This
design effectively exploited the sequential nature of
echo matrix data access patterns among a set of
images. Range bins could efficiently be shifted from
one column to the next to meet the demands of
each output image row.

However, this design had a serious shortcoming,
namely, it ignored the fact that the number of range
bins needed for each pulse does not necessarily
have a one-to-one relationship with the width of
the tile. In the case where the number of range bins
exceeds with the width of the tile, not all bins would
be needed to process every row. In the case where
the sample look angle is perpendicular to the row,
and the sample distance is much larger than the
width of the tile, only a single range bin is needed to
render the entire output row. By design, there was
no mechanism available for storing the unused bins
for use by subsequent rows. When the inclusion of
such a storage mechanism became obvious, we
improved the interconnection network, to increase
performance of our design.
 The second design (shown in Figure 8) considered
addressed this question directly. Here, we replaced

Figure 9. The proposed design
consists of one or more vertical
pipelines. Pixels pass through a
pipeline from top to bottom,
meeting a new pulse at each
level. Processing elements are
connected to one bucket of a
circular memory bridge. If the
needed range bin is not in that
bucket, the processing element
can assert a signal requesting
the memory bridge to rotate
until the needed bin is in the
correct bucket. The pipe width
can be adjusted to increase pipe
throughput.

the horizontal component of the systolic array with
a shared memory for each pulse. This memory is
connected to each processing element via a
multiplexer, allowing the processing element to
select which bin is needed for the pixel being
computed. This design had the advantage of
achieving optimal throughput, as no time would be
needed for elements to exchange data with
neighbors, but consumed significant on-chip real
estate, as FPGAs are not designed to act as crossbar
switches. This design also does not exploit the
sequential nature of range bin access across
neighboring pixels of the output image. In contrast,
an optimal design would use this predictability to
achieve a more efficient interconnection network.
 The current design, shown in Figure 9, replaces
the shared memory component with a circular
memory bridge (similar to a round-robin queue).
Prior to computation of an output (reconstructed)
tile, each memory bridge is loaded with the range
bins that will be needed to compute the entire tile.
Each processing element is then connected to a

single storage location, or bucket, on the circular
structure. If a processing element is not connected
to a bucket holding the correct range bin, it can
request a clockwise or counterclockwise rotation.
By Properties 1 and 2, it can be shown that if
adjacent pixels are passed through the pipeline,
then rotation distance will be small relative to the
size of the memory bridge. In fact, for a single row
of the image, rotations will always occur in the
same direction with changes to that direction
occurring at most one time. (See the first property
above.) Not more than one full rotation is needed
to compute any given row. This design exploits both
the locality and predictable pattern of range bin
access and uses an interconnection network that
achieves an efficient trade-off between size and
speed.
 An additional characteristic of the design shown in
Figure 9 is the pre-fetch cache. This feature masks
the latency of external memory by permitting the
loading of the memory bridge to be executed in
parallel with the computation of a tile. If the

memory bridge were loaded directly from external
memory, then the pipeline would need to be stalled
for several cycles until the load was completed.
Using the prefetch-cache, it is possible to transfer
data from cache to the memory bridge in as little as
one clock cycle. As long as the time required to
process a tile is greater than the time required to
load the cache, the memory access delays are
effectively masked from the total latency of the
design. An analogous prefetch cache is also used to
mask memory latency of the pixel queue.

Design Analysis and Parameters

Complexity of the design is measured in terms of
time, space, and IO complexity.

Latency

In order to derive an expression for the latency of
rendering an N x N image, it is necessary to consider
the two operations that are occurring in parallel
during the steady state operation of this design: (1)
loading the prefetch cache with a new pulse, and (2)
rendering a K x K image tile with the current pulse.
We write the former operation as a function of K:

memmemstartMB CKL+L=L (1)

where Lmemstart and Lmem refer to the startup time
and access speed of the host memory device. The
constant C is determined by the sampling resolution
and size of each range bin, which are held constant
for the purpose of this analysis. We then write the
latency of rendering a single K x K image for one
pulse, as follows:









memfillRender LK,

W
Kmax+L=L 2

2

 (2)

where Lfill is the initial hardware time required to
start the pipe after reloading the memory bridge,

and 2K is the tile size. The maximum function in

this equation reflects the fact that the rate at which
pixels is limited by both the processing speed and
the memory access speed. Since each pixel must be
read from and written to memory, the rate at which
pixels can move through the pipe is bounded below
by K2 / Lmem. The time to process these pixels is K2 /
W, where W is the width of the pipe. Alternatively,
W can denote the number of pixels that are
rendered in parallel.
 In steady state operation, the larger of LMB and
LRender will dominate the latency of rendering a
single K x K tile for a given pulse. Repeating this
process for all tiles in the image, and distributing
the load across J implementations each with a pipe
depth of D, the total time required to generate the
entire N x N image using A pulses is:

()RenderMB L,Lmax
K
N

JD
A=L

2









 (3)

Space

The design implemented in Figure 9 consists of four
central components: a processing element, a
memory bridge, a prefetch cache, and a pixel
queue. The prefetch cache and memory bridge are
of equal size, and the pixel queue is negligibly small
compared to the other elements. Under this
assumption, we express the space consumed by J
implementations each with a pipe depth D, pipe
width of C, and memory bridge size CK, as follows:

()CK+WSJD=S PE 2 (4)

Memory Access - IO

Firstly, we observe that memory access
requirements to render a single K x K tile on a single
pulse, then write that pulse back to memory, is
given by:

CK+=IOtile
22K (5)

Using J parallel implementations of the design
shown in Figure 9, the IO requirements of rendering
one tile on D pulses then becomes:

()DCK+J=IOpar
22K (6)

This equation reflects the fact that increasing the
pipe depth D results in a linear increase in echo
matrix IO requirements for each pass of a tile
through the pipe. Increasing J, the number of
parallel implementations, produces a linear increase
in the both echo matrix IO and image IO.

Design Analysis - Optimizing Parameters

Minimizing the Value of J

 From Equations 3 and 4, we note that pipe depth
D and degree of parallelism J are both inversely
related to latency, and directly related to space. In
fact, these values appear as a product JD in both
equations. This is intuitive, as greater parallelism
can be obtained by lengthening the pipe, or
operating multiple pipes simultaneously. Regarding
only spatial and temporal efficiency, neither option
is preferable to the other. However, when Equation
6 is considered, it is clear that increasing D results in
lower IO requirements. For that reason, J should
always be chosen to be the lowest possible value.
Figure 11 in the section titled Partitioning the Echo
Matrix - Facilitate Parallel IO describes an
architecture where J = 1 even when the design
would be distributed across multiple FPGA boards.

Selecting the Right Value of K

 We have observed from Equation 3 that when
chip real estate is not bounded above, latency is
inversely related to tile size K. In an environment
where space is unlimited, it is then preferred to let
K = N and process the entire image in a single tile. In
practice, however, available space on an FPGA is
finite. From Equation 4, it can be seen that, for

some fixed S, increasing the value of K decreases
the value of JD. This reduces parallelism and
increases latency. It is necessary, then, to find an
optimal value of K such that latency is minimized.
 In selecting the optimal value of K, we optimize
each of the limiting factors described in Equation 3.
This separates the analysis into a distinct case for
each of the limiting factors: processing speed,
image memory access, and echo matrix memory.
 The first two cases can be treated together, as
neither the processing speed nor access speed of
the memory device can be improved by changing K.
We define the larger of these latencies to be the
latency of rendering 1 pixel on 1 pulse and denote it
Lpix. Echo matrix memory access is ignored, as it is
the faster of two parallel operations. Then, treating
the FPGA chip space available as a constant and
substituting Equation 4 in to Equation 3, the
expression for latency is:

() ()pixfillPE LK+L
K
N

S
ACK+WS=L 2

2

2 







 (7)

When this expression is expanded, its highest and
lowest order terms have order 1 and -2
respectively. We observe that the graph of this
function decreases quadratically toward some
minimum value, and then increases linearly as K

Figure 10. As K is increased toward N, (A) latency
limited by memory access decreases. (B) latency
limited by processing speed achieves a minimum and
then increases linearly.

approaches N. The optimal value of K occurs at the
minimum of this graph.
 The third case assumes that echo matrix memory
access is the limiting factor in throughput. Echo
matrix memory access requirements can be
reduced by increasing the value of K, which
decreases the value of JD and the number of
prefetch caches that are loading data from memory.
By treating chip space as a constant and
substituting Equation 4 into Equation 3, we obtain:

() ()memmemstartPE CKL+L
K
N

S
ACK+WS=L

2

2 







 (8)
This expression decreases on the interval (0, N],
reflecting the fact that echo matrix memory access
is minimized when the image is processed as a
single tile. This is consistent intuitively, because
rendering an image in tiles causes some areas of the
echo matrix to be fetched multiple times, while
rendering a single tile results in only one pass over
the echo matrix.
 We note that in the third case, Equation 8 is a
decreasing function that is greater than Equation 7
as the optimal tile size dictates by cases 1 and 2.
Recalling that Equation 7 increases for values of K
larger than its optimum, the optimal value of K for
case 3 occurs at the point of intersection.

Selecting the Optimal Value of W

 In selecting a pipe width W, we first observe that
increasing the pipe width allows multiple pixels to
be sent down the pipe in parallel. Increasing W also
has a much lower spatial cost than increasing pipe
depth, because it does not require the addition of
memory bridges. However, an increase in W only
reduces the observed latency of the projection
elements (PEs), and does not impact memory
access. An increase in W is then helpful when pipe
processing latency (K2 / W) is the limiting factor in
device performance,. However, in the case where
image or echo matrix memory dominates the

expression for latency, increasing W does not result
in any additional throughput.
 In general, an optimal pipe width can be obtained
by increasing W until echo matrix or image memory
access limits device throughput.

Partitioning the Echo Matrix - Facilitate Parallel IO

 In the event of large memory accesses, the
performance of external memory can be improved
by partitioning the echo matrix across multiple
independent memory devices. This partitioning,
shown in Figure 11 is done on the pulses (rows) of
the echo matrix. Each set of pulses is then sent to a
smaller memory device which is directly connected
to the algorithm instances that act on the specified
collection of pulses. Data access within a partition
shares its communication bus only with other
implementations in the same partition. As a result,
the access requirements on each memory device
are inversely related to the number of partitions.
We have found that there is no theoretical limit to
the number of partitions. Due to the fact that only
read operations are performed on the echo matrix,
it is possible to increase the number of partitions
beyond the number of pulses. A single pulse can
thus be copied to multiple partitions. By continuing
to parallelize the memory access in this manner, it is
possible to increase throughput of the external
memory architecture by an arbitrary factor.
Memory access to the echo matrix is thus scalable,
as the requirements on any one memory device
does not depend on the number of pulses or
implementations.
 The I/O requirements of the image data may also
be improved by arranging algorithm instances in a
pipeline rather than connecting them to a single
shared memory. In this arrangement, the I/O
requirement of each implementation does not
change. Each image tile must be read from external
memory, processed, and then written back.
However, instead of reading and writing from a
single memory device, read operations are
performed from the preceding instance in the pipe

Figure 11. The echo matrix may be
distributed across multiple memory
devices to reduce IO costs when many
instances of the algorithm operate in
parallel. In addition, each
implementation may receive its pixels
from a neighboring implementation,
rather than a single shared memory. Each
box marked Implementation is an
independent instance of the design
illustrated in Figure 9.

and writes are performed to the next instance. Only
the first and last instances have connections to the
shared memory. As a result, access requirements on
this device do not increase as the number of
implementations in increases.
 The external memory architecture described
above ensures that, from the perspective of a single
memory device, the I/O requirements of the
proposed design scale to an arbitrary number of
parallel instances and pulses.

Design Considerations for High Performance

 The analysis provided in the previous three
sections has established the following two
important facts:
(1) An increase in the amount of chip space

available results in a linear decrease in the
latency of processing an image provided that
memory access speed is not the limiting factor
in throughput.

(2) Using the external memory architecture
described in Figure 11 with an appropriate
number of partitions, memory will not be the
limiting factor in throughput.

 It should also be noted that parallel
implementations of the proposed design operate
independent of one another. There is no
requirement that each implementation resides on
the same FPGA as its neighbors. As long as each
implementation is connected to the memory buses
shown in Figure 11, the design will operate
correctly.
 As a result, it is possible to achieve significantly
reduced latencies by increasing the number of FPGA
devices. This permits the possibility of real time SAR
image processing using a network of FPGAs. The
size of these FPGAs and the speed of external
memory is not important. Using the proposed
design, shortcomings in hardware performance can
be overcome by increasing the number of parallel
instances and supporting memory.

 The efficiency of an FPGA design may be analyzed
by considering the amount of time that processing
elements are computing output data, as compared
to the amount of time they are stalled. In this
design, the pipe can stall for three reasons:

(1) The memory bridge is being loaded.
(2) The pixel queue is being loaded.
(3) The memory bridge is rotating.

The pre-fetch cache mechanisms attached to

the memory bridge and pixel queue effectively
mask the external memory latency, as long as the
time required to load the pre-fetch cache for an
image tile is less than or equal to the time required
to generate the tile. If this observation does not
hold, then the device can stall. In practice, the
memory access requirements of the pixel queue will
be much less than that of the memory bridge. If the
requirements of the pixel queue or memory bridge
surpass the speed of the memory device, then the
throughput of the design will be limited by the
speed of the memory. This was examined previously
in Design Analysis and Parameters.
 A stall can also occur any time the memory bridge
rotates to align a requested range bin with its
corresponding processing bucket. The frequency of
stall signals for this reason is proportional to the
sampling resolution divided by the image
resolution. This relationship is shown notionally in
Figures 12 and 13. Simply put, an increase in the
output image resolution will reduce the frequency
in stall signals, as will a decrease in the sampling
resolution.
 From Figures 12 and 13, it is seen that
oversampling an area can cause the memory bridge
to rotate more frequently. If the area is greatly
oversampled, it is possible that the several rotations
could be required for transition from one pixel to
the next between each pixel. In this situation, a
circular memory bridge that is only capable of
rotating one bucket at a time would perform poorly.
If one desires to render low resolution images from
high resolution sample data, then a memory bridge

capable of rotating several buckets in a single clock
cycle would be preferred.

Simulation Results

 To estimate the throughput of our design, the
elements shown in Figure 9 were implemented
using Altera DSP Builder and Matlab Simulink
software. They were then imported into Altera's
Quartus II simulation software, then analyzed to
determine the theoretical optimum throughput.
The sample radar data used to generate these
results contained 42,120 pulses, 424 range bins per
pulse, and sampled a circular area with a simulated
radius of 7 km. For all computations, it was
assumed that the tile size was one-tenth the size of

Figure 12. When the sampling resolution is low, and the
image resolution is high, pixels often map to the same
range bin, or the adjacent range bin, as their neighbors.

Figure 13. When the sampling resolution is high, and
the image resolution is low, pixels map to range bins
that are further from the range bins used by their
neighbors.

Altera Device Information Latency (S): Square Image of Width N

FPGA Family Device LEs N = 500 px 5,000 px 10,000 px 20,000 px

Stratix III EP3SL50 47,500 26.8 830 2909 10815

Stratix III EP3SL150 142,000 8.98 277 973 3617

Stratix IV EP4S40G2 228,000 5.59 173 606 2253

Stratix IV EP4S100G4 353,600 3.61 111 391 1455

Cyclone III EP3C55 55,856 22.8 706 2474 9197

Cyclone III LS EP3CLS100 100,448 12.7 393 1376 5114

Cyclone III EP3C120 119,088 10.7 331 1160 4313

Table 1. Theoretical optimal latencies of seven representative FPGA devices, with four common output image sizes.

the output image (i.e., 100 tiles per output image).
It is also assumed that a sufficiently fast external
memory device is available to ensure that memory
access does not limit design throughput.
 The theoretical optimal latencies of seven
representative FPGA devices are shown in Table 1
using four common output image sizes. The output
image is assumed to be square, with a width equal
to that shown in the table. All latencies are given in
seconds.

 It is important to note that the Table 1 lists
simulated latencies of our design acting on a single
FPGA device with differing degrees of parallelism J.
However, since parallel instances of the design do
not communicate with each other, there is no
reason why they cannot exist across multiple FPGAs
operating in parallel. In practice, as long as each
implementation can fit on a single FPGA, the
number of independent FPGAs is unlimited in
principle. For a Stratix III EP3SL150, the number of
FPGA devices required to generate a 500 x 500 pixel
output image in 0.5 seconds is 18.

 A common metric for evaluating the performance
of computational devices is the equivalent number
of operations per second. Considering the case of a

5,000 x 5,000 pixel output image, the total number
of operations when executed sequentially is 4.42 x
1013. Given a single Stratix III EP3SL150 operating at
1.60 x 1011 operations per second, 6,000 such
FPGAs operating in parallel could achieve a
performance near 1 petaflop.

Related Work

 The algorithm and design presented herein are
tailored to the rapid parallel processing of synthetic
aperture radar data, as well as the reconstruction of
a corresponding two-dimensional output image.
However, these techniques could also be applied to
any domain where echo response data is projected
back to form an image of a surface, object, or area.
One such application is tomography, or the
construction of three-dimensional models from a
set of cross-sectional views. Here, each atomic
volumetric unit or voxel demonstrates the same
properties observed by the pixel. Namely, for a
given cross-sectional view, each voxel will be
associated with a response value that is spatially
near the response of its neighboring voxel. Similarly,
a given volume of output data will require a

predictable quantity of response data for each cross
section. The preservation of these properties
ensures that a circular memory bridge could also be
used as an effective storage mechanism for the on-
chip caching of sectional data.
 Previous study in the field of tomography has
shown FPGAs to be reliable platforms for
deployment of back projection algorithms in the
rendering of three- dimensional images. Gac (et al)
[2] showed that is possible to obtain response times
comparable to that of a Graphics Processing Unit
(GPU) using a single System on Programmable Chip
(SoPC). The techniques described in this document
could supplement these developments, allowing
designs to be mapped to a large number of
independent FPGAs, as needed.

Conclusions and Future Work

 We have presented a design for an efficient
mechanism for reconstructing images given
synthetic aperture radar data. Our design consists
of a pre-fetch cache for masking the latency of
external memory, a circular memory bridge for
providing rapid access to range bins data, a pixel
queue for the direction of image data through a
processing pipe, and a core processing element for
pairing of pixels with their corresponding range bin.
This design partitions the output image into small
tiles, relying on the fact that the amount of
response data required for processing each tile is
predictable and proportional to the size of the tile
divided by the size of the image. The selection of an
optimal tile size is dependent of the size and speed
of the hardware, as well as the size of the problem
to be solved (per Equations 7 and 8).

External memory access time may be a limiting
factor in design performance, but can be mitigated
via reduced pipeline depth, at the expense of
increased spatial overhead per parallel
implementation. The optimal depth is the largest
value that allows the pre-fetch cache to effectively

mask memory latency. Oversampling the
observation area can also decrease design
performance, but small alterations to the hardware
of the memory bridge can minimize this effect.
Simulations show that high throughput can be
obtained by increasing the amount of hardware
used, either by choosing large FPGA devices, or by
connecting multiple devices to the same shared
memory architecture.

Acknowledgements

The authors gratefully acknowledge support of this
work under Air Force contract #FA8650-09-M-1563.

References

[1] Mita D. Desai and W. Kenneth Jenkins,
“Convolution Backprojection Image Reconstruction
for Spotlight Mode Synthetic Aperture Radar” IEEE
Transactions on Image Processing, Vol. 1 No. 4, pp.
505-517, 1992.

[2] Nicolas Gac and Stephane Mancini and Michel
Desvignes and Dominique Houzet, “High Speed 3D
Tomography on CPU, GPU and FPGA”

[3] Lars M. H. Ulander, Hans Hellsten, Gunnar
Stenstrom, “Synthetic-Aperture Radar Processing
Using Fast Factorized Back-Projection” IEEE
Transactions on Aerospace and Electronic Systems,
Vol. 39 No. 3, pp. 760-776, 2003.

[4] B. Bizzarri, “Applicability of SAR data to
meteorology and climatology” IEEE Symposium on
Applications of Multifrequency/Multipolarization
SAR in View of X-EOS (X-SAR for EOS), pp 139-142,
1990.

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

