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Abstract

There are many metrics designed to assist in the
performance debugging of large-scale parallel applica-
tions. We describe a new technique, called True Zeroing,
that permits direct quantitative comparison of the gui-
dance supplied by these metrics on real applications. We
apply this technique to three programs that include both
numeric and symbolic applications. We compare three
existing metrics: Gprof, Critical Path, and Quartz/NPT,
and several new variations. Critical Path provided the
best overall guidance, but it was not infallible. We also
include a set of recommendations to tool builders based
on the experience gained during our case study.

1. Introduction

Performance metrics are a tool to help programmers
reduce the running time of their applications. Profiling
metrics are performance metrics that can be quantified for
individual program components (such as procedures).
These profiling metrics help direct the programmer to the
place in the program that is causing the performance
problem. While single value metrics, such as speedup,
provide feedback about how the application program is
performing, they do not provide direction in how to
improve it. Profiling metrics (in sorted lists) also have the
nice property that they scale well to massively parallel
systems. These metrics are a natural complement to
display and visualization tools.

Many metrics‡ have been developed to help in the
performance debugging of parallel pro-
grams[1, 9, 15, 17, 18]. Typically, new metrics either are
compared to existing sequential tools or used in a case
study to provide testimonials to their usefulness. Unfor-
tunately, with testimonial case studies it is impossible to
isolate the quality of the metric from the quality of the
programmer using the metric. Direct comparison between
hhhhhhhhhhhhhhhhhh

† To appear Supercomputing’92 Minneapolis.
‡ For the rest of this paper, we use the term metrics to

mean profiling metrics, not all metrics.
This work was supported in part by National Science

Foundation grants CCR-8815928 and CCR-9100968, Office of
Naval Research grant N00014-89-J-1222, and a grant from
Sequent Computer Systems Inc.

metrics is required to assess their quality. However, since
metrics are incorporated into different (and often incom-
patible) performance tools, direct comparison between
metrics has been difficult.

We introduce a new technique, called True Zeroing,
that permits direct quantitative comparison of the useful-
ness of the guidance supplied by different metrics. True
Zeroing computes the actual improvement in an applica-
tion if a single procedure is removed. This technique
makes it possible to validate the quality of performance
metrics. We use this technique to directly compare six
metrics: Gprof[10], IPS-2 Profiling, Critical Path[18],
Quartz NPT[1], Logical Zeroing[15], and a new metric
called slack. We computed the value of the these six
metrics for three programs representing both numeric and
symbolic applications. Based on this study, Critical Path
generally provided the best guidance, but each metric had
strengths in specific cases. Finally, we provide a set of
recommendations to application programmers and tool
builders based on the results of our study.

2. Overview of Metrics

This section describes the performance metrics that
we used in this study. We describe these metrics in terms
of a graph of the application’s execution history, called a
Program Activity Graph (or PAG). Variations of this data
structure are commonly used in parallel program correct-
ness debugging[2, 6, 8, 14, 16] and performance debug-
ging[7, 18]. Nodes in the graph represent significant
events in the program’s execution (e.g. lock and unlock
operations, procedure calls and returns). Arcs represent
the ordering of events within a process or the synchroni-
zation dependencies between processes. Each arc is
labeled with the amount of process and elapsed time
between events. Figure 1 shows a simple PAG for a
parallel program with three processes. The solid arcs
represent useful CPU time intervals. The dashed lines
indicate non-useful CPU time from activities such as spin-
ning on a lock.

The performance metrics used in our study can be
described in terms of this graph. The implementations of
some of the metrics (such as Critical Path and Slack) actu-
ally build the PAG, while others (such as IPS-2 Profiling
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and NPT) only implicitly operate on this graph. For many
real systems, it is not possible to build this graph, but it
provides a unified characterization of a parallel program’s
execution that permits a comparison of the performance
metrics.

2.1. UNIX Profiling and IPS-2 Profiling

The simplest of the metrics is an extension of the
standard UNIX profiling tool, "Gprof", to parallel pro-
grams. For each process, this metric can be computed by
traversing the PAG for that process. For each arc (includ-
ing spin waiting time), the CPU time for that arc is added
to the cumulative time for the currently active procedure.
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Figure 1. A sample Program Activity Graph.

Nodes represent interesting events in the application (e.g. procedure calls and message passing). The ordered pair indicates
the CPU and elapsed times between events.

For a parallel application, the results for individual
processes are aggregated, while ignoring inter-process
arcs. The profiling environment on the Connection
Machine[17] is an example of this metric. This metric is
typically implemented by periodic sampling of the pro-
gram counter. Gprof also provides a call graph profile,
but we only consider the time directly consumed by a pro-
cedure. The additional data supplied by the call graph is
useful, but we are interested in metrics that provide a sin-
gle number for each procedure.

One obvious problem with the UNIX Profiling
metric on shared memory multi-processors is that it does
not distinguish busy waiting time from productive work.
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IPS-2 Profiling is a simple extension to UNIX Profiling
that only counts useful CPU time. Like UNIX Profiling, it
ignores inter-process arcs in the PAG. IPS-2 Profiling
also differs from UNIX Profiling because it is computed
from a trace of the program’s execution instead of by
sampling.

2.2. Critical Path Profiling

The Critical Path of a parallel program is the long-
est CPU time weighted path through the PAG. Non-
productive CPU time, such as spinning on a lock, is
assigned a weight of zero. The Critical Path Profile is a
profile of the procedures along the Critical Path. The time
spent in these procedures is the reason that the program
ran as long as it did. Unless one of these procedures is
improved, the application will not run any faster.

Since the PAG is a directed acyclic graph and none
of the arcs are negative, a variation on the distributed
shortest path algorithm described by Chandy and Misra in
[4] is used for this calculation. This algorithm[18] passes
messages along the arcs of the graph. Each message con-
tains the value of the longest path to the current node. At
split nodes (nodes with one inbound arc and two outbound
arcs), the message is duplicated and sent on each of the
outbound arcs. At merge nodes (nodes with two inbound
arcs and one outbound one), only the longest path is pro-
pagated. The first phase of the algorithm terminates when
the last node in the graph has received messages on each
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Figure 2.
Comparison of Critical Path and NPT Metrics.

Calculation of Critical Path and NPT Metrics for the top half of the PAG shown in Figure 1. Critical Path suggests that
either procedure A or B should be fixed first. NPT suggests that procedure B is the most important.

of its inbound arcs. Once the path is found, a second
(backwards) pass is made though the graph. This pass
traverses the Critical Path and accumulates the time spent
by each procedure on the path. The details of the imple-
mentation of this algorithm are described in [15].

2.3. Quartz NPT Profiling

Quartz’s NPT[1] metric is computed by sliding a
horizontal ruler down the PAG. At each node, the ruler is
stopped and the elapsed time in each procedure since the
last node is computed. Figure 2 shows a sample computa-
tion of this metric. For each process doing useful work,
the time value is divided by the number of processes
doing useful work during this interval of time (i.e. effec-
tive parallelism for that time interval), and then added to
the cumulative total for the currently active procedure.
No time is added to procedures that are not doing useful
work, and inter-process arcs are ignored in this metric.
The original implementation of NPT was an approxima-
tion based on periodic sampling; the version used in our
study uses trace data.

Data for NPT should be collected from an applica-
tion that is run on a dedicated machine. Because NPT is
based on elapsed time, it is not possible to distinguish
time spent doing useful work from time when the applica-
tion is not running. However, an advantage of using
elapsed time is that NPT implicitly includes kernel time
spent by processes waiting for operating system services
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like paging and I/O. In contrast, the Critical Path metric
uses only CPU time, which means that it is possible to get
reasonable results even on a loaded machine.

NPT also differs from Critical Path in that NPT
does not use the synchronization dependencies in the
application program. In Critical Path, the time spent in a
critical section before another process starts to wait for
the critical section is considered to be as important as the
time spent in the critical section with another process
waiting. For example, consider the PAG fragment in Fig-
ure 2 that shows part of the execution of a three process
parallel application. Three procedures appear in this PAG
fragment. The elapsed time for this fragment is 72 units.
The tables in Figure 2 show the Critical Path and NPT
metrics computed for this graph. Consider what would
happen if we were able to fix A, B or C and the CPU time
for these became zero. If A or B is fixed, the waiting time
(in processes 2 and 3) is eliminated and the total elapsed
time becomes 36. However if procedure C is fixed, the
elapsed time of the program remains unchanged. Critical
Path indicates that A and B are equally good to improve.
NPT correctly identifies B, but assigns too low of a
weight to A. The purpose of our case study is to deter-
mine the importance of differences like these in real
applications.

2.4. Slack

Slack is a new metric based on Critical Path that is
helpful in assessing the benefit associated with fixing a
procedure on Critical Path. Each procedure on the Criti-
cal Path has a slack value that indicates how much the
procedure can be improved before the Critical Path will
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Figure 3. Comparison of Critical Path and Slack Metrics for a sample sub-program.

be altered. Slack is computed using the algorithm
described in [12].

The motivation for Slack is that improving a pro-
cedure on the Critical Path might not decrease the elapsed
time of the program because there might be a second
longest path that is slightly shorter than the Critical Path.
The Slack metric considers these secondary paths and
their relationship to the Critical Path.

Figure 3 illustrates a Critical Path and Slack com-
puted for the second half of the graph in Figure 1. This
example shows that although procedure B is the largest
component of the Critical Path, improving it will not help
as much as fixing procedure D. If procedure D is fixed,
the length of the program’s execution is reduced from 10
to 7. But, fixing B will only reduce the elapsed time by 1.

In a balanced application (i.e. one in which the
processes start and end at about the same time, and have
about the same amount of useful CPU time), there will be
no slack. This is because the Slack metric only considers
the relationship between the lengths of the Critical Path
and secondary paths through the PAG, and does not con-
sider which procedures are along these paths. For exam-
ple, if a procedure is on both the Critical Path and a
secondary path, improving it will reduce the length of
both paths. Because slack ignores this synergistic effect,
the value assigned to the procedure will be too low.

2.5. Logical Zeroing

The Logical Zeroing[15] metric attempts to provide
an estimate of how much the execution of an application
will improve when a selected procedure is improved.
This metric is computed by setting the value of the PAG
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arcs for the selected procedure to zero, and then re-
computing the length of the new Critical Path. The differ-
ence between the length of the new Critical Path and the
original Critical Path is an estimate of the improvement
possible by fixing the selected procedure. This is only an
estimate because improving the procedure might cause a
substantial re-ordering of the events in the application.
Logical Zeroing is most helpful in a balanced application.
Even if the second longest path is almost the same length
as the Critical Path, it will provide useful guidance. This
is because when a procedure is zeroed, both its com-
ponent on the Critical Path and its component off the Crit-
ical Path (i.e. secondary paths) are altered.

3. Techniques for Comparison

The ultimate test of a performance metric is how
useful it is in assisting programmers in improving their
programs. To provide a test-bed for comparing metrics,
we added Slack and NPT to the IPS-2 system[15] (IPS-2
already provided Critical Path Profiling, Logical Zeroing,
and IPS-2 Profiling). IPS-2 provided a uniform environ-
ment that permitted direct comparison of each metric for a
single execution of a parallel application.

Once we can compute several metrics for a single
program, how do we quantitatively compare the guidance
each metric is providing? A simple approach would be to
give the same parallel application to two programmers
and let each one try to improve the application’s perfor-
mance using a different metric. Afterwards, we could
compare the running times of the two improved programs.
One problem with this approach is that it is difficult to
separate the skill of the programmer from the quality of
the information provided by the metric. A second prob-
lem occurs when different metrics provide different infor-
mation about the same program. Consider an application
in which procedure A has a large effect on the perfor-
mance of the application but contains code that is
extremely difficult to improve, and procedure B has a
smaller effect but contains code that can be easily
improved. If a metric incorrectly suggested that B had the
larger performance effect, a programmer might actually
profit more from this information than if the metric
correctly picked procedure A†. This could lead us to con-
clude that the incorrect metric was providing better gui-
dance than the correct metric. A more systematic
approach is required to compare metrics.

Our goal is to quantitatively compare the predicted
performance improvement to the actual performance
improvement if we follow the advice of a given metric. If

hhhhhhhhhhhhhhhh
† None of the metrics attempt to identify (or are able to

identify) the difficulty in fixing a procedure, they just provide a
ranking of the importance of improving specific procedures.

a metric tells us that a procedure consumes 20% of a
program’s execution, we want to see how much of this
20% improvement is obtained if we remove that pro-
cedure. Simply altering an existing PAG (such as done by
Logical Zeroing) is not enough because synchronization
patterns might change as a result of removing a pro-
cedure.

We developed a technique called True Zeroing to
see how the elapsed time of a program changes when a
single procedure is removed. True Zeroing is computed
by editing the source code for the application and remov-
ing the procedure to be tested. The application is then re-
executed to see the actual reduction in execution time.
The difficult part is how to remove a single procedure
from an application and still have a working program that
does not alter the performance of other procedures. We
must also be alert for performance changes caused by
interactions with architectural features such as caching
and virtual memory. IPS-2 allows us to easily monitor the
levels of cache and virtual memory activity [11], so we
can check that the modified program does not significantly
change these behaviors.

Several approaches were used to compute the True
Zeroing value for each procedure.

(1) The easiest approach is to simply remove the pro-
cedure, which works well for printing routines and
other parts of the application where the results of
one procedure are not used by other procedures.

(2) In many cases, a procedure will update the global
state of the application. To handle this case, we
first execute the application (on a given input) and
record state changes made by that procedure. Next,
we replace the procedure with assignment state-
ments that make the appropriate changes to the glo-
bal state. Last, we re-execute the application to
determine the execution time without the modified
procedure. This technique works well for pro-
cedures whose computation time is long compared
to procedure call overhead. Fortunately, most pro-
cedures in our study (especially in the numeric
application) exhibited this property.

(3) If a procedure makes large changes to its global
state (e.g., when modifying a large matrix), we can
use a technique similar to the previous one. After
recording the changes that a procedure makes to a
large matrix, we store these changes in a similar
matrix that is statically initialized with the changed
values. We replace the procedure with one that
simply switches pointers to the array containing the
‘‘pre-cooked’’ results.

(4) The phase behavior of a program can help us. If a
program has several distinct execution phases
separated by barrier synchronization, it is possible
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to analyze each phase separately. For example, if a
procedure in the first phase is being analyzed, it is
possible to simply remove that procedure as long as
the results are not used until a latter phase.

(5) The elapsed time of serial sections of code before
any parallel computation can simply be measured
since any improvement in these procedures will
directly reduce the execution time of the program.

Applying these techniques require a fair amount of
skill and creativity, but provide a set of results that can be
used to quantitatively compare different metrics. By
using the above techniques, we were able to compute the
True Zeroing value for each of the procedures in our test
applications.

4. Case Studies

We chose three application programs to use in our
comparison of performance metrics. They were written
for the Sequent Symmetry by people not involved in the
IPS-2 project. All measurements were conducted on a
dedicated system, and each program was run five times
and the best time used. Repeated runs were used to
reduce the effects of periodic operating system processes.
For each test, we computed the metrics that we wished to
compare (Critical Path, IPS-2 Profiling, NPT, Slack, and
Logical Zeroing). In addition, we also ran conventional
Gprof on each program. Finally, we computed the True
Zeroing of each procedure in each application using the
techniques described in the previous section.

4.1. Sparse Choleski Factorization

The first application we compared was an imple-
mentation of sparse Choleski factorization (a common
numeric code). It consists of 2,100 lines of C and 3,400
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Figure 4.
Summary of the guidance supplied by the metrics for sparse Choleski.

The first column shows the True Zeroing data for each procedure, and the table is sorted by this value. For each procedure,
the weight (importance) assigned to it by each metric is shown. The sixth column shows the values for standard UNIX Gprof.

lines of Fortran. For our purposes, the program’s most
interesting characteristic is that its performance is seri-
ously limited by synchronization.
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Comparison of metrics for sparse Choleski factorization.

The performance data for this application is sum-
marized in Figure 4 and graphed in Figure 5. The values
for each metric have been normalized to a single scale so
that direct comparison is possible. For this application,
Critical Path correctly identifies the most important pro-
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cedure to fix (printCmat). The results for NPT and
Gprof are not quite as good, NPT indicates that Tcol is
more important than printCmat and that sElem is
more important than cmod. Gprof, fails badly here and
suggests that both mycalloc and sElem are more
important than printCmat. Critical Path also has an
incorrect ordering of procedures, on the 3rd and 4th pro-
cedures, and assigns similar weights to each. When com-
paring metrics using the graph, the left side of the graph is
more important than the right side, because the True Zero-
ing value for each procedure (and therefore the
procedure’s importance) decreases from left to right.

iiiiiiiiiiiiiiiiiiiiiiiiiiii
Metric Correlationiiiiiiiiiiiiiiiiiiiiiiiiiiii
Critical Path 0.89

Logical Zeroing 0.80

IPS-2 Profiling 0.78

NPT 0.73

Slack 0.45
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Figure 6.
Correlation Coefficient for sparse Choleski application.

To provide a single number to compare the quality
of guidance from the metrics, we computed the correla-
tion coefficient between each of the metrics and True
Zeroing data. A correlation coefficient of 1.0 indicates a
perfect linear correlation between the metric and True
Zeroing, meaning the relative magnitude and ordering of
the values for all procedures was correct. Figure 6 lists
the correlation coefficients for this application. Overall,
Critical Path did a somewhat better job than any of the
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readblk 1.85 4.27 14.29 2.53 4.27 4.31 12.19

initDb 0.64 0.56 11.43 0.30 0.56 0.12 1.27iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 7.

Summary of the guidance supplied by the metrics for shm_join.

other metrics. Surprisingly, IPS-2 Profiling did a slightly
better job than NPT. This is because the NPT metric
reversed the order of the first and second procedures to
fix, and the order of the third and fourth procedures. IPS-
2 Profiling assigned too low of value to the sequential pro-
cedure printCmat, but provided accurate guidance for
the parallel procedures. Slack performed better on this
application than it did on the other two in the study
because this application is out of balance and spent exces-
sive time waiting on synchronization. Gprof did a poor
job on this program (it had a negative correlation!)
because the metric ignores synchronization.

4.2. Shared Memory Join

The second application tested, shm_join, was a
program that performed a database join in shared-
memory. It consists of 6,000 lines of C and is a purely
symbolic application. Shm_join was extensively
tuned by the author using conventional performance tools.
The program consists of four major phases: serial initiali-
zation, parallel initialization, tuple partitioning, and join-
ing.

Figure 7 shows the performance data for this appli-
cation. The most interesting thing about this data is the
createPool procedure. This procedure does not show
up in any of the CPU time based metrics, but does show
up in the NPT metric and True Zeroing because it makes a
call to the operating system to setup shared memory. This
call (mmap) is slow, and consumes a lot of system time,
but no user time. Since NPT is based on elapsed time, it
detected the time spent in mmap. The other metrics are
based on CPU time. Because this one procedure’s system
time is responsible for 27% of the program’s elapsed



-- --

- 8 -

time, it dominates the other procedures. To compare
metrics for the other procedures, we have removed the
createPool procedure from the data and re-normalized
the values for the graph shown in Figure 8. The NPT
metric reverses the order the next two remaining pro-
cedures (effectJoin and partition). The other
metrics correctly order the remaining five procedures.

effectJoin

partiti
on

randomShuffle

exchange

createQueues

initR
elation

write
blk

readblk
initD

b
0

10

20

30

M
et

ric
 V

al
ue

 True Zeroing
 Critical Path
 NPT
 Gprof

Procedure
Figure 8.

Comparison of metrics for shm_join.

To provide a better comparison between the
metrics, we computed the correlation coefficients for this
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Figure 9.

Summary of the guidance supplied by the metrics for Ptycho.

program both with and without the createPool pro-
cedure. Those results are shown in Figure 10. For the
NPT metric, the correlation coefficient goes down when
the createPool procedure is removed. The NPT and
the True Zeroing values are similar for this procedure
(because it is serial), and when this data point is removed,
the error that NPT makes in the ordering of
effectJoin and partition becomes more impor-
tant. Gprof provided substantially worse results than Crit-
ical Path, Logical Zeroing and NPT. Slack did not pro-
vide any meaningful results for this program because the
program is well balanced, and so the secondary paths are
similar in length to the Critical Path.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Correlation
Metric

wo/createPool with createPooliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Critical Path 0.92 0.40

IPS-2 Profiling 0.92 0.40

Logical Zeroing 0.92 0.39

NPT 0.91 0.94

Gprof 0.67 0.16

Slack − 0.53 − 0.57iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Figure 10.
Correlation Coefficient for shm_join application.

4.3. Parallel Cache Simulator (Ptycho)

The third application, ptycho, is a parallel cache
simulator. It was written to compare various cache algo-
rithms and contains about 4,000 lines of C. This program
is unusual because it contains no synchronization except
for a barrier at the end. While this makes it atypical of
most parallel programs, it does provide an opportunity to
validate our comparison technique.
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The performance data for this program are summar-
ized in table in Figure 9 and graphed in Figure 11. The
improvements predicted by each of the metrics (except
slack) are similar and closely track the actual improve-
ment possible ("True Zeroing"). The prediction by the
Slack metric is worse than the other metrics because the
program is well balanced, so all the paths through the
PAG have the same length. This is to be expected in a
SPMD (Single Program Multiple Data) program without
synchronization; the program is either running serially or
completely parallel and executing the same procedures.
The only major deviation for the other metrics from the
True Zeroing is for the procedure match. All the per-
formance metrics indicate this procedure was the second
most important in the program, but True Zeroing shows it
to be third. Instrumentation overhead exaggerated the
importance of this procedure. The match procedure is
called over 157,000 times, far more than any other pro-
cedure. As a result, the instrumentation, which has a fixed
overhead per procedure call, recorded higher values for
this procedure.

forEachRef

mainloop
match
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movetoop

updatedist
main
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 Critical Path
 NPT
 Gprof
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Figure 11.
Comparison of metrics for the Ptycho application.

Figure 12 shows the correlation coefficients for the
ptycho program. The Critical Path, IPS-2 Profiling, Logi-
cal Zeroing, and NPT metrics all had the same result, 0.95
correlation. Gprof did slightly worse, with a correlation
coefficient of 0.90. Slack provided no useful information.
In a SPMD program without synchronization all of the
metrics except slack should have similar correlations
because each metric should have the same value for each
procedure. The different result for Gprof is because it is
computed from sampled data and the rest of the metrics

use more accurate trace data.
iiiiiiiiiiiiiiiiiiiiiiiiiiii
Metric Correlationiiiiiiiiiiiiiiiiiiiiiiiiiiii
Critical Path 0.95

IPS-2 Profiling 0.95

Logical Zeroing 0.95

NPT 0.95

Gprof 0.90

Slack 0.27iiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Figure 12.
Correlation Coefficient for Ptycho application.

4.4. Discussion of Results

The ideal performance metric would provide
correct guidance in all cases. While providing good infor-
mation for sequential programs is not difficult, the syn-
chronization structure of parallel programs makes provid-
ing accurate guidance difficult. All metrics compared in
our study provided some degree of guidance to the pro-
grammer. This guidance varied from very helpful to only
marginally usable. Overall, Critical Path did somewhat
better than the other metrics, but it too had problems. As
predicted in Section 2, Critical Path distinguished itself
most on the program with the greatest amount of syn-
chronization (sparse Choleski).

The one area where all metrics could be improved
is in their accounting for system time. Critical Path
currently ignores this time altogether. Although NPT
automatically picks up system time (because it is based on
elapsed time), this can have both hidden benefits and
problems. For example in the shared memory join appli-
cation, the procedure partition had a large amount of
system time from page faults. While this time is impor-
tant, unless the programmer is aware that the problem
with a particular procedure is due to system time, they
will not know how to fix it. Currently IPS-2 collects sys-
tem time information via an external sampling pro-
cess[11]. This approach provides good coarse-grained
information, but does not isolate the cause of a system
time bottleneck to a specific procedure.

We also discovered that the slack metric generally
failed to provide useful guidance. Because all of the pro-
grams considered in our case study were written in a
SPMD style, slack provided too low of a value for pro-
cedures that were on both the Critical Path and secondary
paths. We are currently looking into ways to improve
slack to handle this case. We are also investigating using
slack on client-server applications where the code in each
process is different.

Another class of problems revealed in our study
was caused by the way some of the metrics were imple-
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mented. For example, procedure level profiling provides
a wealth of information to the programmer, but for some
programs, once a performance problem has been isolated
to a specific procedure, it would be useful to profile basic
blocks. None of the metrics compared currently support
this level of data collection. For example in the ptycho
program, the procedure forEachRef contains two
important for loops, and it was not possible to identify
which loop should be examined first. This problem is par-
ticularly acute in scientific programs because they tend to
have several important loops located in a single pro-
cedure.

Another implementation problem is instrumentation
overhead. Overhead of as little as 15-20% can bias the
results of a tool; this is especially true for short pro-
cedures that are called frequently. In our study, the
importance of the match procedure from the ptycho
application was exaggerated because of instrumentation
overhead. Besides trying to reduce this overhead, tools
need to provide feedback on observed overhead and per-
turbation. In this study, instrumentation perturbation was
systematic and uniform for all of the metrics, so differ-
ences between metric values were due to fundamental
differences, not artifacts of implementation variations.

The goal of increasing the precision of data col-
lected directly conflicts with the goal of reducing instru-
mentation overhead. To avoid this problem, tools need to
incorporate better algorithms to reduce the amount of data
collected. AE[13], QP[3], and Mtool[9] are examples of
this approach to the problem. Another option is to alter
dynamically the level of instrumentation during a
program’s execution, depending on the desired informa-
tion. This approach offers the greatest flexibility, but
requires additional effort by the programmer (or a sophis-
ticated performance tool) to select the right information to
collect at the right time.

Based on our case studies, we have also discovered
several things that apply to performance systems and
parallel programming in general. First, because each
metric was useful on a least one of the programs, we feel
that tools need to support multiple metrics. However, a
performance measurement system must also provide gui-
dance to programmers about which metrics are useful for
a particular program. For example, the degree to which
the program is balanced can influence which metrics will
provide useful guidance. The complexity of a metric’s
computation and the amount of data that must be collected
to compute it also influence metric selection. A perfor-
mance system should use this kind of information to help
guide the user in selecting appropriate metrics; without
this additional assistance, programmers can drown in a
sea of metrics.

We also discovered an interesting trend in two of
the three programs; the programmers were not making
effective use of the system libraries. For example, the
sparse Choleski program implemented its own bubble sort
rather than calling the standard C library function
qsort. In another application, the elapsed time was
improved 20% by using a different version of the bcopy
library that was optimized for word aligned transfers.
Until programmers make better use of the libraries, paral-
lel programs will be written as hand crafted programs and
not built from modular building blocks.

Finally, we have a few comments about our tech-
nique for comparing metrics. It provided valuable infor-
mation and permitted us to compare the metrics we
wanted. However, the technique is tedious. Removing
each procedure from the program requires too much time.
If it were possible to automate this process, the technique
would be easier to apply to more programs. One possible
approach is to use the methods of program re-execution
developed for parallel debugging described in [5].

5. Conclusion

We presented a new technique, called True Zero-
ing, that permits direct, quantitative, and fair comparison
of parallel program performance metrics. We applied this
technique to six metrics on three parallel applications with
widely varying styles. The result of this comparison was
that while Critical Path provided the best overall gui-
dance, it was not universally better than the other metrics
compared. Because there is no single universal metric,
future parallel performance systems need to support mul-
tiple metrics. However, these systems must also assist the
user in selecting appropriate metrics for their application.
This additional guidance is necessary to make complex
performance tools easy to use. Tools must also provide
feedback to the user about the overhead they introduce
into applications.

Proposals for new metrics should include com-
parison to existing metrics. There are many metrics that
provide some degree of guidance, but only head-to-head
comparison can show that a proposed metric is better on
real programs. In general, it is easy to develop a new
metric that provides some guidance, and performs better
than Gprof†.
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