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We present our effort to provide a comprehensive parallel

programming environment for the OpenMP parallel directive

language. This environment includes a parallel programming

methodology for the OpenMP programming model and a set

of tools ( Ursa Minor and InterPol) that support this method-

ology. Our toolset provides automated and interactive assis-

tance to parallel programmers in time-consuming tasks of the

proposed methodology. The features provided by our tools

include performance and program structure visualization, in-

teractive optimization, support for performance modeling,

and performance advising for finding and correcting perfor-

mance problems. The presented evaluation demonstrates that

our environment offers significant support in general paral-

lel tuning efforts and that the toolset facilitates many com-

mon tasks in OpenMP parallel programming in an efficient

manner.

1. Introduction

Today, new affordable multiprocessor workstations

and high performance PCs are attracting a large number

of users. Many new programmers are inexperienced

and demand an easy programming model to harness

the power of parallel computing. The recent parallel

language standard for shared memory multiprocessor

machines, OpenMP [7], promises a simple interface
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for those programmers who wish to exploit parallelism

explicitly. The OpenMP standard resolves a signifi-

cant portability problem that has been associated with
shared memory parallel programming. It is expected

to attract an increasing number of programmers and

computer vendors in the high performance computing

area.

However, there are open issues to be addressed. Per-
haps the most serious of all is the lack of a good pro-

gramming methodology. A programmer who is to de-

velop a parallel program faces a number of challenging

questions: What are the known techniques for paral-
lelizing this program? What information is available

for the program at hand? How much speedup can be

expected from this program? What are the limitations

for the parallelization of this program? It usually takes
substantial experience to answer such questions. Many

programmers do not have the time and resources to

acquire this experience.

A useful methodology must provide structured

guidelines that encompass the whole process of pro-
gram development, while providing useful tips with

which users can navigate through difficult steps. The

motivation to develop such a methodology came from

our prior research efforts in parallelizing programs for
different target architectures [9]. After a great deal of

trial and error as novice programmers, we have devel-

oped a structured way to a successful optimization of

programs. As the number of the programs that we dealt
with increased, our general methodology went through

several iterations of adjustment and improvement. Fi-

nally, we decided to document it so that a wider range

of programmers can benefit.

A programming methodology is not useful if it can-
not be supported by tools. That is, it is not of much

help to programmers to list the programming tasks that

need to be performed, if all those tasks must be ac-

complished manually with only basic utilities. Among
these tasks are performance data analysis and manage-

ment, incremental application of parallelization and op-

timization techniques, performance measurement and

monitoring, and problem identification and devising
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remedies. Each of them puts a significant burden onto

programmers and can be very time-consuming if not

facilitated by tools.

There are many tools designed for the purpose of

helping programmers accomplish these tasks. How-

ever, they usually focus on specific aspects or envi-

ronments in the program development process and are

not based on a common underlying methodology. The

goal of our work is to resolve these shortcomings and

provide a comprehensive and actively guiding toolset.

We have developed a methodology that has worked

well under various environments and a set of tools that

address difficult tasks in the OpenMP programming

model. Combining our methodology and supporting

tools, programmers can now follow a structured ap-

proach toward optimizing the performance of parallel

programs.

The remainder of the paper is organized as follows.

Section 2 presents our proposed programming method-

ology. Supporting tools are described in Section 3.

Section 4 discusses and evaluates the tools. Related

work is presented in Section 5. Section 6 concludes the

paper.

2. Parallel programming methodology

Figure 1 shows the parallelization and optimization

steps envisioned by our proposed methodology. The

methodology envisions the following tasks when port-

ing an application program to a parallel machine and

tuning its performance. We start by profiling the pro-

gram execution time, usually on a loop-by-loop ba-

sis. We do this by instrumenting the program with

calls to timer functions or by using hardware counters.

The timing profile not only allows us to identify the

most important code sections, but also to monitor the

program’s performance improvements as we convert it

from a serial to a parallel program.

The first step of performance optimization is to apply

a parallelizing compiler. Ideally, a parallelizing com-

piler would be able to generate a highly-tuned appli-

cation that exploits all available parallelism. However

in practice [8], this is not always possible. Users may

be required to assist in the parallelization process due

to both compiler limitations and intrinsic dependences

in the target application. If a compiler limitation leads

to missed parallelism, a user may simply force paral-

lelization. If parallelism is limited due to an intrinsic

dependence, the user may be able to substitute a paral-

lel algorithm. While it may seem that any interaction

that a “novice” user can perform should be automat-

able, being aware of the intent of an application allows

users to perform transformations that are still beyond

the capabilities of the best research compilers.

While our methodology begins with the application

of a parallelizing compiler, if no such tool is available,

we can apply program transformations by hand. Af-

ter the initial parallelization step, whether automatic

or manual, we identify time-consuming code sections

of the program and optimize their performance using

several recipes. More detailed steps and suggestions

provided by this methodology can be found in [20].

There are two feedback loops in the Fig. 1. The first

one reduces excessive overhead introduced by program

instrumentation. This overhead not only affects the

program’s performance. It can also skew the execution

profile, so that programmers focus their efforts on the

wrong program sections. To measure the overhead one

runs the program with and without instrumentation. If

necessary, instrumentation can be removed from inner-

most code sections, or from sections that contribute

little to the overall execution time.

The second loop is the actual optimization process,

where one applies tuning techniques and evaluates their

performance. Tuning steps may need to be modified

or even undone if their result is not satisfactory. After

each step one identifies the new most time-consuming

program section on which to target the next tuning step.

The methodology described above has been empir-

ically devised. It tells programmers “what should be

done” in program tuning. The specific tasks in each

step are described in detail in [20]. We support this

methodology with a set of tools, which answers the

question of “how” the tasks can be performed. These

tools are described in the next section.

3. Tool support

Parallel programmers without access to parallel pro-

gramming tools usually rely on text editors, shells, and

compilers. Programmers write codes using text editors

and generate an executable with resident compilers. All

other tasks such as managing files, examining perfor-

mance figures, searching for problems and incorporate

solutions, is usually achieved without special-purpose

tools. However, considerable effort and good intuition

are needed in file organization and performance diag-

nosis. Even with the help of parallelizing compilers,

these tasks still remain for the users to deal with. In

fact, most users end up writing small helper scripts for
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Fig. 1. Overview of the proposed performance optimization methodology and supporting tools. Bold-faced tools are described in this paper.

many tedious programming tasks. Our new tools step

in where these traditional tools have limits. We have

set the following design goals.

Consistent support for methodology: This is the

main goal of our research. We examine the

steps in the methodology and find time-consuming

programming chores that call for additional aid.

Some tasks are tedious and may be automated.

Some require complex analysis, thus assisting util-

ities are needed. The integration of the method-

ology and the tool support significantly increase

programmers’ efficiency and productivity.

Support for performance modeling: In addition to

providing raw performance information,advanced

tools must help filter and abstract a potentially

large amount of data. The ability to flexibly ma-

nipulate data and to combine them into high-level

performance models, allows users to reason about

the performance behavior of a program in a flexi-
ble way.

Active guidance system: Tuning programs requires
dealing with numerous different instances of code
segments. Categorizing these variants and find-
ing the right remedies for performance problems
requires experience. We believe that it is possi-
ble to address this issue systematically through
automated analysis utilities.

Program characteristic visualization and perfor-

mance evaluation: The task of improving pro-
gram performance starts with examining perfor-
mance and program analysis data and finding
potential improvements. The ability to browse
through this information and visualize it is criti-
cal. Tables, graphs, and charts are common ways
of expressing a large set of data for easy compre-
hension.

Integration of program analysis with performance

evaluation: Most tools focus on either static pro-
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gram analysis data or performance data. However,

good performance only comes from considering

both aspects. It is important to identify the rela-

tionship between the data from both sides. With-

out the consideration of performance data, static

program optimization can even degrade the per-

formance. Likewise, without the static analysis

data, optimization based only on performance data

may be marginal.

Interactive and modular compilation: The usual

black-box-oriented use of compiler tools have lim-

its in efficiently incorporating users’ knowledge of

program algorithms and dynamic behavior. Man-

ual code modification in addition to automatic

parallelization is often necessary to achieve good

performance, and tools should support convenient

mechanisms for the incorporation of manual tun-

ing. Another drawback of conventional compil-

ers is their limited support for incremental tun-

ing. The localized effect of parallel directives in

the OpenMP programming model allows users to

focus on small portions of code for possible im-

provement in an incremental manner. Hence, the

compiler support for incremental tuning is also an

important goal in our tool design.

Data Management: In the process of compiling a

parallel program and measuring its performance,

users experiment with a number of program vari-

ants under many different environments. As a re-

sult, a considerable amount of information is pro-

duced. Managing this information for easy later

retrieval and comprehension is a challenge. This is

even more for work done in a team, where proper

labeling of data and recording of the experimental

environment is critical. Therefore, support for ex-

periment data management is an important design

goal.

Accessibility: Although the importance of advanced

tools for all software development is evident,

many available tools remain unused. A major rea-

son is that the process of searching for tools with

needed capabilities, downloading and installing

them on locally available platforms and resources

is very time-consuming. In order to evaluate and

find an appropriate tool, this process may need to

be repeated many times. Using today’s network

computing technology, tool accessibility can be

greatly enhanced.

Configurability: In order to satisfy a wide commu-

nity of users, tools must allow individuals to set

preferences. By having configurability as one of

our design goals, many users’ preferences can be

incorporated into the tool usage without writing

special-purpose utilities.
Flexibility: Flexibility is an important characteristic

of general tools. We have seen many situations
where users wished to incorporate new types of

performance data into their tools. Advanced tools

must be open to the type of data that can be in-
cluded and presented.

Scalability: Tools must work not only for small

demonstrations, but also for the large, realistic
field use. Scalability can be with respect to several

parameters. Our primary concern is that tools be
able to handle large science and engineering appli-

cations of 100,000 lines of code. In our OpenMP

environment we will envision target machines of
typically not more than 32 processors. Hence, tool

scalability to massively parallel systems is not a
primary concern.

In the following sections, we introduce two tools de-
veloped based on these goals. Ursa Minor is a perfor-

mance evaluation tool designed to assist users in par-

allel performance evaluation. InterPol is an interac-
tive tool for automatic and manual program transforma-

tions. While these tools do not directly interface with
each other, they provide complementing functionality.

Ursa Minor and InterPol are closely related to the

Polaris compiler [4], a source-to-source restructurer,
developed at the University of Illinois and Purdue Uni-

versity. Polaris automatically finds parallelism and in-
serts appropriate parallel directives into the input pro-

grams. It includes advanced capabilities for array priva-

tization, symbolic and nonlinear data dependence test-
ing, idiom recognition, interprocedural analysis, and

symbolic program analysis. In addition, the current

Polaris tool is able to generate OpenMP parallel di-
rectives [7] and apply locality optimization techniques

such as loop interchange and tiling. Polaris also serves
as an instrumentation tool.

We have integrated these tools into a Web-executable

programming environment, referred to as the Parallel
Programming Hub. It provides “anytime, anywhere”

access to our tools via a network computing infrastruc-

ture developed in a related project [11]. The Paral-
lel Programming Hub is available at http://punch.ecn.

purdue.edu/Netcare/parHub.html.

3.1. Ursa Minor: Performance evaluation tool

The Ursa Minor tool assists parallel programmers in

the performance evaluation and tuning process [21]. It
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presents users with information available from various

sources in a comprehensive way. These sources in-

clude tools such as compilers, profilers, hardware coun-

ters, and simulators. It interacts with users through a

graphical interface, which can provide selective views

and combinations of the data. Ursa Minor combines

the performance and static analysis data in integrated

views. It provides facilities for performance model-

ing of the gathered data, and it includes a performance

advisor that automates the process of finding perfor-

mance problems and remedies. Ursa Minor supports

the OpenMP parallel programming model.

3.1.1. Tool functionality

3.1.1.1. Performance data and program structure visu-

alization The Ursa Minor tool presents information

to the user through two main display windows: The

Table View and the Structure View. The Table View

shows performance data as text entries for subroutines,

functions, loops, blocks, or other, user-defined program

sections. The Structure View visualizes the program’s

subroutine call and loop nest structure.

Figure 2 shows the Table View of Ursa Minor in use.

The Table View displays data such as average execution

time, the number of invocations of code sections, cache

misses and text indicating if loops are serial or parallel.

Users can manipulate the data through various features

this view provides. The Table View is a tabbed folder

that contains one or more tabs with labels. Each tab

corresponds to a “program unit group”, which means

a group of data of a similar type. For instance, the

folder labeled “LOOPS” contains all the data regarding

loops in a given program. When reading predefined

data inputs such as timing files, Polaris listing files, and

simulation results from MAX/P [12], Ursa Minor gen-

erates predefined program unit groups, (e.g., LOOPS,

PROGRAM, etc.). Users can create additional groups

with their own input files using a proper format.

A user can rearrange columns, delete columns, sort

the entries alphabetically or based on execution time.

The bar graph on the right side shows an instant nor-

malized graph of a numeric column. After each pro-

gram run, the user can include the newly collected in-

formation as additional columns in the Table View. In

this way, performance differences can be inspected im-

mediately for each individual loop as well as for the

overall program. Effects of program modifications on

other program sections become obvious as well. The

modification may change the relative importance of the

loops, so that sorting them by their newest execution

time yields a new most-time-consuming loop on which

the programmer has to focus next.

In addition, users can set a display threshold for

each column so that an item that is less than a certain

quantity is displayed in a different color. For example,

this feature allows users to easily identify code sections

with poor speedup. One or more rows and columns can

be selected so that they can be manipulated as a whole.

Data that would not fit into a table cell, such as the

compiler’s explanation for why a loop is not parallel,

can be displayed in a separate window on demand.

Finally, Ursa Minor is capable of generating pie charts

and bar graphs on a selected column or row for instant

visualization of numeric data within the tool.

Another view of Ursa Minor displays the program’s

calling structure, which includes subroutine, function,

and loop nest information, as shown in Fig. 3. Each

rectangle represents either a subroutine, function, or

loop. The rectangles are color-coded to display addi-

tional attributes. Users can activate the source viewer

for each rectangle by a mouse click. We have added a

flexible zoom utility and the support for OpenMP di-

rectives in the source viewers. This display helps one

understand the program structure for tasks such as in-

terchanging loops or finding outer and inner candidate

parallel loops.

The Ursa Minor user interface is configurable. Users

can change the look of the various displays and many

other parameters. Most tool functions can be mapped to

keyboard shortcuts. Furthermore, an “on-line tutorial”

allows users to explore important features of the tool

with sample input data.

3.1.1.2. Expression evaluator The ability to compute

derivative values of raw performance data is critical in

analyzing the gathered information. For instance, the

average timing value of different runs, speedup, paral-

lel efficiency, and the percentage of the execution time

of a code section with respect to the overall execution

time of the program are common metrics used by many

programmers. Instead of adding individual utilities to

compute these values, we have added the Expression

Evaluator for user-entered expressions. We have pro-

vided a set of built-in mathematical functions for nu-

meric, relational, and logical operations. Nested oper-

ators are allowed, and any reasonable combination of

these functions are supported. The Expression Evalua-

tor has a pattern matching capability as well, so the se-

lection of a data set for evaluation becomes simplified.

The Expression Evaluator also provides users with

query functions that apprehend the static analysis data
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Fig. 2. Table View of the Ursa Minor tool. The user has gathered information on program BDNA. After sorting the loops based on execution

time, the user inspects the percentage of three major loops (ACTFOR do240, ACTFOR do500, RESTAR do560) using a pie chart generator.

Computing the speedup (column 26) with the Expression Evaluator reveals that the speedup for RESTAR do560 is poor, so the user is examining

more detailed information on the loop.

from a parallelizing compiler. These functions can

be combined with the mathematical functions, allow-
ing queries such as “loops that are parallel and whose

speedups are less than 1” or “loops that have IO and
whose execution time is larger than 15% of the overall

execution”. The Expression Evaluator is a powerful

utility that allows manipulating and restructuring the
input data to serve as the basis for the users’ perfor-

mance modeling through a common spreadsheet-like
interface.

3.1.1.3. The merlin performance advisor Identifying

performance bottlenecks and finding the right remedies

usually take experience and intuition, which novice
programmers lack. Acquiring this expertise requires

many trials and studies. Even for those programmers

who have experienced peers, the transfer of knowledge
takes time and effort. We have used a combination

of the above Expression Evaluator and a knowledge-
based database to create a framework for easy “transfer
of experience”. Merlin is an automatic performance
data analyzer that allows experienced programmers to

tell novice programmers how to handle specific perfor-
mance symptoms.

Merlin navigates through a knowledge-based data-
base (“map”) that contains the information on diagno-

sis and solutions for various performance symptoms.
Advanced programmers write maps based on their ex-
perience, and novice programmers can make use of
this experience by activating Merlin. A Merlin map
enables multiple cause-effect analyses of performance

and static data efficiently. Merlin also assist users
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Fig. 3. Structure View of the Ursa Minor tool. The user is looking at the subroutine and loop call graph generated for program BDNA. Using the

“Find” utility, the user set the view to subroutine ACTFOR, and opened up the source view for the parallelized loop ACTFOR do240.

in “learning by examples”. Merlin is able to work

with any map as long as the map is in the correct for-

mat, which widens its applicability. A more detailed

description of Merlin is available in [13]. We present a

case study emphasizing the use of Merlin in Section 4.3.

3.1.2. Internal organization of the Ursa Minor tool

Figure 4 illustrates the interactions between Ursa

Minor modules and the various data files. The Database

Manager handles interaction between the database and

other modules. Upon users’ requests, it fetches the

required data items or creates and modifies database

entities. The GUI manager coordinates various win-

dows and views and handles user actions. It also takes

care of data consistency between the database and the

display windows. The Expression Evaluator is the fa-

cility that allows users to perform various operations

on the current database. This module parses the user-

entered commands, applies the operations, and updates

the views accordingly. Finally, Merlin is the guid-

ance system capable of automatically conducting per-

formance analysis and presenting suggestions. The

Ursa Minor tool is written in 20,000 lines of Java.

3.2. InterPol: Interactive tuning tool

3.2.1. Overview

InterPol is an interactive utility that allows users to

apply selected optimization techniques on program or

program sections [15]. Users can select target code

sections from an entire program source, then either run

a custom-built optimizer or make manual changes. It
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Fig. 5. Internal organization of InterPol. Three main modules interact with users through a Graphical User Interface. The Program Builder

handles file IO and keeps track of the current program variant. The compiler Builder allows users to arrange optimization modules in Polaris.

The Compilation Engine combines the user selections from the other two modules and calls Polaris modules.

allows users to build their own compiler from numer-
ous optimization modules available from the Polaris
parallelizing compiler infrastructure. During program

optimization, InterPol keeps track of the program sec-
tions being modified, relieving programmers of file and
version management tasks. In this way, programmers
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Fig. 6. The main window of InterPol.

are free to apply selected techniques on specific re-
gions, change code manually, and generate a working
version of the entire program without exiting the tool.
During the optimization process, the tool can display
static analysis information generated by the underlying
compiler, which can help users in further optimizing
the program. For those who are not familiar with the
techniques available from parallelizing compilers, the
tool provides greater insights into the effect of code
transformations.

Figure 5 illustrates the major components of In-
terPol. Users select code regions using the Pro-
gram Builder and orchestrate optimization techniques
through the Compiler Builder. The Compilation En-
gine takes inputs from these builders, executes the se-
lected compiler modules, and displays the output pro-

gram. If the user wants to keep the newly modified

code segments, the output will go into the Program

Builder, replacing the old segments. Instead of run-

ning the Compilation Engine, users may choose to add

changes to the code manually. All of these actions are

facilitated by a graphical user interface. Users are able

to store the current program variant at any point in this

scenario.

3.2.2. Tool functionality

Figure 6 shows the graphical user interface of In-

terPol. Target code segments and the corresponding

transformed versions are displayed in separate areas.

The static analysis information is given in another area

whenever a user activates the compiler. Finally, the
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Fig. 7. The Compiler Builder interface of InterPol.

Program Builder interface provides an instant view of
the current version of the target program.

InterPol is written in Java. The underlying paral-
lelization and optimization tool is the Polaris compiler
infrastructure [4]. Various Polaris modules form build-
ing blocks for a custom-designed parallelizing com-
piler. InterPol is capable of combining these modules
in any order. Overall, more than 25 modules are avail-
able for this purpose. For example, Polaris includes
several different data dependence test modules, which
can be arranged by InterPol, allowing the user to com-
pare and evaluate these tests. Executing this custom-
built compiler is as simple as clicking a menu and the
result is displayed directly on the graphical user inter-
face. Figure 7 shows the Compiler Builder interface
in InterPol. More detailed configuration is also possi-
ble through InterPol’s Polaris switch interface, which
controls the behavior of the individual passes.

The Program Builder keeps and displays the up-to-
date version of the whole program. Users select pro-
gram segments from this module, apply automatic op-
timization set up by the Compiler Builder and/or add
manual changes. The Compiler Builder is accessible
at any point, so users can apply entirely different sets
of techniques to different regions. The current version

of the program is always shown in the Program Builder
text area. In this way, InterPol allows for a highly
interactive and incremental process of modifying and
tuning a parallel program.

During the optimization process, InterPol can dis-
play program analysis results generated by running Po-
laris modules. This includes data dependency test re-
sults, induction and reduction variables and array ac-
cess patterns. InterPol provides the environment
for combining this information with the programmer’s
knowledge of the underlying algorithms, the program’s
dynamic behavior, and the input data.

Figure 8(a) demonstrates the functionality of In-
terPol through a small example program. Figure 8(b)
shows the code after being simply run through the de-
fault Polaris configuration with the inlining switch set
to inline subroutines of 10 statements or less. Two im-
portant results can be seen: (1) subroutine one is not
inlined due to the inlining pass executing prior to dead-
code elimination, and (2) the loops in subroutine two
are not found to be parallel because of subscripted array
subscripts, which the Polaris compiler cannot analyze.

Figure 9(a) shows the resulting program after adding
a deadcode pass prior to the inlining pass in the Com-
piler Builder, and running the main program and sub-
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PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)
INTEGER I
DO I = 1, 100
CALL ONE(A,B,I)
C(I) = I

ENDDO
CALL TWO(A,B,C)
WRITE (6,*) A
WRITE (6,*) B
END

SUBROUTINE ONE(A,B,I)
REAL A(100,100),B(100,100)
INTEGER DEADCODE
DEADCODE = 1
DEADCODE = 2
DEADCODE = 3
DEADCODE = 4
DEADCODE = 5
DO J = 1,100
A(J,I) = 0
B(J,I) = 0

ENDDO
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100),B(100,100)
REAL C(100)
DO I = 1, 100
DO J = 1, 100
A(C(J),C(I)) = I+J
B(C(J),C(I)) = I*J

ENDDO
ENDDO
END

PROGRAM EXAMPLE
REAL A(100,100),B(10 0,100)
REAL C(100)
INTEGER I
DO I = 1, 100
CALL ONE(A,B,I)
C(I) = I

ENDDO
CALL TWO(A,B,C)
WRITE (6,*) A
WRITE (6,*) B
END

SUBROUTINE ONE(A,B,I)
REAL A(100,100),B(100,100)
!$OMP PARALLEL DO
DO J = 1,100
A(J,I) = 0
B(J,I) = 0

ENDDO
!$OMP END PARALLEL DO
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100),B(100,100)
REAL C(100)
DO I = 1, 100
DO J = 1, 100
A(C(J),C(I)) = I+J
B(C(J),C(I)) = I*J

ENDDO
ENDDO
END

(a) (b)

Fig. 8. Contents of the Program Builder during an example usage of the InterPol tool: (a) the input program, (b) the output from the default

Polaris compiler configuration.

routine one from Fig. 8(a) through this “new” com-
piler. Finally, in Fig. 9(b), subroutine two has been
parallelized by hand, and included into the Program

Builder. Through simple interactions with InterPol,
a code for which Polaris was only able to parallelize
a single innermost loop, has both its outermost loops
parallelized.

3.3. Tool support in each step

Our tools have been designed and modified based on
the parallel programming methodology introduced in

Section 2. Figure 1 gives the overview of how these
tools can be of use in each step of the methodology.
The functionality of Ursa Minor and InterPol, com-
bined with the Polaris instrumentation module, cover

all the aspects of the proposed methodology. Getting

execution time by running instrumented applications

only requires simple UNIX commands, thus no special-

purpose tools are needed. Ursa Minor mainly con-

tributes to the performance evaluation stages. InterPol

and Polaris offer aid in the parallelization and manual

tuning stages.

4. Evaluation

We evaluate our environment as follows. In Sec-

tion 4.1, we measure the time consumed by a number

of parallel programming tasks accomplished with and

without our tools. In Sections 4.2 and 4.3, we present

case studies that demonstrate the use of our methodol-

ogy and toolset. These studies provide details of many



154 I. Park et al. / Parallel programming environment for OpenMP

PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)
INTEGER I
!$OMP PARALLEL DO
DO I = 1, 100
DO J = 1,100
A(J,I) = 0
B(J,I) = 0

ENDDO
C(I) = I

ENDDO
!$OMP END PARALLEL DO
CALL TWO(A,B,C)
WRITE (6,*) A
WRITE (6,*) B
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100),B(100,100)
REAL C(100)
DO I = 1, 100
DO J = 1, 100
A(C(J),C(I)) = I+J
B(C(J),C(I)) = I*J

ENDDO
ENDDO
END

PROGRAM EXAMPLE
REAL A(100,100),B(100,100)
REAL C(100)
INTEGER I
!$OMP PARALLEL DO
DO I = 1, 100
DO J = 1,100
A(J,I) = 0
B(J,I) = 0

ENDDO
C(I) = I

ENDDO
!$OMP END PARALLEL DO
CALL TWO(A,B,C)
WRITE (6,*) A
WRITE (6,*) B
END

SUBROUTINE TWO(A,B,C)
REAL A(100,100),B(100,100)
REAL C(100)
!$OMP PARALLEL DO
DO I = 1, 100
DO J = 1, 100
A(C(J),C(I)) = I+J
B(C(J),C(I)) = I*J

ENDDO
ENDDO
!$OMP END PARALLEL DO
END

(a) (b)

Fig. 9. Contents of the Program Builder after user interaction with the InterPol tool: (a) the output after placing and additional deadcode

elimination pass prior to inlining and (b) the program after manually parallelizing subroutine two.

parallelization and tuning steps and the tool function-

ality.

4.1. Efficiency of tools for common tasks in parallel

programming

The main objectives of this experiment is to produce

quantitative measures for the efficiency of Ursa Mi-

nor. To this end, we have selected 10 tasks that are

commonly performed by parallel programmers using

parallel directive languages. These tasks are listed in

Table 1.

Task 1 is a simple calculation; users may use either a

calculator or the Expression Evaluator from Ursa Mi-

nor with comparable efficiency. Task 2 evaluates the

table manipulation utilities (sorting and rearranging)

for the performance data. Tasks 3 and 4 measure the

efficiency of the Structure View and the utilities that it

provides. The Expression Evaluator is the main target

for evaluation in Tasks 5 and 6. Task 7 tests the abil-

ity to rearrange the tabular data and export it to other

spreadsheet applications. Tasks 8, 9, and 10 evaluate

the combined usage of multiple utilities (sorting, the

Expression Evaluator, query functions, the static infor-

mation viewer, and the display option control) provided

by Ursa Minor.

4.1.1. Experiment

We have asked four users to participate in this exper-

iment. They were asked to perform the tasks shown in

Table 1 one by one. We chose two different sets of per-

formance data for the experiment. These datasets con-

tain timing profiles of FLO52Q from the Perfect bench-

marks [3] under two different environments. Thus, the

number of data items are the same in both datasets, but

the timing numbers are different. First, the participants

were asked to perform the tasks without our new tools.

They were allowed to use any existing tools and scripts.

Then, they performed the tasks using our new tools

with the other dataset.

The time to invoke the tools and load input files was

counted separately as loading time. Time to convert

data files for different tools are also included in the

loading time. The loading time reflects the level of

integration of tools.
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Table 1

Common tasks in parallel programming, used to measure our tool performance

task01 Compute the speedup of the given program on 4 processors in terms of the serial

execution time.

task02 Find the most time-consuming loop based on the serial execution time.

task03 Find the inner and outer loops of that loop.

task04 Find the caller(s) of the subroutine containing the most time-consuming loop.

task05 Compute the parallelization and spreading overhead of that loop on 4 processors.

task06 Compute the parallel efficiency of the second most time-consuming loop on 4

processors.

task07 Export profiles to a spreadsheet to create total execution time chart
(on varying number of processors) containing 5 of the most time-consuming

loops.

task08 Count the loops the speedups of which are below 1.

task09 Count the loops that are parallel and whose speedups are below 1.

task10 Compute the parallel coverage and the expected speedup based on Amdahl’s

Law.

The four users represent different classes of program-

mers. User1 is an expert performance analyst who has

written many special-purpose scripts to perform vari-

ous jobs, such as tabularizing and sorting. User1 does

use our tools but relies more on these scripts. User2

has also been working on performance evaluation for

a while and is considered an expert as well. He uses

only basic UNIX commands, rather than scripts. How-

ever, his skills with the basic UNIX commands are very

good, so he can perform a complex task without tak-

ing much time. User2 started using our tools only re-

cently. User3 is also an expert performance analyst,

but his main target programs are not shared memory

programs. He has been using our tools for a long time,

but with distributed memory programs. Finally, user4

is a novice parallel programmer. His experience with

parallel programs are limited compared to the others.

He had to read our methodology and tried to use our

tools in benchmarking research.

Table 2 shows the time for these users to perform the

assigned tasks. User2, 3, and 4 decided that tasks 9

and 10 cannot be performed within reasonable time,

so they gave estimated times instead. All of the users

used a commercial spreadsheet later in the session, but

user4, the novice programmer started doing the tasks

after he set up the spreadsheet and imported the input

files. User1 used his scripts for many of the tasks.

In the second part of the experiment, all users were

allowed to use our tools to perform the same tasks. The

results are shown in Table 3. User1 used a combination

of a spreadsheet and Ursa Minor to perform tasks 8, 9,

and 10. The others used a spreadsheet for task 7 only.

User4 was not sure that he can finish task 10 even with

our tool support, so he gave an estimated time.

These tables show that our tool support improves the

time to perform common parallel programming tasks

considerably. Figure 10 shows the overall times to

finish all the tasks. They indicate that our tool support

not only saves time, but also makes the process easier

for novice programmers, resulting in similar times for

all users to perform the tasks when using our tools. The

work speedups for the four users are 1.75, 2.05, 2.79,

and 3.11, respectively.

The strength of the presented approach lies not only

in the fact that the tools offer efficient ways of perform-

ing individual tasks, but also in the integration of these

features in a common environment. This is demon-

strated by the savings in the loding time in our exper-

iment. Users do not have to deal with several tools

and commands. There is no need to open the same file

into many different tools. For instance, users can open

the Structure View to inspect the program layout and

examine and restructure the performance data from the

same database.

4.2. Case study: Manual tuning of ARC2D

In this section, we present a case study illustrating

the manual tuning process of program ARC2D from

the Perfect benchmark suite [3]. In this study, a pro-

grammer has tried to improve the performance of the

program beyond that achieved by the Polaris paralleliz-

ing compiler. The target machine is a HyperSPARC

workstation with 4 processors.

Polaris was able to parallelize almost all loops

in ARC2D. However, the speedup of the resulting

executable was only 1.38 on 4 processors. Using

Ursa Minor’s Structure View and sorting utility, the

programmer was able to find three loops to which

loop interchange can be applied: FILERX do19,

XPENTA do3, and XPENT2 do3. After loop nests

were interchanged in these loops, the total program ex-



156 I. Park et al. / Parallel programming environment for OpenMP

Fig. 10. Overall times to finish all 10 parallel programming tasks.

(a) (b)

Fig. 11. The (a) execution time and (b) speedup of the various version of ARC2D (Mod1: loop interchange, Mod2: STEPFY do420modification,

Mod3: STEPFX do300 modification, Mod4: FILERX do15 modification, Mod5: YPENTA do1 modification, Mod6: modification on

XPENTA, YPENT2, and XPENT2).

ecution time decreased by 22 seconds, increasing the

speedup from 1.39 to 1.65.

As the result of this modification, dominant program

sections have changed. The programmer re-evaluated

the most time-consuming loops using the Expression

Evaluator to compute new speedups and the percentage

of loop execution time over the total time. The most

time-consuming loop was now the STEPFY do420

nest, which consumed 27% of the new parallel execu-

tion time. The programmer examined the nest with the

source viewer and noticed two things: (1) there were

many adjacent parallel regions and (2) the parallel loops

were not always distributing the same dimension of the

work array. The programmer merged all of the adja-

cent parallel regions in the nest into a single parallel

region. The new parallel region consisted of four con-

secutive parallel loops. The first two loops distributed

the work array across its innermost (stride-1) dimen-

sion. The second two nests were doubly nested and

distributed the work array across its second innermost

dimension. The effect of these changes were two-fold.

First, the merging of regions should eliminate parallel

loop fork/join overhead. Second, the normalization of

the distributions within the subroutine should improve
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Fig. 12. Performance improvements achieved by applying the performance map. The speedup is with respect to the serial code on a Sun Enterprise

4000 system. Each graph shows the cumulative speedup when applying techniques.

Table 2

Time (in seconds) taken to perform the tasks without our tools

user1 user2 user3 user4 average

task01 21 41 73 61 49

task02 14 9 3 43 17.25

task03 22 29 97 77 56.25
task04 28 6 46 48 32

task05 75 44 217 132 117

task06 25 43 27 44 34.75

task07 94 400 197 275 241.5

task08 67 208 211 594 270

task09 258 280 420 600 389.5

task10 220 400 540 600 440

loading 60 79 128 864 282.75
total 884 1,539 1,959 3,338 1,930

Table 3

Time (in seconds) taken to perform the tasks with our tools

user1 user2 user3 user4 average

task01 7 18 23 19 16.75

task02 3 2 16 14 8.75

task03 6 4 3 9 5.5

task04 4 6 18 3 7.75

task05 52 61 85 98 74
task06 14 9 18 19 15

task07 47 104 202 100 113.25

task08 81 39 54 72 61.5

task09 72 33 46 49 50

task10 163 400 138 600 325.25

loading 57 73 99 90 79.75

total 506 749 702 1,073 757.5

locality. After this change, the speedup of the loop

improved from 1.19 to 1.50.

Table 4

Optimization techniques and application criteria

Techniques Criteria

Serialization speedup < 1

Loop Interchange # of stride-1 accesses < #

of non stride-1 accesses
Loop Fusion speedup < 2.5

The programmer was able to apply the same tech-

niques (fusion and normalization) to the next 3 most

time-consuming loops (STEPFX do300,FILERX do

15, and YPENTA do1). These modifications result in

a speedup gain from 1.50 to 2.02. Finally, the program-

mer applied the same techniques to the next most time-

consuming sections XPENTA, YPENT2, and XPENT2

according to the newly computed profiles and speedups.

This modification improved the speedup to 2.12.

In summary, applying loop interchange, parallel re-

gion merging and distribution normalization, yielded

an increase from the out-of-the-box speedup of 1.38 to

a speedup of 2.12. This corresponds to a 35% decrease

in execution time. Figure 11 shows the improvements

in the total program performance as each program opti-

mization was applied. Ursa Minor allowed the user to

quickly identify the loop structure of the program and

sort the loops to identify the most time-consuming code

sections. After each modification, the user was able

to add the new timing data from the modified program

runs, re-calculate the speedup and see if an improve-

ment was worthwhile. In this case study, the user has
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followed the methodology to improve the performance

significantly. The tool features that proved most im-

portant were data arrangement, the Structure View, the

source viewer, and the Expression Evaluator.

4.3. Case study: Using the performance advisor

In this section, we present a simple performance

map for the Merlin performance advisor, based solely

on execution timings and static compiler information.

Such data can easily be obtained by a novice user from

a compiler listing and timing profiles. The map used in

this experiment is designed to advise programmers in

improving the performance of programs optimized by

a parallelizing compiler such as Polaris [4]. In this case

study, we assume that a parallelizing compiler was used

as the first step in optimizing the performance of the

target program and that the compiler’s program analysis

information is available. The performance map aims at

increasing this initial performance.

Based on our experiences with parallel programs,

we have chosen three techniques that are easy to apply

and may yield considerable performance gain. These

techniques are serialization, loop interchange, and loop

fusion. All of these techniques are present in modern

compilers. However, compilers may not have enough

knowledge to apply them most profitably [14], and

some code sections may need small modifications be-

fore the techniques become applicable automatically.

4.3.1. Performance map description

The performance map used in this experiment in-

cludes criteria for the application of the techniques

shown in Table 4. If the speedup of a parallel loop is

less than 1, we assume that the loop is too small for

parallelization or that it required extensive modifica-

tion. Serializing it prevents performance degradation.

Loop interchange may be used to improve locality by

increasing the number of stride-1 accesses in a loop

nest. Loop interchange is commonly applied by op-

timizers; however, our case study shows many oppor-

tunities missed by the backend compiler. Loop fusion

can likewise be used to increase both granularity and

locality. The criteria shown in Table 4 represent simple

heuristics and do not attempt to be an exact analysis of

the benefits of each technique. We simply assumed the

threshold of the speedup as 2.5 to apply loop fusion.

In all cases the user will have to measure the benefit of

the suggested optimization.

4.3.2. Experiment

We have applied these techniques based on the crite-

ria in Table 4. We have used a Sun Enterprise 4000 with

six 248 MHz UltraSPARC processors. The OpenMP

code is generated by the Polaris OpenMP backend. The

results on five programs are shown in Fig. 12. They

are SWIM and HYDRO2D from the SPEC95 benchmark

suite, SWIM from the SPEC2000 suite, and ARC2D and

MDG from the Perfect Benchmarks. We have incre-

mentally applied these techniques starting with serial-

ization. Figure 12 shows the resulting improvement.

The decrease in execution time ranges from −1.8%

for fusion in ARC2D to 38.7% for loop interchange

in SWIM’00. For HYDRO2D, the application of the

Merlin suggestions did not noticeably improve perfor-

mance.

Among the codes with large improvements, SWIM

from SPEC2000 benefits most from loop interchange.

It was applied under the suggestion of Merlin to the

most time-consuming loop, SHALOW DO3500. Like-

wise, the main technique that improved the perfor-

mance in ARC2D was loop interchange. MDG consists

of two large loops and numerous small loops. Seri-

alizing these small loops was the sole reason for the

performance gain. Table 5 shows a detailed break-

down of how often techniques were applied and their

corresponding benefit.

Using this map, considerable speedups are achieved

with a relatively small effort. Novice programmers

can simply run Merlin to see the suggestions made

by the map. Experienced programmers can flexibly

update the map without modifying Merlin. Thus if new

techniques show potential or the criteria need revision,

the performance map can easily and incrementally be

enhanced.

5. Related work

Numerous tools exist to help programmers develop

well-performing parallel programs. The important role

of tools to aid the process of parallel program develop-

ment and performance tuning is widely acknowledged.

Among the supporting tools are those that perform au-

tomatic parallelization, performance visualization, in-

strumentation, and debugging. Many of the current

tools are summarized in [5,6].

Several tools have attempted to integrate differ-

ent parallel programming tasks. Pablo and the For-

tran D editor [1] combine program optimization and

performance visualization. The SUIF Explorer [17]
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Table 5

A detailed breakdown of the performance improvement due to each technique

suggested by the Merlin performance advisor

Benchmark Technique Number of modifications % Improvement

ARC2D Serialization 3 −1.55

Interchange 14 9.77

Fusion 10 −1.79

HYDRO2D Serialization 18 −0.65

Interchange 0 0.00

Fusion 2 0.97

MDG Serialization 11 22.97

Interchange 0 0.00

Fusion 0 0.00

SWIM’95 Serialization 1 0.92

Interchange 0 0.00

Fusion 3 2.03

SWIM’00 Serialization 0 0.00

Interchange 1 38.69

Fusion 1 0.03

Table 6

Feature comparison of parallel programming environments

Performance Program Display Automatic Interactive Support Automatic Debugging

data structure compiler parallelization compilation performance analysis/

visualization visualization analysis modeling guidance

Pablo/Fortran D Editor
√ √ √ √

SUIF Explorer
√ √ √ √ √

FORGExplorer
√ √ √

KAP/Pro Toolset
√ √ √

Annai Project
√ √

DEEP/MPI
√ √ √

Faust
√ √ √ √ √

Ursa Minor/InterPol
√ √ √ √ √ √ √

and FORGExplorer [2] have a similar goal. The

KAP/Pro Toolset [16] consists of tools for automatic

parallelization, performance visualization, and debug-

ging. The focus of the Annai Tool Project [23] is

on the aspects of parallelization, debugging, and per-

formance monitoring. Faust [10] attempted to cre-

ate the most comprehensive environment, encompass-

ing code optimization and performance evaluation.

DEEP/MPI [19] augments a performance evaluation

utility with a procedure-level performance advisor.

Both WPP/Aivi [22] and CAPO [18] provide a paral-

lelizing compiler and a graphical tool to visualize static

program analysis information.

Table 6 shows the availability of features in these en-

vironments. The parallelization utility available from

the Pablo/Fortran D Editor is actually semi-automatic.

The guidance system (Parallelization Guru) of the SUIF

Explorer points to dominant and possibly problematic

code sections. DEEP/MPI’s advisor is limited to fixed,

procedure-level analysis. The table shows that, ex-

cept for debugging, our environment provides the most

comprehensive support. Ursa Minor’s support for
performance modeling is a feature not provided by any
other tool. It includes capabilities for querying, filter-
ing and abstracting performance and program analysis
data. This allows users to reason about the performance
of a program in a flexible manner. The configurable,
loop-level performance guidance provided by Merlin
is a unique feature of our environment as well. In-
terPol allows users to “build” their own parallelizing
compiler, a feature also not available in other tools.
Overall, the Ursa Minor/ InterPol toolset offers the
most versatile and flexible features. Furthermore, in
contrast to most other environments, our tools exists
in Web-accessible forms. Any user with a standard
Web browser can make use of this system, including
complete on-line documentation and tutorials.

6. Conclusion

Our effort to create a parallel programming environ-
ment has resulted in a parallel program development
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and tuning methodology and a set of supporting tools.

We have developed the tools with the goal to provide

an integrated, flexible, accessible, portable and con-

figurable tool environment that supports the underly-

ing methodology. Our toolset integrates static program

analysis with performance evaluation, while support-

ing data visualization and interactive compilation. Per-

formance data management is also simplified with our

tools.

We have evaluated our environment both quantita-

tively and qualitatively through case studies and an ex-

periment to measure tool efficiency, We have found

that it provides effective support for developing well-

performing parallel programs.

The clear focus on providing tools that support an un-

derlying programming methodology is one of the most

distinguishing aspects of the presented work. In doing

so we have addressed one of the grand challenges in

software engineering in general, and parallel program

optimization in particular. The challenge is that pro-

gramming is not a systematic discipline. There are no

textbooks that teach a programmer the concrete steps

that must be taken to create a well-performing piece

of software. Because of this, software design in diffi-

cult, time-consuming, expensive, and requires experi-

enced programmers. We feel that there will probably

always be parts of software design that take intuitive

skills and are thus hard to learn systematically. How-

ever, there are also many steps that are repetitive and

can be followed in a methodological manner. Defining

these steps clearly and providing supporting tools will

not only help the less experienced programmers, it will

also put the programming discipline on a more solid

scientific basis. The presented paper is a contribution

to this end.
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