
 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4

Message-Passing Programming



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Learning Objectives

• Understanding how MPI programs execute

• Familiarity with fundamental MPI functions
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Outline

• Message-passing model

• Message Passing Interface (MPI)

• Coding MPI programs

• Compiling MPI programs

• Running MPI programs

• Benchmarking MPI programs
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Message-passing Model
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Processes

• Number is specified at start-up time

• Remains constant throughout execution of program

• All execute same program

• Each has unique ID number

• Alternately performs computations and communicates
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Advantages of Message-passing Model

• Gives programmer ability to manage the memory
hierarchy

• Portability to many architectures

• Easier to create a deterministic program

• Simplifies debugging
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The Message Passing Interface

• Late 1980s: vendors had unique libraries

• 1989: Parallel Virtual Machine (PVM) developed at
Oak Ridge National Lab

• 1992: Work on MPI standard begun

• 1994: Version 1.0 of MPI standard

• 1997: Version 2.0 of MPI standard

• Today: MPI is dominant message passing library
standard
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Circuit Satisfiability
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Solution Method

• Circuit satisfiability is NP-complete

• No known algorithms to solve in polynomial time

• We seek all solutions

• We find through exhaustive search

• 16 inputs ⇒ 65,536 combinations to test
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Partitioning: Functional Decomposition

 Embarrassingly parallelEmbarrassingly parallel: No channels: No channels

between tasksbetween tasks
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Agglomeration and Mapping

• Properties of parallel algorithm

• Fixed number of tasks

• No communications between tasks

• Time needed per task is variable

• Map tasks to processors in a cyclic fashion



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cyclic (interleaved) Allocation

• Assume p processes

• Each process gets every pth piece of work

• Example: 5 processes and 12 pieces of work

• P0: 0, 5, 10

• P1: 1, 6, 11

• P2: 2, 7

• P3: 3, 8

• P4: 4, 9
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Pop Quiz

• Assume n pieces of work, p processes, and cyclic
allocation

• What is the most pieces of work any process has?

• What is the least pieces of work any process has?

• How many processes have the most pieces of work?



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary of Program Design

• Program will consider all 65,536 combinations of 16
boolean inputs

• Combinations allocated in cyclic fashion to processes

• Each process examines each of its combinations

• If it finds a satisfiable combination, it will print it
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Include Files

• MPI header file

#include <mpi.h>

 Standard I/O header fileStandard I/O header file

#include <stdio.h>
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Local Variables

int main (int argc, char *argv[]) {
   int i;
   int id; /* Process rank */
   int p;  /* Number of processes */
   void check_circuit (int, int);

 Include Include argcargc  and and argvargv: they are needed to: they are needed to

initialize MPIinitialize MPI

 One copy of every variable for each processOne copy of every variable for each process

running this programrunning this program
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Initialize MPI

• First MPI function called by each process

• Not necessarily first executable statement

• Allows system to do any necessary setup

MPI_Init (&argc, &argv);
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Communicators

• Communicator: opaque object that provides message-
passing environment for processes

• MPI_COMM_WORLD

• Default communicator

• Includes all processes

• Possible to create new communicators

• Will do this in Chapters 8 and 9
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Communicator
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Determine Number of Processes

• First argument is communicator

• Number of processes returned through second
argument

MPI_Comm_size (MPI_COMM_WORLD, &p);
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Determine Process Rank

• First argument is communicator

• Process rank (in range 0, 1, …, p-1) returned through
second argument

MPI_Comm_rank (MPI_COMM_WORLD, &id);
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Replication of Automatic Variables
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What about External Variables?

int total;

int main (int argc, char *argv[]) {
   int i;
   int id;
   int p;
   …

 Where is variable Where is variable totaltotal stored? stored?
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Cyclic Allocation of Work

for (i = id; i < 65536; i += p)
   check_circuit (id, i);

 Parallelism is outside functionParallelism is outside function

check_circuitcheck_circuit

 It can be an ordinary, sequential functionIt can be an ordinary, sequential function
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Shutting Down MPI

• Call after all other MPI library calls

• Allows system to free up MPI resources

MPI_Finalize();
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#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) {
   int i;
   int id;
   int p;
   void check_circuit (int, int);

   MPI_Init (&argc, &argv);
   MPI_Comm_rank (MPI_COMM_WORLD, &id);
   MPI_Comm_size (MPI_COMM_WORLD, &p);

   for (i = id; i < 65536; i += p)
      check_circuit (id, i);

   printf ("Process %d is done\n", id);
   fflush (stdout);
   MPI_Finalize();
   return 0;
} Put  fflush() after every  printf()
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/* Return 1 if 'i'th bit of 'n' is 1; 0 otherwise */
#define EXTRACT_BIT(n,i) ((n&(1<<i))?1:0)

void check_circuit (int id, int z) {
   int v[16];        /* Each element is a bit of z */
   int i;

   for (i = 0; i < 16; i++) v[i] = EXTRACT_BIT(z,i);

   if ((v[0] || v[1]) && (!v[1] || !v[3]) && (v[2] || v[3])
      && (!v[3] || !v[4]) && (v[4] || !v[5])
      && (v[5] || !v[6]) && (v[5] || v[6])
      && (v[6] || !v[15]) && (v[7] || !v[8])
      && (!v[7] || !v[13]) && (v[8] || v[9])
      && (v[8] || !v[9]) && (!v[9] || !v[10])
      && (v[9] || v[11]) && (v[10] || v[11])
      && (v[12] || v[13]) && (v[13] || !v[14])
      && (v[14] || v[15])) {
      printf ("%d) %d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n", id,
         v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],
         v[10],v[11],v[12],v[13],v[14],v[15]);
      fflush (stdout);
   }
}
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Compiling MPI Programs

• mpicc: script to compile and link C+MPI programs

• Flags: same meaning as C compiler

• -O   optimize

• -o <file>  where to put executable

mpicc -O -o foo foo.c
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Running MPI Programs

• mpirun -np <p> <exec> <arg1> …

• -np <p>  number of processes

• <exec>  executable

• <arg1> …  command-line arguments
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Specifying Host Processors

• File .mpi-machines in home directory lists host
processors in order of their use

• Example .mpi_machines file contents
band01.cs.ppu.edu

band02.cs.ppu.edu

band03.cs.ppu.edu

band04.cs.ppu.edu
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Enabling Remote Logins

• MPI needs to be able to initiate processes on other processors
without supplying a password

• Each processor in group must list all other processors in its
.rhosts file; e.g.,

band01.cs.ppu.edu student

band02.cs.ppu.edu student

band03.cs.ppu.edu student

band04.cs.ppu.edu student
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Execution on 1 CPU

% mpirun -np 1 sat
0) 1010111110011001
0) 0110111110011001
0) 1110111110011001
0) 1010111111011001
0) 0110111111011001
0) 1110111111011001
0) 1010111110111001
0) 0110111110111001
0) 1110111110111001
Process 0 is done
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Execution on 2 CPUs

% mpirun -np 2 sat
0) 0110111110011001
0) 0110111111011001
0) 0110111110111001
1) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 1110111111011001
1) 1010111110111001
1) 1110111110111001
Process 0 is done
Process 1 is done
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Execution on 3 CPUs

% mpirun -np 3 sat
0) 0110111110011001
0) 1110111111011001
2) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 0110111110111001
0) 1010111110111001
2) 0110111111011001
2) 1110111110111001
Process 1 is done
Process 2 is done
Process 0 is done
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Deciphering Output

• Output order only partially reflects order of output
events inside parallel computer

• If process A prints two messages, first message will
appear before second

• If process A calls printf before process B, there is
no guarantee process A’s message will appear before
process B’s message
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Enhancing the Program

• We want to find total number of solutions

• Incorporate sum-reduction into program

• Reduction is a collective communication
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Modifications

• Modify function check_circuit

• Return 1 if circuit satisfiable with input combination

• Return 0 otherwise

• Each process keeps local count of satisfiable circuits it
has found

• Perform reduction after for loop
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New Declarations and Code

int count;  /* Local sum */

int global_count; /* Global sum */

int check_circuit (int, int);

count = 0;

for (i = id; i < 65536; i += p)

   count += check_circuit (id, i);
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Prototype of  MPI_Reduce()

int MPI_Reduce (
   void         *operand,
                /* addr of 1st reduction element */
   void         *result,
                /* addr of 1st reduction result */
   int          count,
                /* reductions to perform */
   MPI_Datatype type,
                /* type of elements */
   MPI_Op       operator,
                /* reduction operator */
   int          root,
                /* process getting result(s) */
   MPI_Comm     comm
                /* communicator */
)
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MPI_Datatype Options

• MPI_CHAR

• MPI_DOUBLE

• MPI_FLOAT

• MPI_INT

• MPI_LONG

• MPI_LONG_DOUBLE

• MPI_SHORT

• MPI_UNSIGNED_CHAR

• MPI_UNSIGNED

• MPI_UNSIGNED_LONG

• MPI_UNSIGNED_SHORT



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Op Options

• MPI_BAND

• MPI_BOR

• MPI_BXOR

• MPI_LAND

• MPI_LOR

• MPI_LXOR

• MPI_MAX

• MPI_MAXLOC

• MPI_MIN

• MPI_MINLOC

• MPI_PROD

• MPI_SUM
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Our Call to MPI_Reduce()

MPI_Reduce (&count,
            &global_count,
            1,
            MPI_INT,
            MPI_SUM,
            0,
            MPI_COMM_WORLD);

Only process 0

will get the result

if (!id) printf ("There are %d different solutions\n",
   global_count);
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Execution of Second Program

% mpirun -np 3 seq2
0) 0110111110011001
0) 1110111111011001
1) 1110111110011001
1) 1010111111011001
2) 1010111110011001
2) 0110111111011001
2) 1110111110111001
1) 0110111110111001
0) 1010111110111001
Process 1 is done
Process 2 is done
Process 0 is done
There are 9 different solutions
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Benchmarking the Program

• MPI_Barrier  barrier synchronization

• MPI_Wtick  timer resolution

• MPI_Wtime  current time
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Benchmarking Code

double elapsed_time;
…
MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD);
elapsed_time = - MPI_Wtime();
…
MPI_Reduce (…);
elapsed_time += MPI_Wtime();
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Benchmarking Results

3.775

4.604

5.863

8.382

15.931

Time (sec)Processors
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Benchmarking Results
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Summary (1/2)

• Message-passing programming follows naturally from
task/channel model

• Portability of message-passing programs

• MPI most widely adopted standard
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Summary (2/2)

• MPI functions introduced

• MPI_Init

• MPI_Comm_rank

• MPI_Comm_size

• MPI_Reduce

• MPI_Finalize

• MPI_Barrier

• MPI_Wtime

• MPI_Wtick
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Chapter 6

Floyd’s Algorithm
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Chapter Objectives

• Creating 2-D arrays

• Thinking about “grain size”

• Introducing point-to-point communications

• Reading and printing 2-D matrices

• Analyzing performance when computations and
communications overlap
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Outline

• All-pairs shortest path problem

• Dynamic 2-D arrays

• Parallel algorithm design

• Point-to-point communication

• Block row matrix I/O

• Analysis and benchmarking
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All-pairs Shortest Path Problem
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Floyd’s Algorithm

for k ← 0 to n-1

for i ← 0 to n-1

for j ← 0 to n-1

a[i,j] ← min (a[i,j], a[i,k] + a[k,j])

endfor

endfor

endfor
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Why It Works

i

k

j

Shortest path from i to k

       through 0, 1, …, k-1

Shortest path from k to j

      through 0, 1, …, k-1

Shortest path from i to j

     through 0, 1, …, k-1

Computed

in previous

iterations
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Dynamic 1-D Array Creation

A

Heap

Run-time Stack
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Dynamic 2-D Array Creation

Heap

Run-time Stack

Bstorage B
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Designing Parallel Algorithm

• Partitioning

• Communication

• Agglomeration and Mapping
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Partitioning

• Domain or functional decomposition?

• Look at pseudocode

• Same assignment statement executed n3 times

• No functional parallelism

• Domain decomposition: divide matrix A into its n2

elements
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Communication

Primitive

tasks

Updating

a[3,4] when

k = 1

Iteration k:

every task

in row k

broadcasts

its value w/in

task column

Iteration k:

every task

in column k

broadcasts

its value w/in

task row
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Agglomeration and Mapping

• Number of tasks: static

• Communication among tasks: structured

• Computation time per task: constant

• Strategy:

• Agglomerate tasks to minimize communication

• Create one task per MPI process
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Two Data Decompositions

Rowwise block striped Columnwise block striped
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Comparing Decompositions

• Columnwise block striped

• Broadcast within columns eliminated

• Rowwise block striped

• Broadcast within rows eliminated

• Reading matrix from file simpler

• Choose rowwise block striped decomposition
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File Input

File
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Pop Quiz

Why don’t we input the entire file at once

and then scatter its contents among the

processes, allowing concurrent message

passing?
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Point-to-point Communication

• Involves a pair of processes

• One process sends a message

• Other process receives the message
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Send/Receive Not Collective
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Function MPI_Send

int MPI_Send (

      void         *message,

      int           count,

      MPI_Datatype  datatype,

      int           dest,

      int           tag,

      MPI_Comm      comm

)
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Function MPI_Recv

int MPI_Recv (

      void         *message,

      int           count,

      MPI_Datatype  datatype,

      int           source,

      int           tag,

      MPI_Comm      comm,

      MPI_Status   *status

)
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Coding Send/Receive

…
if (ID == j) {
   …
   Receive from I
   …
}
…
if (ID == i) {
   …
   Send to j
   …
}
…

Receive is before Send.

Why does this work?
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Inside MPI_Send and MPI_Recv

Sending Process Receiving Process

Program

Memory

System

Buffer

System

Buffer

Program

Memory

MPI_Send MPI_Recv
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Return from  MPI_Send

• Function blocks until message buffer free

• Message buffer is free when

• Message copied to system buffer, or

• Message transmitted

• Typical scenario

• Message copied to system buffer

• Transmission overlaps computation
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Return from MPI_Recv

• Function blocks until message in buffer

• If message never arrives, function never returns
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Deadlock

• Deadlock: process waiting for a condition that will
never become true

• Easy to write send/receive code that deadlocks
• Two processes: both receive before send

• Send tag doesn’t match receive tag

• Process sends message to wrong destination process
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Function MPI_Bcast

int MPI_Bcast (

   void *buffer, /* Addr of 1st element */

   int count,    /* # elements to broadcast */

   MPI_Datatype datatype, /* Type of elements */

   int root,     /* ID of root process */

   MPI_Comm comm)  /* Communicator */

MPI_Bcast (&k, 1, MPI_INT, 0, MPI_COMM_WORLD);
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Computational Complexity

• Innermost loop has complexity Θ(n)

• Middle loop executed at most n/p times

• Outer loop executed n times

• Overall complexity Θ(n3/p)
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Communication Complexity

• No communication in inner loop

• No communication in middle loop

• Broadcast in outer loop — complexity is Θ(n log p)

• Overall complexity Θ(n2 log p)
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Execution Time Expression (1)

! " ! " )/4(log/ #$% npnnpnn ++

Iterations of outer loop

Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast

Message-passing time

Iterations of inner loop
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Computation/communication Overlap



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution Time Expression (2)

Iterations of outer loop

Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast

Message-passing time

Iterations of inner loop

! " ! " ! " #$% /4loglog/ nppnnpnn ++

Message transmission
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Predicted vs. Actual Performance

Execution Time (sec)

3.983.948

4.504.407

5.165.016

5.995.865

7.296.894

9.609.013

13.8913.022

25.5425.541

ActualPredictedProcesses
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Summary

• Two matrix decompositions

• Rowwise block striped

• Columnwise block striped

• Blocking send/receive functions

• MPI_Send

• MPI_Recv

• Overlapping communications with computations


