
 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4

Message-Passing Programming



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Learning Objectives

• Understanding how MPI programs execute

• Familiarity with fundamental MPI functions



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

• Message-passing model

• Message Passing Interface (MPI)

• Coding MPI programs

• Compiling MPI programs

• Running MPI programs

• Benchmarking MPI programs



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Message-passing Model



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processes

• Number is specified at start-up time

• Remains constant throughout execution of program

• All execute same program

• Each has unique ID number

• Alternately performs computations and communicates



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Advantages of Message-passing Model

• Gives programmer ability to manage the memory
hierarchy

• Portability to many architectures

• Easier to create a deterministic program

• Simplifies debugging



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Message Passing Interface

• Late 1980s: vendors had unique libraries

• 1989: Parallel Virtual Machine (PVM) developed at
Oak Ridge National Lab

• 1992: Work on MPI standard begun

• 1994: Version 1.0 of MPI standard

• 1997: Version 2.0 of MPI standard

• Today: MPI is dominant message passing library
standard



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Circuit Satisfiability

1
1

1
1
1
1
1
1
1
1

1
1

1
1
1

1

not satisfied

0



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solution Method

• Circuit satisfiability is NP-complete

• No known algorithms to solve in polynomial time

• We seek all solutions

• We find through exhaustive search

• 16 inputs ⇒ 65,536 combinations to test



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning: Functional Decomposition

 Embarrassingly parallelEmbarrassingly parallel: No channels: No channels

between tasksbetween tasks



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration and Mapping

• Properties of parallel algorithm

• Fixed number of tasks

• No communications between tasks

• Time needed per task is variable

• Map tasks to processors in a cyclic fashion



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cyclic (interleaved) Allocation

• Assume p processes

• Each process gets every pth piece of work

• Example: 5 processes and 12 pieces of work

• P0: 0, 5, 10

• P1: 1, 6, 11

• P2: 2, 7

• P3: 3, 8

• P4: 4, 9



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pop Quiz

• Assume n pieces of work, p processes, and cyclic
allocation

• What is the most pieces of work any process has?

• What is the least pieces of work any process has?

• How many processes have the most pieces of work?



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary of Program Design

• Program will consider all 65,536 combinations of 16
boolean inputs

• Combinations allocated in cyclic fashion to processes

• Each process examines each of its combinations

• If it finds a satisfiable combination, it will print it



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Include Files

• MPI header file

#include <mpi.h>

 Standard I/O header fileStandard I/O header file

#include <stdio.h>



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Local Variables

int main (int argc, char *argv[]) {
   int i;
   int id; /* Process rank */
   int p;  /* Number of processes */
   void check_circuit (int, int);

 Include Include argcargc  and and argvargv: they are needed to: they are needed to

initialize MPIinitialize MPI

 One copy of every variable for each processOne copy of every variable for each process

running this programrunning this program



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Initialize MPI

• First MPI function called by each process

• Not necessarily first executable statement

• Allows system to do any necessary setup

MPI_Init (&argc, &argv);



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communicators

• Communicator: opaque object that provides message-
passing environment for processes

• MPI_COMM_WORLD

• Default communicator

• Includes all processes

• Possible to create new communicators

• Will do this in Chapters 8 and 9



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communicator

MPI_COMM_WORLD

Communicator

0

2

1

3

4

5

Processes

Ranks

Communicator Name



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Determine Number of Processes

• First argument is communicator

• Number of processes returned through second
argument

MPI_Comm_size (MPI_COMM_WORLD, &p);



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Determine Process Rank

• First argument is communicator

• Process rank (in range 0, 1, …, p-1) returned through
second argument

MPI_Comm_rank (MPI_COMM_WORLD, &id);



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Replication of Automatic Variables

1id

6p

2id

6p

0id

6p

3id

6p

4id

6p

5id

6p



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What about External Variables?

int total;

int main (int argc, char *argv[]) {
   int i;
   int id;
   int p;
   …

 Where is variable Where is variable totaltotal stored? stored?



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cyclic Allocation of Work

for (i = id; i < 65536; i += p)
   check_circuit (id, i);

 Parallelism is outside functionParallelism is outside function

check_circuitcheck_circuit

 It can be an ordinary, sequential functionIt can be an ordinary, sequential function



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shutting Down MPI

• Call after all other MPI library calls

• Allows system to free up MPI resources

MPI_Finalize();



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) {
   int i;
   int id;
   int p;
   void check_circuit (int, int);

   MPI_Init (&argc, &argv);
   MPI_Comm_rank (MPI_COMM_WORLD, &id);
   MPI_Comm_size (MPI_COMM_WORLD, &p);

   for (i = id; i < 65536; i += p)
      check_circuit (id, i);

   printf ("Process %d is done\n", id);
   fflush (stdout);
   MPI_Finalize();
   return 0;
} Put  fflush() after every  printf()



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/* Return 1 if 'i'th bit of 'n' is 1; 0 otherwise */
#define EXTRACT_BIT(n,i) ((n&(1<<i))?1:0)

void check_circuit (int id, int z) {
   int v[16];        /* Each element is a bit of z */
   int i;

   for (i = 0; i < 16; i++) v[i] = EXTRACT_BIT(z,i);

   if ((v[0] || v[1]) && (!v[1] || !v[3]) && (v[2] || v[3])
      && (!v[3] || !v[4]) && (v[4] || !v[5])
      && (v[5] || !v[6]) && (v[5] || v[6])
      && (v[6] || !v[15]) && (v[7] || !v[8])
      && (!v[7] || !v[13]) && (v[8] || v[9])
      && (v[8] || !v[9]) && (!v[9] || !v[10])
      && (v[9] || v[11]) && (v[10] || v[11])
      && (v[12] || v[13]) && (v[13] || !v[14])
      && (v[14] || v[15])) {
      printf ("%d) %d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n", id,
         v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],
         v[10],v[11],v[12],v[13],v[14],v[15]);
      fflush (stdout);
   }
}



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compiling MPI Programs

• mpicc: script to compile and link C+MPI programs

• Flags: same meaning as C compiler

• -O   optimize

• -o <file>  where to put executable

mpicc -O -o foo foo.c



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Running MPI Programs

• mpirun -np <p> <exec> <arg1> …

• -np <p>  number of processes

• <exec>  executable

• <arg1> …  command-line arguments



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Specifying Host Processors

• File .mpi-machines in home directory lists host
processors in order of their use

• Example .mpi_machines file contents
band01.cs.ppu.edu

band02.cs.ppu.edu

band03.cs.ppu.edu

band04.cs.ppu.edu



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Enabling Remote Logins

• MPI needs to be able to initiate processes on other processors
without supplying a password

• Each processor in group must list all other processors in its
.rhosts file; e.g.,

band01.cs.ppu.edu student

band02.cs.ppu.edu student

band03.cs.ppu.edu student

band04.cs.ppu.edu student



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution on 1 CPU

% mpirun -np 1 sat
0) 1010111110011001
0) 0110111110011001
0) 1110111110011001
0) 1010111111011001
0) 0110111111011001
0) 1110111111011001
0) 1010111110111001
0) 0110111110111001
0) 1110111110111001
Process 0 is done



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution on 2 CPUs

% mpirun -np 2 sat
0) 0110111110011001
0) 0110111111011001
0) 0110111110111001
1) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 1110111111011001
1) 1010111110111001
1) 1110111110111001
Process 0 is done
Process 1 is done



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution on 3 CPUs

% mpirun -np 3 sat
0) 0110111110011001
0) 1110111111011001
2) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 0110111110111001
0) 1010111110111001
2) 0110111111011001
2) 1110111110111001
Process 1 is done
Process 2 is done
Process 0 is done



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Deciphering Output

• Output order only partially reflects order of output
events inside parallel computer

• If process A prints two messages, first message will
appear before second

• If process A calls printf before process B, there is
no guarantee process A’s message will appear before
process B’s message



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Enhancing the Program

• We want to find total number of solutions

• Incorporate sum-reduction into program

• Reduction is a collective communication



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Modifications

• Modify function check_circuit

• Return 1 if circuit satisfiable with input combination

• Return 0 otherwise

• Each process keeps local count of satisfiable circuits it
has found

• Perform reduction after for loop



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

New Declarations and Code

int count;  /* Local sum */

int global_count; /* Global sum */

int check_circuit (int, int);

count = 0;

for (i = id; i < 65536; i += p)

   count += check_circuit (id, i);



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Prototype of  MPI_Reduce()

int MPI_Reduce (
   void         *operand,
                /* addr of 1st reduction element */
   void         *result,
                /* addr of 1st reduction result */
   int          count,
                /* reductions to perform */
   MPI_Datatype type,
                /* type of elements */
   MPI_Op       operator,
                /* reduction operator */
   int          root,
                /* process getting result(s) */
   MPI_Comm     comm
                /* communicator */
)



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Datatype Options

• MPI_CHAR

• MPI_DOUBLE

• MPI_FLOAT

• MPI_INT

• MPI_LONG

• MPI_LONG_DOUBLE

• MPI_SHORT

• MPI_UNSIGNED_CHAR

• MPI_UNSIGNED

• MPI_UNSIGNED_LONG

• MPI_UNSIGNED_SHORT



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Op Options

• MPI_BAND

• MPI_BOR

• MPI_BXOR

• MPI_LAND

• MPI_LOR

• MPI_LXOR

• MPI_MAX

• MPI_MAXLOC

• MPI_MIN

• MPI_MINLOC

• MPI_PROD

• MPI_SUM



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Our Call to MPI_Reduce()

MPI_Reduce (&count,
            &global_count,
            1,
            MPI_INT,
            MPI_SUM,
            0,
            MPI_COMM_WORLD);

Only process 0

will get the result

if (!id) printf ("There are %d different solutions\n",
   global_count);



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution of Second Program

% mpirun -np 3 seq2
0) 0110111110011001
0) 1110111111011001
1) 1110111110011001
1) 1010111111011001
2) 1010111110011001
2) 0110111111011001
2) 1110111110111001
1) 0110111110111001
0) 1010111110111001
Process 1 is done
Process 2 is done
Process 0 is done
There are 9 different solutions



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking the Program

• MPI_Barrier  barrier synchronization

• MPI_Wtick  timer resolution

• MPI_Wtime  current time



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking Code

double elapsed_time;
…
MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD);
elapsed_time = - MPI_Wtime();
…
MPI_Reduce (…);
elapsed_time += MPI_Wtime();



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking Results

3.775

4.604

5.863

8.382

15.931

Time (sec)Processors



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking Results

0

5

10

15

20

1 2 3 4 5

Processors

T
im

e
 (

m
s
e
c
)

Execution Time

Perfect Speed

Improvement



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (1/2)

• Message-passing programming follows naturally from
task/channel model

• Portability of message-passing programs

• MPI most widely adopted standard



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/2)

• MPI functions introduced

• MPI_Init

• MPI_Comm_rank

• MPI_Comm_size

• MPI_Reduce

• MPI_Finalize

• MPI_Barrier

• MPI_Wtime

• MPI_Wtick



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6

Floyd’s Algorithm



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter Objectives

• Creating 2-D arrays

• Thinking about “grain size”

• Introducing point-to-point communications

• Reading and printing 2-D matrices

• Analyzing performance when computations and
communications overlap



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

• All-pairs shortest path problem

• Dynamic 2-D arrays

• Parallel algorithm design

• Point-to-point communication

• Block row matrix I/O

• Analysis and benchmarking



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

All-pairs Shortest Path Problem

A

E

B

C

D

4

6

1 3
5

3

1

2

0 6 3 6

4 0 7 10

12 6 0 3

7 3 10 0

9 5 12 2

A

B

C

D

E

A B C D

4

8

1

11

0

E

Resulting Adjacency Matrix Containing Distances



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Floyd’s Algorithm

for k ← 0 to n-1

for i ← 0 to n-1

for j ← 0 to n-1

a[i,j] ← min (a[i,j], a[i,k] + a[k,j])

endfor

endfor

endfor



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Why It Works

i

k

j

Shortest path from i to k

       through 0, 1, …, k-1

Shortest path from k to j

      through 0, 1, …, k-1

Shortest path from i to j

     through 0, 1, …, k-1

Computed

in previous

iterations



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dynamic 1-D Array Creation

A

Heap

Run-time Stack



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dynamic 2-D Array Creation

Heap

Run-time Stack

Bstorage B



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Designing Parallel Algorithm

• Partitioning

• Communication

• Agglomeration and Mapping



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning

• Domain or functional decomposition?

• Look at pseudocode

• Same assignment statement executed n3 times

• No functional parallelism

• Domain decomposition: divide matrix A into its n2

elements



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication

Primitive

tasks

Updating

a[3,4] when

k = 1

Iteration k:

every task

in row k

broadcasts

its value w/in

task column

Iteration k:

every task

in column k

broadcasts

its value w/in

task row



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration and Mapping

• Number of tasks: static

• Communication among tasks: structured

• Computation time per task: constant

• Strategy:

• Agglomerate tasks to minimize communication

• Create one task per MPI process



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Two Data Decompositions

Rowwise block striped Columnwise block striped



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Comparing Decompositions

• Columnwise block striped

• Broadcast within columns eliminated

• Rowwise block striped

• Broadcast within rows eliminated

• Reading matrix from file simpler

• Choose rowwise block striped decomposition



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

File Input

File



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pop Quiz

Why don’t we input the entire file at once

and then scatter its contents among the

processes, allowing concurrent message

passing?



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Point-to-point Communication

• Involves a pair of processes

• One process sends a message

• Other process receives the message



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Send/Receive Not Collective



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Send

int MPI_Send (

      void         *message,

      int           count,

      MPI_Datatype  datatype,

      int           dest,

      int           tag,

      MPI_Comm      comm

)



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Recv

int MPI_Recv (

      void         *message,

      int           count,

      MPI_Datatype  datatype,

      int           source,

      int           tag,

      MPI_Comm      comm,

      MPI_Status   *status

)



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Coding Send/Receive

…
if (ID == j) {
   …
   Receive from I
   …
}
…
if (ID == i) {
   …
   Send to j
   …
}
…

Receive is before Send.

Why does this work?



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Inside MPI_Send and MPI_Recv

Sending Process Receiving Process

Program

Memory

System

Buffer

System

Buffer

Program

Memory

MPI_Send MPI_Recv



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Return from  MPI_Send

• Function blocks until message buffer free

• Message buffer is free when

• Message copied to system buffer, or

• Message transmitted

• Typical scenario

• Message copied to system buffer

• Transmission overlaps computation



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Return from MPI_Recv

• Function blocks until message in buffer

• If message never arrives, function never returns



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Deadlock

• Deadlock: process waiting for a condition that will
never become true

• Easy to write send/receive code that deadlocks
• Two processes: both receive before send

• Send tag doesn’t match receive tag

• Process sends message to wrong destination process



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function MPI_Bcast

int MPI_Bcast (

   void *buffer, /* Addr of 1st element */

   int count,    /* # elements to broadcast */

   MPI_Datatype datatype, /* Type of elements */

   int root,     /* ID of root process */

   MPI_Comm comm)  /* Communicator */

MPI_Bcast (&k, 1, MPI_INT, 0, MPI_COMM_WORLD);



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computational Complexity

• Innermost loop has complexity Θ(n)

• Middle loop executed at most n/p times

• Outer loop executed n times

• Overall complexity Θ(n3/p)



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Complexity

• No communication in inner loop

• No communication in middle loop

• Broadcast in outer loop — complexity is Θ(n log p)

• Overall complexity Θ(n2 log p)



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution Time Expression (1)

! " ! " )/4(log/ #$% npnnpnn ++

Iterations of outer loop

Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast

Message-passing time

Iterations of inner loop



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computation/communication Overlap



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution Time Expression (2)

Iterations of outer loop

Iterations of middle loop

Cell update time

Iterations of outer loop

Messages per broadcast

Message-passing time

Iterations of inner loop

! " ! " ! " #$% /4loglog/ nppnnpnn ++

Message transmission



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Predicted vs. Actual Performance

Execution Time (sec)

3.983.948

4.504.407

5.165.016

5.995.865

7.296.894

9.609.013

13.8913.022

25.5425.541

ActualPredictedProcesses



 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary

• Two matrix decompositions

• Rowwise block striped

• Columnwise block striped

• Blocking send/receive functions

• MPI_Send

• MPI_Recv

• Overlapping communications with computations


