
VU Research Portal

Parallel Programming Using Shared Objects and Broadcasting

Tanenbaum, A.S.; Kaashoek, M.F.; Bal, H.E.

published in
IEEE Computer
1992

DOI (link to publisher)
10.1109/2.153276

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tanenbaum, A. S., Kaashoek, M. F., & Bal, H. E. (1992). Parallel Programming Using Shared Objects and
Broadcasting. IEEE Computer, 25(Aug.), 10-19. https://doi.org/10.1109/2.153276

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. Aug. 2022

https://doi.org/10.1109/2.153276
https://research.vu.nl/en/publications/b53538bb-91df-4a15-99ad-d84c4447ca52
https://doi.org/10.1109/2.153276

PARALLEL PROGRAMMING USING SHARED
OBJECTS AND BROADCASTING

Andrew S. Tanenbaum
M. Frans Kaashoek

Henri E. Bal

Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT

Parallel computers come in two varieties: those with shared memory and
those without. The former are hard to build; the latter are hard to program. In
this paper we propose a hybrid form that combines the best properties of each.
The basic idea is to allow programmers to define objects upon-which user-
defined operations are performed, in effect, abstract data types. Each object is
replicated on each machine that needs it. Reads are done locally, with no net-
work traffic. Writes are done by a reliable broadcast algorithm. A language for
parallel programming, Orca, based on distributed shared objects has been
designed, implemented, and used for some applications. Its implementation
uses the reliable broadcast mechanism. For applications with a high read/write
ratio to the shared objects, we show that our approach can frequently achieve
close to linear speedup with up to 16 processors.

BLURB FOR CENTER COLUMN
Parallel computers come in two varieties: those with shared memory and those
without. The former are hard to build; the latter are hard to program. In this
paper we propose a hybrid form that combines the best properties of each.

Keywords: broadcasting, shared objects, distributed systems

PARALLEL PROGRAMMING USING SHARED
OBJECTS AND BROADCASTING

Andrew S. Tanenbaum
M. Frans Kaashoek

Henri E. Bal

Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

As computers continue to become less expensive, there is increasing interest in harnessing
multiple CPUs together to build large, powerful distributed and parallel systems. The goal of
this work is to achieve high performance at low cost. In this paper we will first survey the two
major design approaches taken so far, multiprocessors and multicomputers, and point out their
strengths and weaknesses. Then we will introduce and discuss a hybrid form that uses an
unusual software organization on conventional hardware to achieve a system that is both easy to
build and easy to program. Finally, we will discuss a prototype system that we have built,
describe some applications we have written for it, and give measurements of its performance.

Multiprocessors
Systems with multiple processors can be divided into two categories: those that contain

physical shared memory, called multiprocessors , and those that do not, called multicomputers .
Multiprocessors have a single, global, shared address space visible to all processors. Any pro-
cessor can read or write any word in the address space by simply moving data from or to a
memory address. Communication is via the shared memory. Multicomputers do not have
shared memory and must communicate by message passing.

The key property required of any multiprocessor is memory coherence . When any proces-
sor writes a value v to memory address m , any other processor that subsequently reads the word
at memory address m , no matter how quickly after the write, will get the value, v , just written.

Multiprocessor Hardware. There are two basic ways to build a multiprocessor, both of
them expensive. The first way is to put all the processors on a single bus along with a memory
module. To read or write a word of data, a processor makes a normal memory request over the
bus. Since there is only one memory module and there are no copies of memory words any-
where else, the memory is always coherent. To reduce the amount of bus traffic, the processors
are usually equipped with a cache for storing copies of the most recently accessed memory
words. The caches are kept consistent by special hardware that monitors bus traffic and updates
or invalidates copies of words that are about to be modified by another processor. A bus-based
multiprocessor is shown in Fig. 1(a).

The second general approach to building a multiprocessor is using some kind of switching
network, such as the crossbar switch , shown in Fig. 1(b). In this organization, each of the n
processors can be potentially connected to any one of the n memory banks via a matrix of little
electronic switches. When switch ij is closed (by hardware), processor i is connected to
memory bank j and can read or write data there. The problem with the crossbar switch is that to

- 2 -

C C C C

M M M M

Bus
Cache

C

C

C

C

M M M M

C

C

C

C

M

M

M

M

(a) (b) (c)

Fig. 1. Three multiprocessor designs. (a) A single-bus. (b) Cross bar switch. (c) Omega net-
work. C indicates CPU (possibly with cache); M indicates memory module.

connect n processors to n memory banks requires n 2 switches. As n becomes large, say 1024
processors and 1024 memories, the switch becomes prohibitively expensive and unmanageable.

An alternative switching scheme is to build a multiprocessor using a switching network,
for example, the omega network, shown in Fig. 1(c). In this figure, the CPUs are on the left and
the memories are on the right. The omega network is a sophisticated (hardware) switching net-
work that connects them. To read a word of memory, a CPU sends a request packet to the
appropriate memory via the switching network, which sends the reply back the other way. The
problem with this approach is that a substantial delay is incurred and that a large number
(n log2n) of switches is needed.

Multiprocessor Software. In contrast to the multiprocessor hardware, which, for large
systems, is complicated, difficult to build, and expensive, software for multiprocessors is
straightforward. Since all processes run within a single shared address space, they can easily
share data structures and variables. When one process updates a variable and another one reads
it immediately afterwards, the reader always gets the value just stored (memory coherence pro-
perty).

To avoid chaos, co-operating processes must synchronize their activities. For example,
while one process is updating a linked list, it is essential that no other process even attempt to
read the list, let alone modify it. Many techniques for providing the necessary synchronization
are well known. These include spin locks, semaphores, and monitors, and are discussed in any
standard textbook on operating systems. The advantage of this organization is that sharing is
easy and cheap and uses a methodology that has been around for years and is well understood.

Multicomputers
In contrast to the multiprocessors, which, by definition, share primary memory, multicom-

puters do not. Each CPU in a multicomputer has its own, private memory, which it alone can
read and write. This difference leads to a significantly different architecture, both in hardware
and in software.

Multicomputer Hardware. Just as there are various interconnection schemes for mul-
tiprocessors, there are various interconnection schemes for multicomputers. Figure 2(a) shows a

- 3 -

simple bus-based multicomputer. Each CPU has its own local memory, which is not accessible
by the others. In Fig. 2(b) and Fig. 2(c) we see other interconnection schemes, a grid and a
hypercube, respectively. A grid is easy to understand and easy to lay out on a printed circuit
board or chip. This architecture is best suited to problems that are two dimensional in nature
(graph theory, vision, etc.). A hypercube is an k-dimensional cube. One can imagine a 4-
dimensional hypercube as a pair of ordinary cubes with the corresponding vertices connected, as
shown in Fig. 2(c), where the lower left nodes at the rear have been omitted for clarity. In a
hypercube, the number of connections to each processor grows logarithmically with the number
of CPUs, but the worst case delay is also logarithmic. With a grid, the delay grows as the
square root of the number of processors, which is much worse for large systems.

(b) (c)

Memory Memory Memory

CPU CPU CPU

Network

(a)

Fig. 2. Multicomputers. (a) Bus. (b) Grid. (c) Hypercube.

Multicomputer Software. Since multicomputers do not contain shared memory (by
definition), they must communicate by message passing. Various software paradigms have
been devised to express message passing. The simplest one is to have two operating system
primitives, SEND and RECEIVE. Many variations on this theme exist. Choices include: block-
ing vs. nonblocking, and buffered or nonbuffered among others.

A serious problem with message passing is that, conceptually, it is really input/output,
which makes programming complicated. While all programs do I/O, it does not have the
abstraction power of say, procedures or abstract data types on which to build a system, and in
most programming languages it is almost an afterthought. To hide the bare input/output, Birrell
and Nelson [1] proposed a scheme called remote procedure call (RPC) which hides the mes-
sage passing to a limited extent. With RPC, the caller calls a stub (library) routine, which sends
the message. Nevertheless, RPC introduces its own problems, such as restricting the use of gen-
eral pointers and global variables, and making the use of array parameters very expensive. RPC
also requires programmers to deal with complex failure semantics.

The conclusion of all the above is that multiprocessors and multicomputers have signifi-
cantly different characteristics. Multiprocessors are hard to build but easy to program. In con-
trast, multicomputers are easy to build, but hard to program. What people would like is a sys-
tem that is easy to build (i.e., no shared memory) but also easy to program (i.e., shared
memory). How these two contradictory demands can be reconciled is the subject of this paper.

- 4 -

Distributed Shared Memory
Various researchers have proposed intermediate designs that try to capture the desirable

properties of both architectures. Most of these designs attempt to simulate shared memory on
multicomputers. All of them have the property that a process executing on any machine can
access data from its own memory without any delay, whereas access to data located on another
machine entails considerable delay and overhead, as a request message must be sent there and a
reply received. A system in which a single address space is shared among otherwise disjoint
machines is said to have a distributed shared memory.

In its simplest form, the shared memory is divided up into fixed size pages, with each page
residing on exactly one processor. When a processor references a local page, the reference is
done by the hardware in the usual way. However, when a remote page is referenced, a page
fault occurs, and a trap to the operating system occurs. The operating system fetches the page,
just as in a traditional virtual memory system, only now the page is fetched from another pro-
cessor (which loses the page), instead of from the disk.

A significant improvement to the basic algorithm has been proposed, implemented, and
analyzed by Li and Hudak [2]. In their design, thrashing (page traffic caused by concurrent
readers) is reduced by permitting read-only pages to be replicated on all the machines that need
them. When a read-only page is referenced, instead of sending the page, a copy is made, so the
original owner may continue using it. Li and Hudak also present several algorithms, both cen-
tralized and distributed, for locating the pages.

Another approach is to weaken the semantics of the shared memory. This has been pro-
posed for multiprocessors [3], but can also be applied to distributed shared memory [4]. The
tradeoff here is greater efficiency but the price is more complexity for the programmer. It is
simplest for the programmer to think in terms of a model in which a read always returns the
most recent value written. Making this true only under certain conditions introduces the possi-
bility of subtle errors creeping in.

A completely different approach is to base the sharing not on pages, but on more
software-oriented concepts. In Linda [5], for example, an abstract tuple space is shared. Opera-
tions are available to insert and delete tuples from this space. Another approach is to share
objects, that is, abstract data types on which a set of well-defined operations are possible.
Emerald, for example, illustrates this method [6]. Emerald programs can perform operations on
objects without regard to where the programs and objects are located. However, although both
the tuple-based and object-based schemes are conceptually simple, both suffer from perfor-
mance problems due to the considerable amount of network traffic. We will come back to this
point after we have described our approach, and we will explain why we believe it is an advance
over previous methods.

Our Design
In our research, we have devised and implemented an alternative model that preserves the

coherency of object-based shared memory (i.e., based on abstract data types) has simple seman-
tics, and can be implemented efficiently. The model uses our new parallel programming
language, Orca, and is implemented through reliable broadcasting . It consists of four layers, as
shown in Fig. 3.

Layer 1 is the bare CPU and networking hardware. Our scheme is primarily intended for
networks that support broadcasting (sending a message to all machines) or multicasting (sending
a message to a selected group of machines) in hardware. Ethernet, earth satellites, and cellular
radio are examples of networks having broadcasting or multicasting. (For simplicity, we will

- 5 -

The Orca parallel programming language

Object management (language run-time system)

Reliable broadcasting (sequencer code)

Hardware (including network)

4

3

2

1

Layer

User mode

Kernel mode

Fig. 3. Structure of the proposed model.

henceforth use the term ‘‘broadcasting’’ to mean either one.) Broadcasting is assumed to be
unreliable, that is, it is possible for messages to be lost.

Layer 2 is the software necessary to turn the unreliable broadcasting offered by layer 1 into
reliable broadcasting. It is normally part of the operating system kernel. As a simple example
of a possible (but highly inefficient) protocol, reliably broadcasting a message to n machines
can be done by having the kernel send each machine, in turn, a point-to-point message, and then
wait for an acknowledgement. This protocol takes 2n messages per reliable broadcast. Below
we will describe a different protocol that does it in a fraction more than 2 messages on the aver-
age, instead of 2n. The main issue to understand is that when layer 3 hands a message to layer 2
and asks for it to be reliably broadcast, layer 3 does not have to worry about how this is imple-
mented or what happens if the hardware loses a message. All of this is taken care of by layer 2.

In addition to being inefficient, the protocol that sends a point-to-point message to every
machine has a more serious problem. When two machines, A and B, simultaneously do a broad-
cast, the results can be interleaved: some machines may get the broadcast from A before that
from B, and other machines may receive them in the reverse order, depending on network topol-
ogy, lost messages, and so on. This property makes programming difficult. In the protocol that
we will describe below, this cannot happen. Either all the machines get A’s broadcast and then
B’s broadcast, or all the machines get B’s broadcast and then A’s broadcast. Broadcasts are glo-
bally ordered, and it is guaranteed that all user processes get them in the same order.

Layer 3 is the language run-time system, which is usually a set of library procedures com-
piled into the application program. Conceptually, programmers can have variables and objects
be PRIVATE or SHARED. The PRIVATE ones are not visible on other machines, so they can
be accessed by direct memory reads and writes. SHARED objects are replicated on all
machines. Reads to them are local, the same as reads to PRIVATE objects. Writes are done by
reliable broadcasting. Objects are entirely passive; they contain only data, not processes.

Layer 4 provides language support. Although it is possible for programmers to use the dis-
tributed shared memory by making calls directly on layer 3, it is much more convenient to have
language support. We have designed a language, called Orca [7], for parallel programming
using distributed shared objects, and have implemented a compiler for it. In it, programmers
can declare shared objects, each one containing a data structure for the object and a set of pro-
cedures that operate on it. Operations on shared objects are atomic (i.e., indivisible as seen from
the outside) and serializable (i.e., happen in some unspecified, but feasible order). In other
words, when multiple processes update the same object simultaneously, the final result is as if
the updates were performed sequentially, in some unspecified order, with each update com-
pleted before the next one began.

- 6 -

Reliable Broadcasting
The heart of our proposal is the efficient implementation of indivisible, reliable broadcast-

ing (layer 2). Once that has been achieved, the rest can be built on this foundation. In this sec-
tion we will summarize the mechanism used to achieve reliable broadcasting (in software) over
an unreliable network. Space limitations prevent us from describing all the details of the proto-
col. Readers interested in these should consult the paper by Kaashoek et al. [8].

The hardware/software configuration required for reliable broadcasting is shown in Fig. 4.
The ‘‘user programs’’ represent the application programs and their run-time systems (layers 3
and 4). The kernel represents layer 2. The network is layer 1. The hardware of all the
machines is identical, and they all run exactly the same kernel and application software. How-
ever, when the application starts up, one of the machines is elected as sequencer (like a commit-
tee electing a chairman). If the sequencer machine subsequently crashes, the remaining
members elect a new one using one of the many known algorithms (e.g., highest network
address wins). The protocol has been designed to withstand sequencer crashes. See [9] for
more details on fault tolerance. We will not discuss this point further here.

Kernel Kernel Kernel

User program User program User program

S

Broadcast network

Sequencer
enabled

Sequencer
disabled

Fig. 4. System structure. Each kernel is capable of becoming the sequencer, but at any instant
only one of them functions as sequencer.

The actual sequence of events involved to achieve reliable broadcasting can be summar-
ized as follows.

1. The user traps to the kernel, passing it the message.
2. The kernel accepts the message and blocks the user.
3. The kernel sends it to the sequencer as a point-to-point message.
4. The sequencer adds a sequencer number and broadcasts the message.
5. When the sending kernel sees the broadcast, it unblocks the user.

The sending kernel also starts a retransmission timer in case either the message or the
resulting broadcast is lost. A unique id insures that the sequencer will never broadcast the same
message twice.

When a Request for Broadcast arrives at the sequencer, the unique id is checked to see if
the message is a retransmission. If so, the sender is informed that the broadcast has already
been done. If not (normal case), the next sequence number is assigned to it. The message is

- 7 -

then broadcast. It is also stored in a history buffer in case it must be retransmitted due to a lost
message.

Let us now consider what happens when a kernel receives a broadcast. First, the sequence
number is compared to the sequence number of the most recently received broadcast. If the new
one is 1 higher (normal case), no broadcasts have been missed so the message is passed up to
the application program.

Now suppose that the newly received broadcast has sequence number 25, while the previ-
ous one had number 23. The kernel is immediately alerted to the fact that it has missed number
24, so it sends a point-to-point message to the sequencer asking for a private retransmission of
the missing message. The sequencer fetches the missing message from its history buffer and
sends it. When it arrives, the receiving kernel processes 24 and 25, passing them to the applica-
tion program in numerical order. Thus the only effect of a lost message is a minor time delay.
All application programs see all broadcasts in the same order, even if some messages are lost.
This is the essence of our reliable broadcast protocol.

Now let us look at the management of the history buffer. Unless something is done to
prevent it, the history buffer will quickly fill up. However, if the sequencer knows that all
machines have correctly received broadcasts, say, 0 through 23, it can delete these from its his-
tory buffer. Piggybacked acknowledgements contained in the Request for Broadcast messages
provide it with this information. In addition, periodically each machine sends the sequencer this
information, even if it has nothing to broadcast. The sequencer can also request it.

A variant on the broadcast protocol described above is also worth discussing. In method 1
(described above), the user sends a point-to-point message to the sequencer, which then broad-
casts it. In method 2, the user broadcasts the message, including a unique identifier. When the
sequencer sees this, it broadcasts a special Accept message containing the unique identifier and
its newly assigned sequence number. A broadcast is only ‘‘official’’ when the Accept message
has been sent.

These protocols are logically equivalent, but they have different performance characteris-
tics. In method 1, each message appears in full on the network twice: once to the sequencer and
once from the sequencer. Thus a message of length m bytes consumes 2m bytes worth of net-
work bandwidth. However, only the second of these is broadcast, so each user machine is only
interrupted once (for the second message).

In method 2, the full message only appears once on the network, plus a very short Accept
message from the sequencer, so only half the bandwidth is consumed. On the other hand, every
machine is interrupted twice, once for the message and once for the Accept. Thus method 1 (to
sequencer + broadcast) wastes bandwidth to reduce interrupts compared to method 2 (user
broadcast + Accept broadcast).

We have implemented both methods and are now running experiments comparing them.
Depending on the results of these experiments, we may go to a hybrid scheme, using method 1
for short messages and method 2 for long ones.

In summary, this protocol allows reliable broadcasting to be done on an unreliable network
in just over two messages per reliable broadcast. Each broadcast is indivisible, and all applica-
tions see all messages in the same order, no matter how many are lost. The worst that can hap-
pen is that a short delay is introduced when a message is lost, which rarely happens because
modern LANs have very low (but not zero) error rates. If two processes attempt to broadcast at
the same time, one of them will get to the sequencer first and win. The other will see a broad-
cast from its competitor coming back from the sequencer, and will realize that its request has
been queued and will appear shortly, so it simply waits.

- 8 -

Comparison. Kaashoek et al., [9], give a detailed comparison of our scheme with other
published protocols for doing reliable broadcasting. Here we will just compare our scheme with
some of the more significant ones. Chang and Maxemchuk [10] describe a family of protocols
for reliable broadcasting, of which non-fault tolerance is a special case. Their protocol for the
non-fault tolerant cases uses a sequencer, like ours, but they have the nodes ordered in a logical
ring, with the sequencer advancing along the ring with every message sent. This motion of the
sequencer is almost free when the traffic is heavy, but costs an extra message per broadcast
when it is not. On the average, their protocol requires 2 to 3 messages per reliable broadcast,
whereas ours does it in just a fraction over 2.

In addition, their protocol uses more storage because they have to store the history buffer
on all machines, due to the moving sequencer. With a 1 megabyte history buffer and 100
machines, we need 1M of memory for the history buffer and they need 100M.

Finally, in our method 1, each reliable broadcast uses one point-to-point message and one
broadcast message. With n >> 1 machines, we generate about n interrupts per reliable broad-
cast. In their protocol (similar to what we have called method 2), all messages are broadcast, so
they need between 2n and 3n interrupts per reliable broadcast. When there are hundreds of
broadcasts per second, their scheme uses much more CPU time than ours.

Another family of fault-tolerant protocols is the ISIS system of Birman and Joseph [11].
They use a distributed two-phase commit protocol to achieve global ordering, something we
achieve in 2 messages per broadcast. Since they realize that their protocol is inefficient, they
propose alternative protocols with weaker semantics. Our method shows that it is not necessary
to weaken and complicate the semantics to achieve efficiency. ISIS, however, provides a high
degree of fault tolerance, which our basic protocol does not. Although not discussed in this
paper, our protocol also can provide fault tolerance if desired [9]. Furthermore, ISIS supports
simultaneous use of overlapping process groups, whereas in our scheme groups are disjoint.
Each application forms its own group and no attempt is made to provide global ordering
between different applications.

A few researchers have proposed providing broadcasting as an operating system service, as
we do. In this category, for example, is the V system of Cheriton and Zwaenepoel [12], which
supports broadcasting, but does not guarantee reliability. It has the problem of making the
programmer’s job more difficult compared to a system in which broadcasts are guaranteed to be
reliable.

Object Management
On top of the broadcast layer is a layer that manages shared objects, implemented by a

package of library procedures (in user space). Our design is based on the explicit assumption
that shared objects are read much more often than they are written. Based on our initial meas-
urements of some parallel applications (e.g., the traveling salesman problem), ratios of 10:1 or
even 100:1 are not at all unusual. Therefore, we have chosen to replicate each object on all
machines that use the object. (Note that multiple, independent applications may be running at
the same time, so not every machine needs every object.) All replicas have equal status: there is
no concept of a primary object and secondary copies of it.

Two operations are defined on objects: READ and WRITE. READs are done on the local
copy, without any network traffic. A READ on a shared object is only slightly more expensive
than a READ on a PRIVATE object (due to some locking). A WRITE to a shared object can be
done by reliablly broadcasting either its new value or an operation code and parameters to let
each machine recompute the new value. The former strategy is attractive for small objects; the

- 9 -

latter one for large objects; it is up to the run-time system to pick one. Since all machines pro-
cess all broadcasts in the same order, when equilibrium is reached, all copies will settle down to
the same value.

This scheme does not provide complete memory coherence because if machine A initiates
a reliable broadcast to update a shared object, and machine B reads the (local copy of the) object
a nanosecond later, B will get the old value. On the other hand, it does provide for atomic
update and serializability (managed by the run-time system), which is almost as good, as can
easily be seen in the following example. Consider a multiprocessor with a true shared memory.
At a certain moment, process A wants to write a word, and process B wants to read it. Since the
two operations may take place a microsecond apart, the value read by B depends on who went
first. Despite the memory being coherent, the value read by B is determined by the detailed tim-
ing. Our shared object model has a similar property. In both cases, programs whose correct
functioning depends on who wins the race to memory are living dangerously, at best (although
the window is larger in our model than with a multiprocessor—milliseconds instead of
microseconds). Thus although our memory model does not exhibit true coherence, in reality,
serializability plus total global message ordering are sufficient properties, and we do have them.

Much research on distributed shared memory is based on the work of Li and Hudak [2]. In
their method, fixed-size pages are moved around the network in point-to-point messages. This
method is frequently inefficient because many data structures are smaller than a page. The rest
of the page is not needed, but must be copied anyway.

In addition, if two unrelated shared data structures happen, by accident, to reside on the
same page (false sharing), competition for this page may cause it to thrash back and forth. The
larger the page size, the worse the problem. Furthermore, accesses to a shared data structure
may require multiple machine instructions. Pages are not automatically locked while an object
is being accessed (because the paging system does not know when access to a software object
begins and ends). Consequently, a page may have to be accessed several times to complete a
single logical operation on a data structure. With an object-based system this cannot happen.

To get around the inefficiency of distributed shared memory using fixed-size pages, some
researchers have proposed using objects, as we have. However, lacking our reliable broadcast-
ing, they have needed other methods to gain performance. A common approach has emphasized
weakening the semantics of what shared memory means. For example, suppose A , B , and C all
update the same word in quick succession, followed by a read by D . Inspired by the work of the
DASH system [3] on multiprocessor caches, the Munin system [4], allows D to get any of the
three values written. This optimization allows writes to be postponed until a read is done.
Munin also allows programmers to declare different semantics for different shared objects, in
order to perform other optimizations. We believe that our model offers a simpler and cleaner
semantic model, is easier for programmers to use, and provides good performance (see side-
bars).

Orca
While it is possible to program directly with shared objects, it is much more convenient to

have language support for them. For this reason, we have designed the Orca parallel program-
ming language and written a compiler for it. Orca is a procedural language whose sequential
constructs are roughly similar to languages like C or Modula 2 but which also supports parallel
processes and shared objects.

There are four guiding principles behind the Orca design:

- 10 -

d Transparency
d Semantic simplicity
d Serializability
d Efficiency

By transparency we mean that programs (and programmers) should not be aware of where
objects reside. Location management should be fully automatic. Furthermore, the programmer
should not be aware of whether the program is running on a machine with physical shared
memory or one with disjoint memories. The same program should run on both, unlike nearly all
other languages for parallel programming, which are aimed at either one or the other, but not
both. (Of course one can always simulate message passing on a multiprocessor, but this is far
from optimal.)

Semantic simplicity means that programmers should be able to form a simple mental model
of how the shared memory works. Incoherent memory, in which reads to shared data sometimes
return good values and sometimes stale (incorrect) ones, is ruled out by this principle.

In a parallel system, many events happen simultaneously. By making operations serializ-
able, we guarantee that operations on objects are indivisible (i.e., atomic), and that the observed
behavior is the same as some sequential execution would have been. Operations on objects are
guaranteed not to be interleaved, which contributes to semantic simplicity, as does the fact that
all machines are guaranteed to see exactly the same sequence of serial events. Thus the
programmer’s model is that the system supports operations. These may be invoked at any
moment, but if any invocation would conflict with an operation currently taking place, the
second operation will not begin until the first one has completed. In other words, the system has
the responsibility for making sure that parallel activities do not interfere with one another.

Finally, efficiency is also important, since we are proposing a system that can actually be
used for solving real problems.

Now let us look at the principal aspects of Orca that relate to parallelism and shared
objects. Parallelism is based on two orthogonal concepts: processes and objects . Processes are
active entities that execute programs. They can be created and destroyed dynamically. It is pos-
sible to read in an integer, n, then execute a loop n times, creating a new process on each itera-
tion. Thus the number of processes is not fixed at compile time, but is determined during execu-
tion.

The Orca construct for creating a new process is the

fork func(param, ...)

statement, which creates a new process running the procedure func with the specified parame-
ters. The user may specify which processor to use, or use the standard default case of running it
on the current processor. Objects may be passed as parameters (call by reference). A process
may fork many times, passing the same objects to each of the children. This is how objects
come to be shared among a collection of processes. There are no global objects in Orca.

Objects are passive. They do not contain processes or other active elements. Each object
contains some data structures, along with definitions of one or more operations that use the data
structures. The operations are defined by Orca procedures written by the programmer. An
object has a specification part and an implementation part, similar in this respect to Ada® pack-
ages or Modula 2 modules. Orca is what is technically called object based (in contrast with
object oriented) in that it supports encapsulated abstract data types, but without inheritance.

A common way of programming in Orca is the Replicated Worker Paradigm [5]. In this

- 11 -

model, the main program starts out by creating a large number of identical worker processes,
each getting the same objects as parameters, so they are shared among all the workers. Once the
initialization phase is completed, the system consists of the main process, along with some
number of identical worker processes, all of which share some objects. Processes can perform
operations on any of their objects whenever they want to, without having to worry about all the
mechanics of how many copies are stored and where, how updates take place, which synchroni-
zation technique is used, and so on. As far as the programmer is concerned, all the objects are
effectively located in one big shared memory somewhere, but are protected by a kind of monitor
that prevents multiple updates to an object at the same time.

As a minimal example of an object specification, consider a simple object consisting of an
integer variable with two operations on it: read and write. If this object is subsequently shared
among multiple processes, any of them can read or write the value of the integer. The Orca
specification part looks like this:

object specification SharedInt;
operation read():integer;
operation write(val: integer):integer;

end;

The implementation part looks like this:

object implementation SharedInt;
n: integer; # the value

operation read(): integer;
begin

return n;
end;

operation write(val: integer);
begin

n := val;
end;

end;

To declare and use an object of type SharedInt, the programmer might write:

s: SharedInt;
i: integer; # ordinary integer

s$write(100); # set object to 100
i := s$read(); # set i to 100

Although the programming style suggested by this trivial example is sufficient for some pro-
grams, for many others some kind of synchronization method is required. A common example
is barrier synchronization, in which n workers are busy computing something, and only when
all of them are finished may the next step begin. Synchronization in Orca is handled with
guarded commands, in which an operation consists of a number of (guard, statement) pairs.
Each guard is a side-effect-free Boolean expression, and each statement is an arbitrary piece of

- 12 -

sequential Orca code. When the operation is invoked, the language run-time system evaluates
the guards one at a time (in an unspecified order), and as soon as it finds one that is true, the
corresponding statement is executed. For example, to implement barrier synchronization, the
main process could create a shared object with operations to initialize it, increment it, and syn-
chronize on it (i.e., wait until it reached n). The main process would initialize it to 0, then fork
off all the workers. When each worker finished its work, it would invoke the increment opera-
tion, and then the synchronize operation. The latter would block the calling process until the
value reached n, at which point all the processes would be released to start the next phase.

It is essential that the synchronization operation be programed as a single Orca operation
(although this operation may contain arbitrarily many Orca statements). Having an operation to
merely return the value, and then making a decision on it in open code loses the crucial atomi-
city property.

As a slightly more elaborate example, consider an implementation of the Traveling Sales-
man Problem (TSP) in Orca. In this problem, the computer is given a starting city and a list of
cities to visit, and it has to find the shortest path that visits each city exactly once and returns to
the starting city.

The usual algorithm for solving TSP is branch and bound. Suppose the starting city is New
York, and the cities to be visited are London, Sydney, Tokyo, Nairobi, and Rio de Janeiro. The
main program starts out by computing some possible path (e.g., using the closest city next algo-
rithm), and determining its length. Then it initializes a soon-to-be-shared object, BestPath, con-
taining this path and its length. As the program executes, this object will always contain the
best path found so far, and its length. Next, it forks off some number of workers, each getting
the shared object as parameter, as shown in Fig. 5.

Best
path

Best
path

Best
path

Program Program Program

Worker 1 Worker 2 Worker 3

Network

Fig. 5. Model of TSP program using replicated worker paradigm.

Each worker is given a different partial path to investigate. The first one tries paths begin-
ning New York-London, the second one tries paths beginning New York-Sydney, the third one
tries paths beginning New York-Tokyo, and so on. Very roughly, the algorithm used by a
worker that is given a partial path plus k cities to visit is to first check if the length of the partial
path is longer than the best complete path found so far. If so, the process terminates itself. If
the partial path is still a potential candidate, the process generates k new partial paths to be
investigated, one per city in the list, and forks these off to k new workers. To avoid forking off
too many processes, when the list of remaining cities to be visited is less than n, the process tries
all the possible combinations itself. Other optimizations are also used. Whenever a new best
path is found, an update operation on the shared object BestPath is executed, to replace the pre-
vious best path by the new one. When the Orca compiler detects an assignment to a variable in
a shared object, it generates code to cause the run-time system to issue a reliable broadcast of

- 13 -

the new value. In this manner, all the details of managing shared objects are hidden from the
programmer.

A moment’s thought will show that reads of BestPath will occur very often, while writes
will hardly occur at all, certainly not after the program has been running for a while and has
found a path close to the optimal one. Remember that reads are done entirely locally on each
machine, whereas writes require a reliable broadcast. The net result is that the vast majority of
operations on the shared object do not require network traffic, and the few that do only take two
messages. Consequently, the solution is highly efficient. We have achieved almost linear
speedup with 16 processes.

Comparison. It is instructive to briefly compare Orca with some alternative approaches to
parallel programming. There are a large number of languages based on message passing, which
is of a conceptually lower level than shared objects. The approach usually used in languages
that support shared memory is the use of semaphores or monitors to protect critical regions.
Both of these work adequately on small shared memory machines but poorly on large distri-
buted systems because they use a locking scheme that is inherently centralized.

A system that is somewhat similar to Orca is Emerald [6]. Like Orca, it supports shared
objects. However, unlike Orca, it does not replicate objects. This means that when a caller on
machine 1 invokes an operation on an object located on machine 2 using a parameter on
machine 3, messages must be sent to collect all the necessary information in the same place.
There is no automatic migration, so if the programmer does not arrange for things that go
together to be colocated, execution will be inefficient.

Alternatively, for efficiency, on each call, the programmer can specify that the parameter
objects are to be sent to the machine where the object resides and to remain there after the invo-
cation. The programmer can also specify whether the result is to remain there or not. In a truly
transparent system these issues would not arise.

In Orca, in contrast, it is up to the run-time system to decide whether it wants to replicate
objects or not, and if so, where. Using the broadcast system described above, all objects are
replicated on machines that need them (but other Orca implementations do it differently). In
any event, it is not the programmer’s responsibility; object management is handled automati-
cally, and the decision whether to perform operations locally or remotely is made by the system.
The Orca approach comes much closer to providing the semantics of a shared-memory mul-
tiprocessor.

Yet another shared object scheme is Linda [5]. Linda supports the concept of a shared
tuple space that is equally accessible to processes on all machines. Linda is fully location tran-
sparent, but the primitives are low level: inserting and deleting tuples. In contrast, Orca’s
operations on shared objects can be simple or complex, as the programmer wishes.

Summary
To summarize, two kinds of multiple processor systems exist: multiprocessors (with shared

memory) and multicomputers (no shared memory). The former are easy to program but hard to
build, while the latter are easy to build but hard to program. We then introduced a new model
that is easy to program, easy to build, and has acceptable performance on problems with a
moderate grain size in which reads are much more common than writes.

The essence of our approach is to implement reliable broadcasting as a distinct semantic
layer and then use this layer to implement shared objects. Reliable broadcasting is achieved by
having users send their messages to a sequencer, which then numbers them sequentially and
broadcasts them. Machines that miss a message can get it by asking the sequencer, which

- 14 -

maintains a history buffer. This scheme requires slightly over 2 messages per reliable broad-
cast. We have built a kernel based on these principles and measured its performance at up to
800 reliable broadcasts per second using 68030s on an Ethernet.

We have also designed and implemented a shared object layer and a language, Orca, that
allows programmers to declare objects shared by multiple processes. Objects are replicated on
all the machines that need to access them. When the language run-time system needs to read a
shared object, it just uses the local copy. When it needs to update a shared object, it reliably
broadcasts the new object (or operation code and parameters). As a consequence, most opera-
tions require no network traffic. Orca operations are atomic, providing the programmer with a
simple semantic model.

The division of labor between the layers yields a great conceptual simplicity: the program-
mer defines and invokes operations on shared objects, the run-time system handles reads and
writes on these objects, and the reliable broadcast layer implements indivisible updates to
objects using the sequencer protocol.

Our conclusion is that the use of reliable broadcasting to support replicated, shared objects
is a good way to approach parallel programming. It is simple to understand and efficient to
implement. We believe that this paradigm offers a new and effective way to exploit parallelism
in future computing systems.

Acknowledgements
We would like to thank Dick Grune and Erik Baalbergen for carefully reading the paper

and making many helpful suggestions.

References
1. A.D. Birrell and B.J. Nelson, ‘‘Implementing Remote Procedure Calls,’’ ACM Trans. Com-

puter Systems , Vol. 2, No. 1., Feb, 1984, p. 39-59.

2. K. Li and P. Hudak ‘‘Memory Coherence in Shared Virtual Memory Systems,’’ ACM Trans.
Computer Systems Vol. 7, No. 4, Nov. 1989, pp. 321-359.

3. K. Gharachorloo, D. Lenoski, J. Laudon, and P. Gibbons ‘‘Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors," 17th Annual Int’l Symp. on Comp.
Arch. , pp. 15-26, 1990.

4. J.K. Bennet, J.B. Carter, and W. Zwaenepoel, ‘‘Munin: Distributed Shared Memory Based
on Type-Specific Memory Coherence,’’ 2nd ACM Symp. on Prin. and Prac. of Parallel
Prog. , March 1990, pp. 168-177.

5. N. Carriero and D. Gelernter, ‘‘Linda in Context,’’ Commun. ACM , Vol. 32, No. 4, Apr.
1989, pp. 444-458.

6. E. Jul, H. Levy, N. Hutchinson, and A. Black, ‘‘Fine-Grained Mobility in the Emerald Sys-
tem,’’ ACM Trans. Computer Syst. , Vol. 6, No. 1, Feb. 1988, pp. 109-133.

7. H.E. Bal, Programming Distributed Systems Summit NJ: Silicon Press, 1990.

8. M.F. Kaashoek, A.S. Tanenbaum, S. Flynn Hummel, and H.E. Bal, ‘‘An Efficient Reliable

- 15 -

Broadcast Protocol,’’ Operating Systems Review , Vol. 23, Oct. 1989, pp. 5-19.

9. M.F. Kaashoek and A.S. Tanenbaum, ‘‘Group Communication in the Amoeba Distributed
Operating Systems,’’ Proc. 11th Int. Conf. on Distr. Comp. Syst. pp. 222-230, May 1991.

10. J. Chang and N.F. Maxemchuk, ‘‘Reliable Broadcast Protocols,’’ ACM Trans. Computer
Systems. , Vol. 2, No. 3, Aug. 1984, pp. 251-273.

11. K.P. Birman, and T.A. Joseph, ‘‘Reliable Communication in the Presence of Failures,’’
ACM Trans. on Computer Syst. , Vol. 5, No. 1, Feb. 1987, pp. 47-76.

12. D.R. Cheriton and W. Zwaenepoel, ‘‘Distributed process Groups in the V Kernel,’’ ACM
Trans. Computer Systems , Vol. 3, No. 2, May 1985, pp. 77-107.

Sidebar on Performance of Reliable Broadcasting

We have modified the Amoeba kernel [1-2] to support our reliable broadcast protocol. It
runs on a collection of 16 MHz Motorola 68030 processors connected by a 10 Mbps Ethernet.
We have run various experiments on this system to measure its performance. In the first experi-
ment, one process continuously broadcasts null messages as fast as it can in order to measure the
maximum broadcast rate by a single process. In this experiment we achieved 370 reliable
broadcasts per second with up to 16 processors.

It should be pointed out that this test is the worst possible case. Since all machines but one
are silent, they are not sending piggybacked acknowledgements back to the sequencer. Without
these acknowledgements, the sequencer must send out a Request for Status every 64 messages.

It is instructive to note that even though we are measuring broadcasting, the performance is
better than most (point-to-point) RPC systems, partly because our protocol requires only 2 mes-
sages per broadcast, whereas RPCs often require 3, the last being an acknowledgement.

As an aside, these results differ from our earlier results because we have now designed and
implemented a new kernel that can handle broadcasting over an arbitrary internetwork consist-
ing of LANs and buses. This scheme also supports transparent process migration and automatic
network reconfiguration and management. The differences between the results here and the pre-
viously published ones are entirely accounted for by these changes.

The second experiment consists of having not one, but multiple processes broadcasting at
the same time, to see what the effect of contention is. In this experiment, we varied the number
of senders from 2 to 14, with the receiving group equal to the number of senders. The results
are as follows:

- 16 -

Broadcasts/sec

Number of senders

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16

�
� � � � � � � � � �

� �

Multiple senders get a higher throughput than just one because if two machines send messages
to the sequencer almost simultaneously, the first one to arrive will be broadcast first, but the
second one will be buffered and broadcast immediately afterwards. This simple form of pipe-
lining increases the parallelism of the system, and thus increases the broadcast rate. As the
number of senders increases, performance drops slightly due to contention for the Ethernet. We
were unable to make consistent measurements for 15 and 16 processors due to technical limita-
tions of our equipment.

A word about scaling is appropriate here. It has been pointed out to us that the sequencer
will become a bottleneck in very large systems. While this is true, few current systems or appli-
cations suffer from this limit. With our system (2 MIPS CPUs and 10 Mbps Ethernet), we can
support on the order of 800 reliable broadcasts per second, as shown above. Since broadcast
messages are usually short, there is bandwidth to spare. For many problems, the read to write
ratio is quite high. Suppose (conservatively) that 90 percent of the operations are reads and 10
percent are writes. Then we can support 8000 operations per second on shared objects (7200
reads, done locally, and 800 writes, done by broadcasting). We know of very few applications
that would be hindered by being able to perform only 8000 operations per second on shared
objects. Furthermore, with 20 MIPS RISC processors and 100 Mbps fiber optic networks, we
extrapolate this limit to about 80,000 operations per second on shared objects.

References
1. A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, J. Jansen, and

G. van Rossum, "Experiences with the Amoeba Distributed Operating System," Commun. of
the ACM vol. 33, pp. 46-63, Dec. 1990.

2. S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse, H. van Staveren,
"Amoeba—A Distributed Operating System for the 1990s," IEEE Computer Magazine , vol.
23, pp. 44-53, May 1990.

- 17 -

Sidebar on Parallel applications in Orca

Orca is a procedural, type-secure language intended for implementing parallel applica-
tions on distributed systems [1-3]. Below, we will briefly discuss four examples of prob-
lems it has been used for and give their measured speedups on the broadcast system.

Matrix multiplication (MM) is an example employing ‘‘trivial parallelism.’’ Each pro-
cessor is assigned a fixed portion of the result matrix. Once the work-to-do has been distri-
buted, all processors can proceed independently from each other. The speedup is not perfect
because it takes some time to initialize the source matrices (of size 250 × 250) and the por-
tions are fixed but not necessarily equal if the matrix size is not divisible by the number of
processors.

The Traveling Salesman Problem (TSP) is discussed in detail in the paper. Its main
characteristic is the shared variable containing the current best solution. This variable is
stored in a shared object that is read very frequently. If a new better route is found, all
copies of the object are updated immediately, using the efficient broadcast protocol. It is
important that the updating takes place immediately, lest some processors continue to use an
inferior bound, reducing the effectiveness of the pruning. TSP achieves a speedup close to
linear.

In the all-pairs shortest paths (ASP) problem, communication overhead is much higher.
ASP uses an iterative algorithm. Before each iteration, some process selects one row of the
distances matrix as pivot row and sends it to all other processes. If implemented with
point-to-point messages, the communication overhead would be linear with the number of
processors. With our multicast protocol, however, the overhead is reduced to a few mes-
sages, resulting in high speedups.

Of course, not all parallel applications benefit from broadcasting. In successive overre-
laxation (SOR), each processor mainly communicates with its neighbors. SOR is a worst-
case example for our system, because point-to-point messages between neighboring nodes
are implemented as broadcast messages received by all nodes. Still, the program achieves a
reasonable speedup.

- 18 -

Speedup

Number of processors

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

�
�

�

�
�

�
�

�

�
�

�
� �

� �

�

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... Perfect speedup

� � � Speedup for MM

Speedup

Number of processors

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... Perfect speedup

� � � Speedup for TSP

Speedup

Number of processors

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

�
�

�
�

�

�
�

� �

�
�

� �

�

�
�

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... Perfect speedup

� � � Speedup for ASP

Speedup

Number of processors

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

�
�

�
�

�
�

�
�

�
�

�
� � �

� �

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... Perfect speedup

� � � Speedup for SOR

- 19 -

Measured performance for four Orca programs. Each graph shows the speedup of the parallel Orca program
on N cpus over the same program running on 1 CPU. (a) Matrix multiplication, using input matrices of size
250*250. (b) The Traveling Salesman Problem, averaged over three randomly generated graphs with 12 cities
each. (c) The All-pairs Shortest Paths problem, using an input graph with 300 nodes. (d) Successive Overre-
laxation, using a grid with 80 columns and 242 rows.

References
1. H.E. Bal, J.G. Steiner, and A.S. Tanenbaum, ‘‘Programming Languages for Distributed

Computing Systems,’’ ACM Computing Surveys, Vol. 21, No. 2, Sept. 1989, pp. 261-
322.

2. H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, ‘‘Experience with Distributed Program-
ming in Orca,’’ Proc. IEEE CS Int. Conf. on Computer Languages,’’ March 1990, pp.
79-89.

3. H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, ‘‘A Distributed Implementation of the
Shared Data-object Model,’’ Proc. USENIX/SERC Workshop on Experiences with Build-
ing Distributed and Multiprocessor Systems, Oct. 1989, pp. 1-9.

