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Once you understand how to write a program,  

get someone else to write it. 

Alan Perlis, Epigram #27 



Synthesizers 
Autobayes,  
FFTW, Spiral 

Compilers 
OpenCL, NESL 

What’s between compilers and synthesizers? 

Our approach: help programmers auto-write code 
without (us or them) having to invent a domain theory 
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general purpose domain-specific 

Hand-optimized code 
when a domain theory is  

lacking, code is handwritten  



The HPC Programming Challenge 
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Automating code writing 



The SKETCH Language 
 
 

try it at  bit.ly/sketch-language 
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SKETCH: just two constructs 
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spec:    int foo (int x) {  

      return x + x;  

  }  

sketch:   int bar (int x) implements foo { 

          return x << ??; 

  }  

result:    int bar (int x) implements foo { 

      return x << 1; 

  }  



SKETCH is synthesis from partial programs 
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SKETCH 
synthesizer 

partial program 

correctness criterion 
completion 

x + x 

x << ?? 

x << 1 

No need for a domain theory.  No rules needed to rewrite  
x+x  into  2*x   into  x<<1 
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Example: Silver Medal in a SKETCH contest 

4x4-matrix transpose, the specification: 

 
int[16] trans(int[16] M) { 

  int[16] T = 0; 

  for (int i = 0; i < 4; i++) 

    for (int j = 0; j < 4; j++) 

      T[4 * i + j] = M[4 * j + i]; 

  return T; 

} 

 

Implementation idea: parallelize with SIMD 
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Intel shufps SIMD instruction 

SHUFP (shuffle parallel scalars) instruction 
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x1 x2 

return 
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The SIMD matrix transpose, sketched 

int[16] trans_sse(int[16] M) implements trans { 

  int[16] S = 0, T = 0; 

  repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??); 

  repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??); 

  return T; 

} 

int[16] trans_sse(int[16] M) implements trans { // synthesized code 

  S[4::4]   = shufps(M[6::4],   M[2::4],  11001000b); 

  S[0::4]   = shufps(M[11::4],  M[6::4],  10010110b); 

  S[12::4]  = shufps(M[0::4],   M[2::4],  10001101b); 

  S[8::4]   = shufps(M[8::4],   M[12::4], 11010111b); 

  T[4::4]   = shufps(S[11::4],  S[1::4],  10111100b); 

  T[12::4]  = shufps(S[3::4],   S[8::4],  11000011b); 

  T[8::4]   = shufps(S[4::4],   S[9::4],  11100010b); 

  T[0::4]   = shufps(S[12::4],  S[0::4],  10110100b); 

} 
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From the contestant email:  
Over the summer, I spent about 1/2 

a day manually figuring it out.  

Synthesis time: 30 minutes. 
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Beyond synthesis of constants 

Holes can be completed with more than just constants: 

 

Array index expressions:  A[ ??*i+??*j+?? ] 

 

Polynomial of degree 2:     ??*x*x + ??*x + ?? 

 

Initialize a lookup table:     table[N] = {??,…,??} 



The price SKETCH pays for generality 

What are the limitations behind the magic? 

 

Sketch doesn’t produce a proof of correctness: 
SKETCH checks correctness of the synthesized program on 
all inputs of up to certain size.  The program could be 
incorrect on larger inputs.  This check is up to programmer. 

 

Scalability: 

Some programs are too hard to synthesize.  We propose to 
use refinement, which provides modularity and breaks the 
synthesis task into smaller problems. 
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Interactive synthesis with refinement 

 

Automatic functional equivalence checking 

enabled by recent advances in program analysis, testing 

 

Sketch-based synthesis 

automatically generate details of tricky algorithms 

 

Autotuning and algorithm design space exploration 

search design spaces you could never consider by hand 
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P1 

 

refines P0 

P0 

 

spec 

These ingredients allow Refinement 

Refinement is already a popular form of development 

automation and language support can make it better 
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Refinement 
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Sequential code 

Parallel code using  
naïve shared memory 

Two-level parallel code using  
naïve shared memory 

 

Two-level  parallel code with  
shared memory within blocks 

and MPI across 

• How do I break the task into 
parallel units of work?  

• How do I synchronize them? 

• How do I group threads into 
blocks?  

• How do I reduce  interaction 
among different blocks? 

• How do I partition my data 
into independent pieces?  

• How do the pieces 
communicate? 

 



Refinement 

Sequential code 

Parallel code using  
naïve shared memory 

Two-level parallel code using  
naïve shared memory 

 

Two-level  parallel code with  
shared memory within blocks 

and MPI across 

Automatic Validation 
prevents bugs from being 

introduced after each 
refinement 

 



Refinement 

Sequential code 

Parallel code using  
naïve shared memory 

Two-level parallel code using  
naïve shared memory 

 

Two-level  parallel code with  
shared memory within blocks 

and MPI across 

Synthesis helps derive 
the details of each 

refinement 



Refinement 

Sequential code 

Parallel code using  
naïve shared memory 

Two-level parallel code using  
naïve shared memory 

 

Two-level  parallel code with  
shared memory within blocks 

and MPI across 

Each refinement step 
produces a space of 

possibilities that 
autotuning can explore 



HPC Scenarios 

Domain scientist:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 
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Dynamic Programming 

Compute O(2n) algorithms in O(nk) time 

Example: fib(n) 
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Challenges in DP algorithm design 

The divide problem:  Suitable sub-problems often 
not stated in the original problem.  We may need to 
invent different subproblems. 
 
The conquer problem: Solve the problem from 
subproblems by formulate new recurrences over 
discovered subproblems. 



Maximal Independent Sum (MIS) 

 
Given an array of positive integers, find a non-
consecutive selection that returns the best sum 
and return the best sum. 
 
Examples: 
 
 mis([4,2,1,4]) = 8 
 mis([1,3,2,4]) = 7 
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Exponential Specification for MIS 

The user can define a specification as an clean 
exponential algorithm: 
 
mis(A): 
   best = 0 
   forall selections: 
      if legal(selection): 
         best = max(best, eval(selection, A)) 
   return best 
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Sketch = “shape” of the algorithm 
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def linear_mis(A): 

  tmp1 = array() 

  tmp2 = array() 

  tmp1[0] = initialize1() 

  tmp2[0] = initialize2() 

  for i from 1 to n: 

    tmp1 = prop1(tmp1[i-1],tmp2[i-1],A[i-1]) 

    tmp2 = prop2(tmp1[i-1],tmp2[i-1],A[i-1]) 

  return term(tmp1[n],tmp2[n]) 



Synthesize propagation functions 

def prop (x,y,z) := 
    switch (??) 
    case 0: return x 
    case 1: return y 
    case 2: return z 
    case 3: return unary(prop(x,y,z)) 
    ... 
    case r: return binary(prop(x,y,z), 
                          prop(x,y,z)) 
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MIS: The synthesized algorithm 

27 

linear_mis(A): 
  tmp1 = array() 
  tmp2 = array() 
  tmp1[0] = 0 
  tmp2[0] = 0 
  for i from 1 to n: 
    tmp1[i] = tmp2[i-1] + A[i-1] 
    tmp2[i] = max(tmp1[i-1],tmp2[i-1]) 
  return max(tmp1[n],tmp2[n]) 



A guy walks into a Google Interview … 

 
Given an array of integers A=[a1, a2, ..., an],  
return B=[b1, b2, ... , bn] 
such that: bi = a1 + ... + an - ai 
 
Time complexity must be O(n) 

 
Can’t use subtraction 
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Google Interview Problem: Solution 

puzzle(A): 
  B = template1(A) 
  C = template2(A,B) 
  D = template3(A,B,C) 
  return D 
 
template1(A): 
  tmp1 = array() 
  tmp1[0] = 0 
  for i from 1 to n-1: 
    tmp1[i] = tmp[i-1]+A[n-1] 
  return tmp1 

template2(A,B): 
  tmp2 = array() 
  tmp2[n-1] = 0 
  for i from 1 to n-1: 
    tmp2[n-i-1] 
          = tmp2[n-i]+A[n-i] 
 
template3(A,B,C): 
  tmp3 = array() 
  for i from 0 to n-1: 
    tmp3[i] = B[i] + C[i] 
  return tmp3 



HPC Scenarios 

Domain expert:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 
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Parallelizing with Synthesis 

Goal: synthesize an associative function that allows 
solving the problem in parallel, as a prefix sum. 

 

 

 

 

 

The sketch: force the function to work on a tree: 

 result = prop(prop(A[0],A[1]), 

                 prop(A[2],A[3])) 

         32 
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Synthesizes associative operator for MIS 
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Evan: “It is quite exciting that I do NOT have a good idea of 
what the synthesizer returned (kind of magic!)” 



HPC Scenarios 

Domain expert:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 
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Why scans? 

Many practical algorithms use scans [Blelloch ’90] 

– lexically compare string of characters; lexical analysis 

– evaluate polynomials 

– radix sort, quicksort 

– solving tridiagonal linear systems 

– delete marked elements from an array 

– search for regular expressions 

– tree operations 

– label components in two dimensional images 

– dynamic programming (see Evan Pu’s poster) 

Many problems are sums with some assoc operator 
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Implementing scans 
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N = 8 
 
 
instance of parallel  
scan algorithm 

its abstract  
visualization 



SIMD execution of scan algorithms 
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HPC Scenarios 

Domain expert:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 
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Example Scan Network 

Programmer provides an example network for N=16. 

 

 

 

 

 

 

 
 

[D. Harris, A taxonomy of parallel prefix networks] 
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Synthesis: generalize example into an algo 

The algorithm must work for any N.   

 

 

 

 

 

 

 

Synthesizer greedily identifies stages in the example 
and necessary expressions for each stage.  
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Synthesized Code 

Sketch for each stage: 
for i = 0 .. h(N)  

   for j = 0 to N-1 in parallel 

      if (g(i, j) < N)  

         a[g(i, j)] = x[f(i, j)] + x[g(i, j)] 
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f = −1 + 2𝑗 + 2𝑖 𝑔 = −1 + 2𝑗 + 2. 2𝑖 𝑓 = −1 + 2.2𝑖 . 𝑓𝑙𝑜𝑜𝑟 𝑗2𝑖 + 2. 2𝑖 𝑔 = −1 + (2 −  2𝑖). 𝑓𝑙𝑜𝑜𝑟 𝑗2𝑖 + (4 + j). 2𝑖 f = 1 + 2𝑗 𝑔 = 2 + 2𝑗 



HPC Scenarios 

Domain expert:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 
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Hierarchical execution of scans algorithms 
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Hierarchical Scan Synthesis 

45 

Holes in the sketch are functions f, g, h and number of 
elements transferred between 1st and 2nd stage. 



HPC Scenarios 

Domain expert:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 
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Bank conflict avoidance 

Goal:  map logical array elements to a physical array. 

Result: we have synthesized [injective] reordering functions as 
shown below. Synthesis takes approximately 2 minutes. 

 

 

 

 

What does the programmer do: rewrites program to map 
indices to a synthesized function phi:   A[e]  A[phi(e)] 
 

How does the synthesizer understand bank conflicts: it 
simulates array accesses and synthesizes a program that 
minimizes bank conflicts. 48 



HPC Scenarios 

Domain expert:  

problem spec  -->  dynamic programming  -->  parallel scan 

 

Parallel algorithm expert: 

example of parallel scan network  -->  SIMD algorithm 

 

GPU tuning expert: 

SIMD algorithm  -->  bank conflicts -->  index expressions 

49 



Optimize index expressions  

Base version: 

 

for d := 1 to log2n do  

    for k from 0 to n/2 in parallel do      

        block := 2 * (k – (k mod 2d)) 
        me := block + (k mod 2d) + 2d 

        spine := block + 2d – 1;  
        m[me] := m[me] + m[spine];  

 
[Merrell, Grimshaw, 2009] 
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Optimized version (a refinement) 

Produced from a sketch (work in progress): 

 

for (i := 1; i < 64; i := i * 2)  

    rightmask := i – 1;  
    leftmask := ¬rightmask;  

    block := (k & leftmask) << 1;  

    me := block | rightmask;  

    spine := block | (k & rightmask) | i;  

    m[me] := m[me] + m[spine];  

 
[Merrell, Grimshaw, 2009] 
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Conclusion 

 

Automatic functional equivalence checking 

enabled by recent advances in program analysis, testing 

 

Sketch-based synthesis 

automatically generate details of tricky algorithms 

 

Autotuning and algorithm design space exploration 

search design spaces you could never consider by hand 
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