
Parallel Programming with Inductive Synthesis

Shaon Barman, Ras Bodik, UC Berkeley
Sagar Jain, Yewen Pu, ParLab
Saurabh Srivastava,
Nicholas Tung

with help from
Armando Solar-Lezama, MIT

Once you understand how to write a program,

get someone else to write it.

Alan Perlis, Epigram #27

Synthesizers
Autobayes,
FFTW, Spiral

Compilers
OpenCL, NESL

What’s between compilers and synthesizers?

Our approach: help programmers auto-write code
without (us or them) having to invent a domain theory

2

p
e
rf

o
rm

a
n
c
e
 o

f
c
o
d
e

general purpose domain-specific

Hand-optimized code
when a domain theory is

lacking, code is handwritten

The HPC Programming Challenge

4

Automating code writing

The SKETCH Language

try it at bit.ly/sketch-language

5

6

SKETCH: just two constructs

6

spec: int foo (int x) {

 return x + x;

 }

sketch: int bar (int x) implements foo {

 return x << ??;

 }

result: int bar (int x) implements foo {

 return x << 1;

 }

SKETCH is synthesis from partial programs

7

SKETCH
synthesizer

partial program

correctness criterion
completion

x + x

x << ??

x << 1

No need for a domain theory. No rules needed to rewrite
x+x into 2*x into x<<1

8

Example: Silver Medal in a SKETCH contest

4x4-matrix transpose, the specification:

int[16] trans(int[16] M) {

 int[16] T = 0;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 4; j++)

 T[4 * i + j] = M[4 * j + i];

 return T;

}

Implementation idea: parallelize with SIMD

8

9

Intel shufps SIMD instruction

SHUFP (shuffle parallel scalars) instruction

9

x1 x2

return

10

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {

 int[16] S = 0, T = 0;

 repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);

 repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);

 return T;

}

int[16] trans_sse(int[16] M) implements trans { // synthesized code

 S[4::4] = shufps(M[6::4], M[2::4], 11001000b);

 S[0::4] = shufps(M[11::4], M[6::4], 10010110b);

 S[12::4] = shufps(M[0::4], M[2::4], 10001101b);

 S[8::4] = shufps(M[8::4], M[12::4], 11010111b);

 T[4::4] = shufps(S[11::4], S[1::4], 10111100b);

 T[12::4] = shufps(S[3::4], S[8::4], 11000011b);

 T[8::4] = shufps(S[4::4], S[9::4], 11100010b);

 T[0::4] = shufps(S[12::4], S[0::4], 10110100b);

}
10

From the contestant email:
Over the summer, I spent about 1/2

a day manually figuring it out.

Synthesis time: 30 minutes.

11 11

Beyond synthesis of constants

Holes can be completed with more than just constants:

Array index expressions: A[??*i+??*j+??]

Polynomial of degree 2: ??*x*x + ??*x + ??

Initialize a lookup table: table[N] = {??,…,??}

The price SKETCH pays for generality

What are the limitations behind the magic?

Sketch doesn’t produce a proof of correctness:
SKETCH checks correctness of the synthesized program on
all inputs of up to certain size. The program could be
incorrect on larger inputs. This check is up to programmer.

Scalability:

Some programs are too hard to synthesize. We propose to
use refinement, which provides modularity and breaks the
synthesis task into smaller problems.

12

Interactive synthesis with refinement

Automatic functional equivalence checking

enabled by recent advances in program analysis, testing

Sketch-based synthesis

automatically generate details of tricky algorithms

Autotuning and algorithm design space exploration

search design spaces you could never consider by hand

13

P1

refines P0

P0

spec

These ingredients allow Refinement

Refinement is already a popular form of development

automation and language support can make it better

14

ff

f

≡
≡

Refinement

15

Sequential code

Parallel code using
naïve shared memory

Two-level parallel code using
naïve shared memory

Two-level parallel code with
shared memory within blocks

and MPI across

• How do I break the task into
parallel units of work?

• How do I synchronize them?

• How do I group threads into
blocks?

• How do I reduce interaction
among different blocks?

• How do I partition my data
into independent pieces?

• How do the pieces
communicate?

Refinement

Sequential code

Parallel code using
naïve shared memory

Two-level parallel code using
naïve shared memory

Two-level parallel code with
shared memory within blocks

and MPI across

Automatic Validation
prevents bugs from being

introduced after each
refinement

Refinement

Sequential code

Parallel code using
naïve shared memory

Two-level parallel code using
naïve shared memory

Two-level parallel code with
shared memory within blocks

and MPI across

Synthesis helps derive
the details of each

refinement

Refinement

Sequential code

Parallel code using
naïve shared memory

Two-level parallel code using
naïve shared memory

Two-level parallel code with
shared memory within blocks

and MPI across

Each refinement step
produces a space of

possibilities that
autotuning can explore

HPC Scenarios

Domain scientist:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

19

Dynamic Programming

Compute O(2n) algorithms in O(nk) time

Example: fib(n)

20

Challenges in DP algorithm design

The divide problem: Suitable sub-problems often
not stated in the original problem. We may need to
invent different subproblems.

The conquer problem: Solve the problem from
subproblems by formulate new recurrences over
discovered subproblems.

Maximal Independent Sum (MIS)

Given an array of positive integers, find a non-
consecutive selection that returns the best sum
and return the best sum.

Examples:

 mis([4,2,1,4]) = 8
 mis([1,3,2,4]) = 7

22

Exponential Specification for MIS

The user can define a specification as an clean
exponential algorithm:

mis(A):
 best = 0
 forall selections:
 if legal(selection):
 best = max(best, eval(selection, A))
 return best

24

Sketch = “shape” of the algorithm

25

def linear_mis(A):

 tmp1 = array()

 tmp2 = array()

 tmp1[0] = initialize1()

 tmp2[0] = initialize2()

 for i from 1 to n:

 tmp1 = prop1(tmp1[i-1],tmp2[i-1],A[i-1])

 tmp2 = prop2(tmp1[i-1],tmp2[i-1],A[i-1])

 return term(tmp1[n],tmp2[n])

Synthesize propagation functions

def prop (x,y,z) :=
 switch (??)
 case 0: return x
 case 1: return y
 case 2: return z
 case 3: return unary(prop(x,y,z))
 ...
 case r: return binary(prop(x,y,z),
 prop(x,y,z))

26

MIS: The synthesized algorithm

27

linear_mis(A):
 tmp1 = array()
 tmp2 = array()
 tmp1[0] = 0
 tmp2[0] = 0
 for i from 1 to n:
 tmp1[i] = tmp2[i-1] + A[i-1]
 tmp2[i] = max(tmp1[i-1],tmp2[i-1])
 return max(tmp1[n],tmp2[n])

A guy walks into a Google Interview …

Given an array of integers A=[a1, a2, ..., an],
return B=[b1, b2, ... , bn]
such that: bi = a1 + ... + an - ai

Time complexity must be O(n)

Can’t use subtraction

29

30

Google Interview Problem: Solution

puzzle(A):
 B = template1(A)
 C = template2(A,B)
 D = template3(A,B,C)
 return D

template1(A):
 tmp1 = array()
 tmp1[0] = 0
 for i from 1 to n-1:
 tmp1[i] = tmp[i-1]+A[n-1]
 return tmp1

template2(A,B):
 tmp2 = array()
 tmp2[n-1] = 0
 for i from 1 to n-1:
 tmp2[n-i-1]
 = tmp2[n-i]+A[n-i]

template3(A,B,C):
 tmp3 = array()
 for i from 0 to n-1:
 tmp3[i] = B[i] + C[i]
 return tmp3

HPC Scenarios

Domain expert:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

31

Parallelizing with Synthesis

Goal: synthesize an associative function that allows
solving the problem in parallel, as a prefix sum.

The sketch: force the function to work on a tree:

 result = prop(prop(A[0],A[1]),

 prop(A[2],A[3]))

 32

f

f

f

Synthesizes associative operator for MIS

34

Evan: “It is quite exciting that I do NOT have a good idea of
what the synthesizer returned (kind of magic!)”

HPC Scenarios

Domain expert:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

35

Why scans?

Many practical algorithms use scans [Blelloch ’90]

– lexically compare string of characters; lexical analysis

– evaluate polynomials

– radix sort, quicksort

– solving tridiagonal linear systems

– delete marked elements from an array

– search for regular expressions

– tree operations

– label components in two dimensional images

– dynamic programming (see Evan Pu’s poster)

Many problems are sums with some assoc operator

 36

Implementing scans

37

N = 8

instance of parallel
scan algorithm

its abstract
visualization

SIMD execution of scan algorithms

38

HPC Scenarios

Domain expert:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

39

Example Scan Network

Programmer provides an example network for N=16.

[D. Harris, A taxonomy of parallel prefix networks]

40

Synthesis: generalize example into an algo

The algorithm must work for any N.

Synthesizer greedily identifies stages in the example
and necessary expressions for each stage.

 41

Synthesized Code

Sketch for each stage:
for i = 0 .. h(N)

 for j = 0 to N-1 in parallel

 if (g(i, j) < N)

 a[g(i, j)] = x[f(i, j)] + x[g(i, j)]

42

f = −1 + 2𝑗 + 2𝑖 𝑔 = −1 + 2𝑗 + 2. 2𝑖 𝑓 = −1 + 2.2𝑖 . 𝑓𝑙𝑜𝑜𝑟 𝑗2𝑖 + 2. 2𝑖 𝑔 = −1 + (2 − 2𝑖). 𝑓𝑙𝑜𝑜𝑟 𝑗2𝑖 + (4 + j). 2𝑖 f = 1 + 2𝑗 𝑔 = 2 + 2𝑗

HPC Scenarios

Domain expert:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

43

Hierarchical execution of scans algorithms

44

Hierarchical Scan Synthesis

45

Holes in the sketch are functions f, g, h and number of
elements transferred between 1st and 2nd stage.

HPC Scenarios

Domain expert:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

47

Bank conflict avoidance

Goal: map logical array elements to a physical array.

Result: we have synthesized [injective] reordering functions as
shown below. Synthesis takes approximately 2 minutes.

What does the programmer do: rewrites program to map
indices to a synthesized function phi: A[e] A[phi(e)]

How does the synthesizer understand bank conflicts: it
simulates array accesses and synthesizes a program that
minimizes bank conflicts. 48

HPC Scenarios

Domain expert:

problem spec --> dynamic programming --> parallel scan

Parallel algorithm expert:

example of parallel scan network --> SIMD algorithm

GPU tuning expert:

SIMD algorithm --> bank conflicts --> index expressions

49

Optimize index expressions

Base version:

for d := 1 to log2n do

 for k from 0 to n/2 in parallel do

 block := 2 * (k – (k mod 2d))
 me := block + (k mod 2d) + 2d

 spine := block + 2d – 1;
 m[me] := m[me] + m[spine];

[Merrell, Grimshaw, 2009]

50

Optimized version (a refinement)

Produced from a sketch (work in progress):

for (i := 1; i < 64; i := i * 2)

 rightmask := i – 1;
 leftmask := ¬rightmask;

 block := (k & leftmask) << 1;

 me := block | rightmask;

 spine := block | (k & rightmask) | i;

 m[me] := m[me] + m[spine];

[Merrell, Grimshaw, 2009]

51

Conclusion

Automatic functional equivalence checking

enabled by recent advances in program analysis, testing

Sketch-based synthesis

automatically generate details of tricky algorithms

Autotuning and algorithm design space exploration

search design spaces you could never consider by hand

52

Acknowledgements

Berkeley

Shaon Barman

Ras Bodik

Sagar Jain

Evan Pu

Saurabh Srivastava

Nicholas Tung

53

MIT

Armando Solar-Lezama

Rishabh Singh

Kuat Yesenov

Jean Yung

Zhiley Xu

