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Parallel quantum simulation of large systems on small

NISQ computers
F. Barratt1, James Dborin 2, Matthias Bal 3, Vid Stojevic3, Frank Pollmann4 and A. G. Green 2✉

Tensor networks permit computational and entanglement resources to be concentrated in interesting regions of Hilbert space.
Implemented on NISQ machines they allow simulation of quantum systems that are much larger than the computational machine
itself. This is achieved by parallelising the quantum simulation. Here, we demonstrate this in the simplest case; an infinite,
translationally invariant quantum spin chain. We provide Cirq and Qiskit code that translates infinite, translationally invariant matrix
product state (iMPS) algorithms to finite-depth quantum circuit machines, allowing the representation, optimisation and evolution
of arbitrary one-dimensional systems. The illustrative simulated output of these codes for achievable circuit sizes is given.
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INTRODUCTION

The insight underpinning Steve White’s formulation of the density
matrix renormalisation group (DMRG) is that entanglement is the
correct resource to focus upon to formulate accurate, approximate
descriptions of large quantum systems1. Later understood as an
algorithm to optimise a matrix product state (MPS)2, this notion
underpins the use of tensor networks as a variational parametrisa-
tion of wavefunctions with quantified entanglement resources.
Such approaches allow one to concentrate computational
resources in the appropriate region of Hilbert space and provide
an effective and universal way to simulate quantum systems3,4.
They also provide an effective framework to distribute entangle-
ment resources in simulation on noisy intermediate-scale quan-
tum (NISQ) computers.
Quantum computers such as those of Google, Rigetti, IBM and

others implement finite-depth quantum circuits with controllable
local two-qubit unitary gates. Innovations for quantum simulation
include using these circuits as variational wavefunctions5,
optimising them stochastically or by phase estimation6, and
evolving them either by accurate Trotterisation of the evolution
operator7–9 or variationally10. Currently, available NISQ devices are
limited by gate fidelity and the resultant restriction of available
entanglement resources. Since the finite-depth quantum circuit
may be equivalently described as a tensor network11, tensor
networks provide a convenient framework with which to
distribute entanglement to the useful regions of Hilbert space
and to make efficient use of this relatively scarce resource.
We dub the implementation of a tensor network on such a NISQ

device a Quantum tensor network. There are several advantages to
this framework. It fits directly into a broader ecosystem of classical
simulation of quantum systems. Indeed, because it is based upon
the manipulation of explicitly unitary elements, the quantum
circuit provides perhaps the most natural realisation of tensor
networks. Canonicalisation at each step in a classical tensor
network calculation amounts to reducing the tensors to isometries
—a step that is not required in an explicitly unitary realisation.
Moreover, the remaining elements of unitaries parametrise the
tangent space of the variational manifold12,13.

Here we demonstrate that quantum tensor networks can be
used to parallelise quantum simulation of systems that are much
larger than available NISQ machines14–16. Central to this is dividing
the quantum system into a number of sub-elements that are
weakly entangled and can be simulated in parallel on different
circuits. The influence of the different regions of the system upon
one another can be summarised by an effective state on a much
smaller number of quantum bits. We provide Cirq and Qiskit code
for the simplest class of examples—infinite, translationally
invariant quantum spin chains. This is a direct translation (mutatis
mutandis) of iMPS algorithms to quantum circuit machines. The
remarkably simple circuits revealed below allow the representa-
tion of an infinite quantum state, and its optimisation and real-
time evolution for a given Hamiltonian.

RESULTS

Parallel quantum simulation across weakly-entangled cuts

To parallelise our simulation on a small NISQ machine, we first
identify partitions of the system where the effect of one partition
upon the other can be summarised by a small amount of
information. This is achieved by making Schmidt decompositions

across the cut: ψj i ¼
PD
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the same
on the right. The λα are known as the Schmidt coefficients and D
the Schmidt rank or bond order. Retaining λα only above some
threshold value provides a way to compress representations of a
quantum state; the MPS construction can be obtained by applying
this procedure sequentially along a spin chain4.
If an observation is made on the right-hand-side of such a cut,

the effect of the quantum state on the left upon the observation
can be summarised by just D variables corresponding to the
Schmidt coefficients. This same effect can be achieved by an
effective state on a spin chain of length log 2D—see Fig. 1—which
can be parametrised on the quantum circuit by an SU(D2) unitary
VL. This encodes both the Schmidt coefficients λα and the
orthonormal states ϕα

L

�

�

�

. The latter does not contribute to
observables on the right and so in principle, VL can be
parametrised by just D variational parameters. The precise
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numerical values must be determined by solving a quantum
mechanical problem on the left of the system. Similarly, for
observations made to the left of the cut, the effect of the right-
hand side can be summarised by a unitary VR.
This gives a prescription for parallel quantum simulation.

Calculations of the quantum wave function to the left and right of
the cut can be carried out on different quantum circuits or
sequentially on the same circuit. The effects of the left partition
upon the right partition and vice versa—through the environment
unitaries VL and VR—are iterated to consistency. At each stage of this
iteration, measurements must be performed in order to determine
VL/R. The small Schmidt rank of the cut reduces the computational
complexity of this process—if we were to do full state tomography,
to OðpolyðDÞÞ, but with more sophisticated methods even to
Oðlog ðDÞÞ, as in the example in the following section.
There are many physical situations in which this parallelisation

might be useful. For example, large organic molecules that have
localised chemical activity—this activity may be modulated or
tuned by the surrounding parts of the molecule and the interplay
of these effects could be calculated in parallel. In the following,
inspired by iMPS tensor networks, we give quantum circuits that
embody these ideas.

Parallel simulation with quantum tensor networks

The translationally invariant MPS gives an approximate represen-
tation of a translationally invariant spin 1/2 state as

ψj i ¼
X

fig;fσg

Y

n

¼ Aσn�1
in�1;in

Aσn
in ;inþ1

¼ ¼ σn�1; σn ¼j i; (1)

where n labels the lattice site, σn labels the spin 1/2 basis states on
the nth site and in are auxiliary tensor indices that run from 1 to
the bond order D. The tensors Aσ

ij are the same on every site
reflecting the translational invariance. These states can be
mapped to quantum circuits by taking the MPS tensors in
isometric form and identifying them with the circuit unitaries as
described in the “Methods” section. A variety of techniques have
been developed for the classical manipulation of these states for
quantum simulation3,17,18. Here we confine ourselves to discussing
the quantum circuit realisation. The Supplementary Material gives
a detailed summary of the connection between the classical MPSs
and their quantum circuit realisation.

Representing the state. A translationally invariant, spin 1/2 MPS
state of bond order D= 2N can be represented by the infinite
circuit shown in Fig. 2a. Expectations of local operators in this state
can be evaluated by the finite circuit shown in Fig. 2b. The effect
of contracting the infinite circuit to the left of the operator is trivial

due to the unitarity of U∈ SU(2D) (which automatically encodes
the left canonical form of the related MPS tensor). The contraction
to the right is described by the tensor V∈ SU(D2), which encodes
an effective state over N ¼ log 2D spins and their entanglement
with the remaining system to the left-hand side. This unitary is
determined self-consistently from U by the circuit shown in Fig. 2c.
As demonstrated in ref. 4, an MPS in this form can be constructed
from any state by a sequence of Schmidt decompositions running
from left to right. This guarantees the existence of the isometric
MPS representation and the quantum circuit realisation of it. The
operation of such a circuit at D= 2 was demonstrated in ref. 19 on
an IBM quantum circuit, where analytic forms were known for
both U and V along a line through the phase diagram of a model
with topological phase transition. In general, V≡ V(U) is not known
and must be solved following Fig. 2c.

Optimising the state. We can find the ground state and the
corresponding energy density of translationally invariant Hamilto-
nians by minimising the expectation value of the energy.
The algorithm mirrors the variational quantum eigensolver. The
expectation of the local Hamiltonian is found by measuring the
corresponding Pauli strings on the physical qubits (see Fig. 2b).
The result can then be minimised as a function of the ansatz
parameters. Updates must be interleaved with updates to the
environment, V, such that we optimise over valid translationally
invariant states.

Evolving the state. Perhaps the most compelling feature of this
implementation is the ease with which time-evolution can be
achieved. The simple circuit shown in Fig. 3 a returns the unitary
U0 � Uðt þ dtÞ that updates the state encoded by U(t) to a time
t+ dt under evolution with the Hamiltonian H. The first
variation of this circuit with respect to U0 returns the time-
dependent variational principle for iMPS in the form first
presented by Haegeman et al. in ref. 12. The equivalence uses
the automatic encoding of the gauge-fixing of the state to the
canonical form, as well as encoding of the tangent space and its
gauge fixing (see “Methods” section and additional notes in
Supplementary Materials). As in the determination of the best
groundstate approximation above, the update involves two
nested loops; one to find the update U0 and one to find the
environment tensors L � LðU;U0Þ and R � RðU;U0Þ —both of
which are required in this case as the circuit corresponds to the
overlap of two different states rather than expectations taken in
a given state. We have used a slightly different way of
representing these environments in Fig. 3 compared to that
employed in Fig. 2.

Fig. 1 Tensor network for a quantum state that is weakly entangled across a certain partition. This weak entanglement allows parallel
simulation of the two partitions of the system. The expectation of an operator located to the right of the partition can be carried out by
replacing the state on the left by a state over much fewer spins (the number determined by the entanglement across the cut). The numerical
values of correlations in this smaller representation of the left are determined by quantum effects in the full left-hand system and can be
computed in parallel and iterated to consistency.
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Quantum advantage. It is natural to ask whether there is any
quantum advantage from using a quantum circuit in this way.
Algorithms for manipulating iMPS (iDMRG, TDVP, etc.)3,17,18 are
classically efficient—they have the complexity of OðD3Þ. Where
then is the room for improvement by implementation on a
quantum circuit? The quantum advantage comes from the
potentially exponential reduction in the dependence upon the
bond dimension, D.
In a quantum circuit, the multi-qubit unitaries must be compiled

to the available gate set. A translationally invariant state with
entanglement S can be captured by a matrix product state of
bond dimension D � exp S. This requires a circuit depth of
Oðexp SÞ. An arbitrary U 2 SUð2 exp SÞ unitary to implement this
iMPS requires Oðexp SÞ � OðDÞ gates20. However, a subset of non-
trivial unitaries with entanglement S can be achieved with circuits
whose depth is OðSÞ � OðlogDÞ giving an exponential speedup
over the classical implementation21. This reduces the contraction
time from OðD3Þ for a typical classical implementation to OðlogDÞ
in a quantum case. Though these shallow circuits exist, the
question remains whether they have high fidelity with the states
that we are interested in ref. 22 identifies a subset of shallow
quantum circuit MPS that have high fidelity with the states
produced by Hamiltonian evolution. An example at bond order
D= 4 is shown in Fig. 2d.
This demonstrates a quantum advantage for U. We must also

consider whether the environment V (or R and L) have high fidelity
shallow circuit representations. A priori there is no guarantee that,
given a shallow circuit U, the V that satisfies the fixed point
equations in Fig. 2, or the R and L that satisfy the fixed point
equations in Fig. 3 are themselves shallow. However, there is a
rigorous argument for this. We start by constructing an initial
shallow approximation. When optimising the energy, as in Fig. 2,
we can take advantage of the ability to diagonalize the reduced
density matrix to the right and choose a corresponding V. A
shallow circuit approximation to this allows us to set logD
Schmidt coefficients exactly with the remainder lying on a smooth
interpolation between them. In the case of time evolution, the
mixed environments R and L cannot necessarily be diagonalised
simultaneously (though off-diagonal elements are of order dt2)
and a richer—though still shallow—variational parametrization
allowing for this is necessary. In either case, a shallow approxima-
tion for the environment can be improved exponentially for a
linear cost in qubits and circuit depth by applying the transfer
matrix a linear number of times, i.e., by using the power method
(see the Supplementary Materials for more details). This simply
corresponds to inserting further copies of the transfer matrix in
the center of the circuits in Fig. 3a. These arguments establish an
asymptotic quantum advantage for our algorithm. In practice, we
find that the initial shallow approximations prove remarkably
accurate and these corrections are unnecessary.

Fig. 2 Quantum circuits for translationally invariant states and
their local measurement. a An infinite depth and width quantum
circuit representing a translationally invariant state. U∈ SU(dD) with
d the local Hilbert space dimension and D= 2N the bond order. d= 2
for spin 1/2 and is used exclusively throughout this paper. In these
illustrations D= 4. The circuit acts upon a reference state 000¼j i at
the left of the figure with unitary operators applied sequentially
reading left to right. b Local measurements on this translationally
invariant state can be reproduced exactly by the finite circuit shown.
The reduced form takes advantage of the unitarity of U, due to
which sites to the left of the observable do not contribute. The
environment unitary V≡ V(U)∈ SU(D2) summarises the effect of sites
to the right of the observable and describes an effective state over
N ¼ log 2D spins. c The environment unitary V(U) is the solution of
the fixed point equation shown. This equation is to be interpreted as
equality of the reduced density matrices implied by the free qubit
lines. We show in the “Methods” section how to implement this
using swap gates. d A shallow circuit representation of the D=
4 states following ref. 22. Such circuits have been shown to have high
fidelity with states obtained in Hamiltonian evolution and are
exponentially quicker to contract on a quantum circuit than they are
classical.

Fig. 3 Quantum implementation of the time-dependent variational principle. For simplicity, we depict the above circuits for D= 2. Higher
bond order cases are given in the supplementary materials. a The unitary U0 that optimises the overlap of this circuit with 000¼j i describes
the time evolution of the state described by U(t) by a time interval dt under the Hamiltonian H, i.e., U0 ¼ Uðt þ dtÞ. b, c The mixed
environment unitaries R and L are given by the fixed point solutions of these circuit equations. As in Fig. 2, these are to be interpreted as
equality of the density matrices implied by free qubit lines.
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Numerical results

We have written Cirq and Qiskit code to implement the quantum
circuits shown in Figs. 2 and 3. The results of running this code in
simulation on Google’s Cirq simulator are shown in Fig. 4. We have
chosen optimisation and time evolution of the transverse field
Ising model23, and Poincare sections of the dynamics of the PXP
Hamiltonian24 as illustrative examples. The properties of the
transverse field Ising model are well understood. The Loschmidt
echo (fidelity of the time-evolved wavefunction with the initial
wavefunction) reveals a dynamical phase transition23 which

provides a non-trivial test for our simulation. Our main findings
are as follows:
(i) When run without gate errors and complete representation

of the unitaries U, V, L, and R, our code precisely reproduces the
optimum iMPS and its time evolution using the time-dependent
variational principle.
(ii) Factorisations of the unitaries reduce the fidelity of our

results. These are systematically improved as the depth of
expressibility of the ansatz is increased. Full parametrisations of
the unitaries reproduce classical MPS results exactly.
(iii) Going from representing to optimising, to time-evolving

states places increasing demands upon circuit depth and width.
Accurate results require increasingly deep factorisation of the
unitaries and suffer increasingly adverse effects of gate errors.

Optimising. The simulation results for the optimisation of the
transverse field Ising model are given in Fig. 4. The unitary U is
factorised using the ansatz in Fig. 4a. This ansatz shows good
agreement with the exact bond dimension 2 MPS results with a
low depth circuit. This factorisation is much lower depth than a full
factorisation of SU(4). Alternative factorisations of the state unitary
are possible for this problem. Lower depth ansatz can be used by
identifying that the ground state of the transverse field Ising
model is made up of real tensors (See Supplementary Material for
details).

Time evolving. Using exact representations of unitary matrices
we exactly reproduce the TDVP equations as expected. We
demonstrate that shallow factorisations of the state unitaries are
able to effectively capture dynamical phase transitions in the
Loschmidt Echos. The ground state of the transverse field Ising
model with g= 1 is prepared. This state is then evolved under the
same Hamiltonian but with g= 0.2. At each step of the trajectory,
the overlap of the current state with the original state is recorded.
The log of this overlap is shown for the whole trajectory in Fig. 4c.
A low depth state is able to exactly represent the states used in

ref. 24 to produce Poincare maps, which are used to study slow
quantum thermalisation in the PXP Model25. The states are
defined with a two-parameter circuit shown in Fig. 5. The
quantum TDVP code is able to recreate the Poincare maps for a
two-site translationally invariant MPS state. It is possible in this
case to discard erroneous points by identifying points with
energies that deviate from the known value by more than some
fixed threshold. This is a form of error mitigation that may be
applicable to other problems when using the quantum TDVP
algorithm and may help mitigate the impact of noise from NISQ
devices. The larger structures in the Poincare Map are distorted by
errors but are still visible in the presence of integration and
stochastic optimisation errors. The effects of noise on the
quantum TDVP algorithm are outlined in the Supplementary
Materials.

DISCUSSION

We have presented a way to perform quantum simulations by
translating tensor network algorithms to quantum circuits. Our
approach allows parallel quantum simulations of large systems on
small NISQ computers. We have demonstrated this for one-
dimensional translationally invariant spin chains. The translation of
MPS algorithms naturally encodes fundamental features of matrix
product states and the tangent space to the variational manifold
that they form. In demonstrating the operation of such circuits, we
have touched upon some immediate questions including the
expressiveness of shallow circuit restrictions of tensor network
states, their effect upon simulation alongside that of finite gate
fidelity. These warrant further systematic study.
Our algorithms are readily extensible to inhomogeneous one-

dimensional systems and to higher dimensions following existing

Fig. 4 Results of simulating the transverse field Ising model. The
Hamiltonian H ¼

P

n½σ̂
z
nσ̂

z
nþ1 þ λσ̂

x
n� is studied with a bond order

D= 2 quantum matrix product state. a The SU(4) unitaries U and V
are compiled to the circuit as shown. The parameter p is varied to
increase the accuracy. Although more efficient parametrizations
exist for 2 qubit unitaries39, as well as circuits more specifically tuned
to this problem, we choose a generic circuit. It is readily extendible
to higher bond orders [see Supplementary Materials]. b The
optimum state is found using the circuits depicted in Fig. 2. The
energy of this state is a better approximation to the true ground
state energy as the depth of parametrization increases and
converges to that obtained in a conventional MPS algorithm. In
particular, we have checked that the parametrization of ref. 39

perfectly reproduces the MPS results. Note that at λ= 0 the
Hamiltonian is optimised by a product state, which is captured
perfectly with p= 1. c Transverse field Ising model displays
dynamical phase transitions in the Loschmidt echo23. These are
revealed in the simulated runs of the quantum time-dependent
variational principle embodied by the circuits in Fig. 3. More
accurate circuits are required to obtain good agreement. The results
indicated as exact in the above are exact analytical results.
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methods that wrap one-dimensional states to higher dimensional
systems17,18. It would be interesting to study other gauge
restrictions of MPS—such as the mixed gauge of modern classical
time-dependent variational principle codes—which can also be
implemented in quantum circuits. Generalisations of MPS that
more directly describe higher dimensional systems are also
available. For example, the projected entangled pair states (PEPS)
give a two-dimensional generalisation. In realising these states on
a quantum circuit, they must be formed from isometric tensors.
Until recently, a suitable canonical form for PEPS was not available.
The isometric version of PEPS presented in ref. 26 shows great
promise and ought to be possible to implement on a suitably
connected quantum circuit. Other tensor networks such as the
multi-scale entanglement renormalisation ansatz27 (MERA) are
naturally based upon unitary operators and can be realised on a
quantum circuit28. Indeed, MERA has been deployed for image
classification on a small quantum circuit29 and as a quantum
convolutional neural network30.
The tensor network framework also provides a convenient route

to harness potential quantum advantage in simulation. The one-
dimensional matrix product state ansatz is efficiently contractible.
The time is taken to calculate the expectation of a local operator
scales proportional to the length of the system. A quantum
implementation has the advantage of a potentially exponential
decrease in the prefactor to this scaling. While a classical tensor
network may efficiently represent the important correlations of
quantum state in higher dimensions, its properties may not be
efficiently contractible. Contraction of a PEPS state is provably ♯P
hard31. However, a physically relevant subset of these states can
be efficiently contractible and an isometric representation of them
(isometric PEPS for which the Moses move of ref. 26 can be carried
out without approximation are indeed quasi-local and finitely
contractible) could confer quantum advantage from the shallow
representation of the constituent unitaries32. The balance of
advantage and cost in quantum algorithms can be delicate;
extracting the elements of the tensors is easy classically, but
quantum-mechanically requires tomography of the circuit state,
which is exponentially slow in the number of spins measured. This
may be the bottleneck in hybrid algorithms33. Using the tensor

network framework to distribute entanglement resources over the
Hilbert space appropriately can mitigate some of these costs.
This work demonstrates the utility of translating tensor network

algorithms to quantum circuits and opens an unexplored direction
for quantum simulation. Potentially all of the advances of classical
simulation of quantum systems using tensor networks can be
translated in this way. Moreover, it provides a complementary
perspective on classical algorithms suggesting related benefits in
purely unitary implementations.

METHODS

Quantum matrix product states

The mapping from MPS to quantum circuits that we use automatically
embodies much of the variational manifold and its tangent space. The
parsimony of this mapping to the quantum circuit suggests that it is the
natural home for MPS. The fundamental building block of the circuits
depicted in Figs. 2, 3 is the MPS tensor. A tensor of bond order D and local
Hilbert space dimension D is represented by an SU(dD) matrix
following13,34–37 Aσij ¼ Uð1�jÞ;ðσ�iÞ as shown in Fig. 6. This translation

automatically encodes the left canonical form of the MPS tensor;
P

σðA
σÞyijA

σ
jk ¼ δik . This follows directly from the unitary property of U. A

classical implementation of an MPS algorithm involves returning the
tensors to this form after each step in an algorithm using singular value
decompositions—in a quantum algorithm, such manipulation is not
required.
Moreover, the remaining elements of the unitary encode the tangent

space structure to the sub-manifold of states spanded by MPS. These are
important in constructing the projected Hamiltonian dynamics. Adopt-
ing the notation of ref. 12, V(σ⊗δ≠1),(i⊗j)= U(δ≠1⊗j),(σ⊗i) and automatically

satisfies the null or tangent gauge-fixing condition
P

σðA
σÞyijV

σ;δ≠1
jk ¼ 0.

This structure is responsible for the very compact quantum implemen-
tation of the time-dependent variational principle shown in Fig. 3. It
obviates the need to calculate the tangent space structure at each
step12.

The quantum time-dependent variational principle

The equivalence with the classical implementation of the time-dependent
variational principle for matrix product states and its quantum version can

Fig. 5 Many body scars in the PXP model. The Hamiltonian H ¼
P

nð1� σ̂
z
n�1Þσ̂

x
nð1� σ̂

z
nþ1Þ, first posited to describe the results of quantum

simulations using Rydberg atoms25, displays a curious property known as many-body scarring25, whereby from certain starting states,
persistent oscillations that can be described with a low bond-order MPS are found. These are amenable to study on a NISQ machine using the
quantum time-dependent variational principle of Fig. 3. a A simple set of 2-site periodic states at bond order D= 2 are parametrised by circuits
with just 2 parameters per site, so 4 in total. b A partial Poincare section through the plane θ1= 0.9 produced from a classical simulation using
the matrix product state equations of motion presented in ref. 24. Initial conditions are chosen on a constant energy surface Hh i ¼ 0. The
partial plot was produced with initial conditions along a line with spacing δϕ1= 3 × 10−2, with θ1= 0.9 and θ2= 5.41. The final parameter, ϕ3,
chosen to fix the energy. c The same Poincare map produced simulating the quantum time-dependent variational principle in Cirq. While the
figure is blurred somewhat by integration, the main features are still apparent.
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be seen by adopting the following parametrization of the updated unitary
in the form

U0 ¼ U exp
0 Xy

X 0

 !

:

Taking the explicit overlap of the circuit in Fig. 3a) with the state
000¼j i and then calculating its derivative with respect to X recovers the
time-dependent variational principle as formulated in ref. 12. The tensor X is
to be compared with that in ref. 12 rescaled by the square root of the
environment tensor. The quickest route to see this is to expand the circuit
to quadratic order in the tensor X and bi-linear order in X and dt, before
differentiating with respect to X.

Optimising quantum circuits

Our algorithms require the optimisation of expectations of observables—in
Figs. 2b, and 3a—and the solution of fixed-point equations in Figs. 2b and
3b, c to determine the environment and mixed environment. In all cases,
optimisations are carried out stochastically.
We use the Rotosolve algorithm38 to speed up our stochastic searches.

This utilises the fact that the dependence of expectations of a
parametrised quantum circuit on any particular parameter is sinusoidal.
As a result, after just three measurements one can take this parameter to
its local optimum value. Extensions of this allow the variation to be
calculated when several elements of the circuit dependent upon the same
parameter.
The equations illustrated in Figs. 2b and 3b, c are implicitly identities

between density matrices. We solve them using a version of the swap test
that amounts to a stochastic optimisation of the objective function
tr [ð̂r � ŝÞy ð̂r � ŝÞ]. Details of how the swap test is implemented for the
environment in Fig. 2b and for the mixed environments in Figs. 3b, c are
given in the supplementary materials.

DATA AVAILABILITY

All data generated or analysed during this study are included in this published article

(and its supplementary information files).

CODE AVAILABILITY

All code used to generate the results presented is available to download at https://
github.com/fergusbarratt/qmps. We provide both Cirq code—which we have used in
our simulations—and Qiskit code with the same functionality.
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