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Parallel Randomized State-space Search∗

Matthew B. Dwyer, Sebastian Elbaum, Suzette Person, Rahul Purandare
Department of Computer Science and Engineering

University of Nebraska - Lincoln
{dwyer,elbaum,sperson,rpuranda}@cse.unl.edu

Abstract

Model checkers search the space of possible program be-
haviors to detect errors and to demonstrate their absence.
Despite major advances in reduction and optimization tech-
niques, state-space search can still become cost-prohibitive
as program size and complexity increase. In this paper,
we present a technique for dramatically improving the cost-
effectiveness of state-space search techniques for error de-
tection using parallelism. Our approach can be composed
with all of the reduction and optimization techniques we
are aware of to amplify their benefits. It was developed
based on insights gained from performing a large empirical
study of the cost-effectiveness of randomization techniques
in state-space analysis. We explain those insights and our
technique, and then show through a focused empirical study
that our technique speeds up analysis by factors ranging
from 2 to over 1000 as compared to traditional modes of
state-space search, and does so with relatively small num-
bers of parallel processors.

1. Introduction

The first general tool for model checking programs [12]
was developed nearly ten years ago. The realization that
variants of temporal logic model checking algorithms could
be applied to search the space of possible program behav-
iors, to detect errors and demonstrate their absence, has
spurred a tremendous body of research in the past decade.
Much of this work has been oriented towards developing
general techniques for reducing the analysis cost through
property preserving state-space reductions, e.g., [16, 5],
and abstraction techniques, e.g., [1, 13]. Another line of
research has adapted model checking algorithms and data
structures to optimize error detection while sacrificing the
ability to demonstrate the absence of errors. Notable suc-
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through awards 0429149, 0444167, 0541263 and through CAREER award
0347518, by the Army Research Office through DURIP award W911NF-
04-1-0104, and by NASA JPL through contract 1286178.

cess has been achieved along these lines for sequential
program analysis, for example, analysis and detection of
classes of errors in the linux kernel [22], TCP/IP implemen-
tations [19], and widely-used file system implementations
[29].

Success in detecting concurrency-related errors on soft-
ware of realistic scale and complexity, however, has been
more difficult to achieve. The key complicating factor with
concurrency is the need to analyze program behavior un-
der the set of possible schedules that could be produced by
the run-time system. In general, the set of all possible exe-
cutions grows exponentially with the number of threads of
control in a program. Concurrency errors, such as dead-
locks and data-inconsistencies that arise due to data-races,
can be very difficult to detect since they may only be exhib-
ited on a small fraction of the possible program executions.

Systematic search of a program’s feasible state-space,
i.e., the set of control and data configurations that can be
reached along some program execution, is attractive for
these hard to find errors, since, given sufficient time and
memory the error will eventually be revealed. Unfortu-
nately, even when the full-complement of state-of-the-art
state-space reduction techniques are applied, there are pro-
grams for which such an analysis will exhaust available time
and/or memory before detecting the error [6]. In this paper,
we address the challenge of providing additional reductions
in analysis cost by exploiting knowledge we have acquired
studying program state-space structure as it relates to error
states, and using this knowledge to create a technique that
parallelizes the analysis.

Our insight on parallelization opportunities emerged
from our recent investigation of how the order in which a
state-space is searched influences the cost and effectiveness
of detecting errors [6]. Our empirical study of 56 multi-
threaded Java programs showed that random variations in
the search order give rise to enormous variations in the cost
to find an error across a space. It was common, for exam-
ple, to find programs where, given a few hundred random
searches, the fastest search order outperformed the slowest
by four or five orders of magnitude.
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Ideally, to improve the efficiency of the error detection
process, one would like to guide the model-checker towards
regions of the program state-space that contain errors, and
avoid regions that are free of errors. Distinguishing such
regions without first exploring them, however, is beyond
the current state-of-the-art in search heuristics. Instead, we
have developed a technique, which we call Parallel Ran-
domized State-space Search (PRSS), that runs multiple par-
allel randomized state-space searches, and terminates all
searches when the first one finds an error. The intuition
behind PRSS is that by sampling different regions of the
state-space, there is a good chance that a region contain-
ing errors will be found. In addition, by exploring regions
in parallel, the time required to search regions that do not
have errors is mitigated. Our evaluation of the PRSS tech-
nique on the most challenging of the multi-threaded Java
programs from our previous study demonstrates that PRSS
can reduce the cost to find an error using state-space search
by factors ranging from 2 to well over 1000, and that this
reduction can be achieved using a relatively small number
of parallel processors, ranging from 5 to 20.

In addition to improving the cost to find an error, PRSS
has a number of other benefits. For example, PRSS is a gen-
eral technique that can be composed with existing reduc-
tion, abstraction and heuristic techniques to further enhance
the gains achieved by those techniques. Furthermore, it ap-
pears to be broadly applicable across a range of programs.
Its performance benefits accrue when run on numbers of
processors that most developers will have ready access to,
for example, in a handful of multi-core workstations. In
principle, PRSS could be implemented using any explicit
state model checker or similar state-space analysis tool. In
this paper we report on results using version 3.1.2 of Java
PathFinder [27].

The contributions of this paper lie in (i) the presenta-
tion of a practical and cost-effective technique for detecting
hard to find errors in concurrent programs, which we detail
in the next Section, and (ii) the results of an empirical study
that provide evidence of the effectiveness of the PRSS tech-
nique instantiated for Java PathFinder as compared to us-
ing the default mode of analysis with Java PathFinder over
a range of non-trivial multi-threaded Java programs. Sec-
tion 4 describes our study design and setup, and we present
and discuss the results of the studies in Section 5. We dis-
cuss related work in Section 6 and describe plans for further
assessing the effectiveness of PRSS in Section 7.

2. Motivation for PRSS
In previous work [6], we discovered that randomizing the

order of program state-space search can sometimes lead a
model-checker to locate an error state very quickly, outper-
forming a model checker’s default search order. This is not
very surprising. Given enough randomized searches one is
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Figure 1. Search Cost Distributions

bound to find a search that detects errors more quickly than
the default search order, which is generally defined without
regard to program structure or the type of error.

What was surprising however, was the degree of varia-
tion in the cost of search across different programs. Some
programs exhibited cost distributions that were flat, indicat-
ing that searches of varying cost were equally likely, some
were clustered, indicating that all searches within a given
group had similar cost, some were close to Gaussian, and
some were bipolar, i.e., two clusters at the low and high-
end of the cost scale. Figure 1 illustrates cost distributions
for two of the programs in our study utilizing histograms.
The x-axis represent the number of states visited by the
model-checker and each bar represents the percentage of
5000 randomized depth-first search runs performed on the
given program. With DEOS and ReplicatedWorkers
we observed variations in cost that spanned one or more or-
ders of magnitude; this is representative of the population
of programs we studied. The key observation we made was
that despite this enormous range, there were always some
relatively low-cost runs, on the order of 10s or 100s of thou-
sands of visited states that detected the error. For example,
DEOS and ReplicatedWorkers have 18% and 17% of
their runs that found the error in this low-cost region, re-
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basicDFS()
1 seen := {s0}
2 push(stack, s0)
3 DFS(s0)
end basicDFS()

DFS(s)
4 workSet := enabled(s)
5 for each α ∈ workSet do
6 s′ := α(s)
7 if error(s′) then
8 counterexample := stack
9 exit

10 if s′ 6∈ seen then
11 seen := seen ∪ {s′}
12 push(stack, s′)
13 DFS(s′)
14 pop(stack)
end DFS()

Figure 2. Basic DFS for first error state

randDFS(seed)
1 seen := {s0}
2 init rand(seed)
3 push(stack, s0)
4 DFS(s0)
end randDFS()
SHUFFLE(seq)
5 for each i := 0 . . . |seq|
6 r := i + (rand()∗

(|seq| − 1))
7 t := seq[r]
8 seq[r] := seq[i]
9 seq[i] := t
end SHUFFLE()

DFS(s)
10 workSet :=

SHUFFLE(enabled(s))
11 for each α ∈ workSet do
12 s′ := α(s)
13 if error(s′) then
14 counterexample :=

(stack, seed)
15 exit
16 if s′ 6∈ seen then
17 seen := seen ∪ {s′}
18 push(stack, s′)
19 DFS(s′)
20 pop(stack)
end DFS()

Figure 3. Randomized DFS

spectively.

This trend holds up across all of the 56 programs we
studied in [6]; we also found at least some runs that were
significantly less expensive than the mean cost across the set
of randomized runs we explored. From this observation, we
conjectured that by performing enough randomized search
runs we would eventually be able to find a run that can find
an error quickly. We leverage this conjecture by running
the searches in parallel to reduce the wall-clock time for de-
tecting errors, which led to our Parallel Randomized State-
space Search technique.

3. The PRSS Technique

The PRSS algorithm is an integration of classic depth-
first search (DFS) to find error states, randomized DFS, and
parallelized search. We explain each of these aspects in turn
by highlighting portions of the overall algorithm.

PRSS(N, seed)
1 init rand(seed)
2 for each i := 1 . . . N
3 start(randDFS(rand()),i)
4 while (true)
5 for each j := 1 . . . N
6 if (done(j)) then
7 first := j
8 break while@4
9 endif

10 for each k := 1 . . . N
11 if (k 6= first) then
12 stop(k)
13 print(counterexamplefirst)
end PRSS()

Figure 4. Parallel randomized DFS

3.1. Depth-first State-space Search

Our analysis involves a stateful search of a program’s
state-space. Researchers have proposed the use of stateless
search, e.g., [24], but our experience using such searches
indicated that it is not cost-effective for programs with hard
to find bugs, i.e., where the percentage of executions of the
program that exhibit the error is near zero. For example,
on the Elevator program in our study, in over 3 hours
of run-time, 10,000 randomized stateless searches were un-
able to detect the error, whereas our randomized stateful
searches always found the error with a mean run-time of 6
minutes. We used depth-first search (DFS) as the basis for
PRSS in this paper; we plan to explore the use of variants
of breadth-first search in future work.

Abstractly we view a program as a guarded-transition
systems and analyze transition sequences. A guarded tran-
sition system consists of a set of variables, which for our
purposes are coalesced into a single composite state vari-
able s, and a set of guarded transitions which atomically
test, with predicate φ, the current state and update the state
by executing a transition, α, i.e., if φ(s) then s = α(s). The
initial values of program variables are used to define an ini-
tial state, s0.

Figure 2 presents the basic DFS algorithm that generates
the program state-space terminating when it finds an error
or finds all reachable states. basicDFS initializes the set
of states seen in the search, and the stack that stores the cur-
rent path in the state-space being analyzed, and then starts
a recursive chain of DFSs from the initial state. Lines 4-14
comprise a step in the DFS search. On line 4, enabled(s) re-
turns the set of transitions, α, whose guard, φ, is true in the
given state. Line 5 iterates through the set of enabled transi-
tions and we assume that the order of iteration is fixed, i.e.,
it is the same for every every run of the algorithm, which
is the default for all existing state-space analysis tools that
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we are aware of. Lines 7-9 test if an error state has been
reached, and if so, record the current DFS stack, which en-
codes the path under analysis, as a counterexample and ex-
its.

3.2. Randomized State-space Search

Researchers in randomized testing [2] have explored the
use of randomized sampling of a program’s input domain
to detect errors. In contrast, we randomize the sequence of
scheduling decisions that are made by the underlying run-
time system in executing a program.

Randomization of DFS is achieved by applying a Fisher-
Yates shuffle [17], lines 5-9 of Figure 3, to the sequence of
enabled transitions at each state explored. Each time the al-
gorithm executes, the order in which enabled transitions is
explored on line 10 is randomized. This approach to ran-
domization has the advantage that reduction techniques that
operate by modifying the set of enabled transitions, such as
partial-order reductions for Java [5], can be applied first and
then the sequence in which the remaining transitions are ex-
plored is randomized. Randomization in the shuffle follows
a pseudo-random sequence whose seed is passed as a pa-
rameter to randDFS, in Figure 3, and used to initialize the
sequence on line 2. When an error is detected the analysis
returns the seed along with the sequence of program transi-
tions as a counter-example (line 14). This allows replay of
randomized runs to analyze counter-examples in detail.

3.3. Parallel State-space Search

PRSS, shown in Figure 4, accepts a parameter (N) that
controls the degree of parallelism to be applied in the anal-
ysis and a parameter (seed) that gives users control over the
randomization in the algorithm; passing the same seed pro-
vides reproducibility whereas passing a random sequence of
seeds provides effective randomization. The analysis starts
N copies of a randomized DFS (lines 1-3) each with a dif-
ferent seed that is calculated based on a pseudo-random se-
quence that is initialized with the seed parameter.

There are many different implementation strategies that
can be applied to distribute jobs to nodes in a parallel ma-
chine or distributed cluster. We describe a polling ap-
proach based on three abstract primitives: start(m,i) exe-
cutes method m on machine i, done(i) polls to determine if
the job on machine i is complete, and stop(i) terminates the
job on machine i. It would be a simple matter to map the
logic of lines 4-9 to primitives that block until job comple-
tion rather than use this polling approach.

When a job completes it will be detected within N calls
to done and its index is then recorded as the first to complete
(line 7) and the polling loop is exited (line 8); we are not
concerned with the minor differences in run-time that would

arise due to races among jobs completing at approximately
the same time. Lines 10-12 shutdown all other executing
jobs and the counterexample from the first job is printed.

There are several notable aspects of this algorithm. (1)
Unlike many existing approaches to parallelization of state-
space search, which we discuss in detail in Section 6, PRSS
is embarrassingly parallel [9]. The N parallel random-
ized depth-first searches are performed completely inde-
pendently such that state information collected and used by
each search job is kept local to the job and need not to be
exposed in any way to the other parallel searches. This elim-
inates the the need for costly inter-process communication
and coordination between jobs.

(2) PRSS runs multiple simultaneous state-space
searches in distinct portions of the state-space; the likeli-
hood of two searches ending up in the same region of the
state-space is low. By using multiple randomized searches
to explore a single state-space, the chance that one search
will explore a region that is relatively dense with error states
is increased over a single search, and the penalty for search-
ing in a region that is free of errors is mitigated since a sib-
ling search may be making progress at the same time.

(3) PRSS leverages all of the optimizations applied to the
underlying DFS algorithms and its precision is limited only
by the precision of the underlying DFS. Note that it neither
creates additional behavior nor removes existing behavior in
the state-space and therefore does not affect the soundness
of the underlying search technique.

4. Study

The purpose of our study was to evaluate the cost and ef-
fectiveness of PRSS for error detection. We set the study
in the context of a collection of Java programs contain-
ing concurrency-related defects, and compared the perfor-
mance and fault detection capabilities of PRSS at various
degrees of parallelism against JPF’s default search settings.
We used JPF’s RandomOrderScheduler to implement
the randDFS algorithm in Figure 4. The specific PRSS
configurations evaluated, specified as the number of paral-
lel randomized searches, are described in Section 4.1.1. For
this study we investigated the following research questions:

RQ1: (Cost Reduction) Does there exist a feasible config-
uration of PRSS that can detect a program error more
quickly than performing a state-space search using the
default search order? Where, by feasible, we mean a
number of parallel processing nodes that might reason-
ably be available to a software testing organization.

RQ2: (Parallel Speedup) Does the performance of PRSS
improve with increased parallelism? If so, is there a
point of diminishing return?

4



Subject Source Parameters Error # Threads Classes SLOC
BoundedBuffer(3,6,6,1) [4] modCount, bufferSize, Deadlock 13 5 65

#producers, #consumers
Daisy() [21] none AssertionViolation 3 21 744
DEOS(false) [10] abstracted? AssertionViolation 4 24 838
Elevator() [7] none ArrayIdxOOBExcpn 4 12 934
RaxExtended(4,3,false) [10] gc, wc, envFirst? AssertionViolation 6 11 127
ReplicatedWorkers(5,2,0.0, [4] #workers, #items, min, Deadlock 6 14 304

10.7,0.05) max, epsilon
RWNoDeadLckCk(2,2,100) [4] #readers, #writers, bound AssertionViolation 5 6 103

Table 1. Study artifacts

RQ3: (Fault Detection) Can PRSS be used to detect an
error in programs where the default searcher fails be-
cause of insufficient time or space?

4.1. Characterization Variables

4.1.1 Independent Variable

To answer our research questions, we manipulated one inde-
pendent variable: the number of parallel randomized state-
space searches. For practical purposes, this measure repre-
sents the number of parallel processors or nodes used when
applying the PRSS technique. Because there is no fixed up-
per bound on the number of parallel searches one might per-
form, and because it would be impractical for a study such
as this to attempt to test every potential node configuration,
we chose 11 different configurations including 1, 2, 5, 10,
15, 20, 25, 50, 100, 500, and 1000 parallel nodes. Our goal
was to select a set of practical values that includes a suffi-
cient number and range of data points to be able to identify
trends in cost and performance.

4.1.2 Dependent Variables

The dependent variable for RQ1 and RQ2 is tool perfor-
mance. We measure performance in terms of the number of
program states explored. We use this measure because it is
platform-independent and it is a common metric for evaluat-
ing state-space exploration tool performance, such as model
checker performance. In JPF, this metric is referred to as the
number of new states.

For RQ3, the dependent variable is fault detection capa-
bility. This variable is simply a measure of whether the tech-
nique detects the program fault or not. Each technique is
tested under the same conditions (i.e. resource constraints)
which means that the opportunity to detect the program er-
ror is equal for all techniques.

4.2 Artifacts

Seven unique concurrent Java programs form the collec-
tion of artifacts for our study. All programs exhibit a single
concurrency error represented as a deadlock, an exception,
or an assertion violation. Table 1 describes the programs.

The programs were selected from the population of 56
parameterized artifacts used in [6]. Because this study is
focused on hard to find defects, we limited the selection
of artifacts to all but one of the programs that were classi-
fied as ”realistic.” This class of programs contains Java ar-
tifacts that perform a computation over rich data structures,
many of which have been previously used in slightly differ-
ent forms to evaluate Java state-space search techniques in
the literature. The only ”realistic” program from that study
that was not used is AlarmClock. This particular program
was omitted from the current study because, although it is
interesting in some contexts, its small state-space does not
challenge state-of-the-art search techniques.

4.3. Study Design and Setup

To conduct this study, we needed to evaluate the arti-
facts on each of the parallel search configurations. This re-
quired a minimum of 1,728 randomized searches per arti-
fact, i.e., the sum of the configuration sizes mentioned in
Section 4.1.1 per artifact.

Based on our previous experience, where we observed
that program state-spaces can be extremely large and that
the number of states visited before detecting the program
defect can vary greatly, we chose to evaluate each artifact 50
times for each parallel search configuration. This meant we
required 86,400 searches per artifact, and 604,800 searches
total for seven artifacts.

To control the costs of the conducting the study, we
chose instead to produce a pool of 5000 random searches
for each artifact, from which n searches would be randomly
selected to represent a configuration of n parallel searches
for each experiment. The pool size of 5000 was selected
based on our previous experience.
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The following steps were then performed to obtain our
study results. For each program artifact:

1. We performed 5000 random searches using JPF ver-
sion 3.1.2 on a cluster of dual-Opteron 250’s running
at 2.4 GHz with 16GB of memory and running Fedora
Core 3 Linux. Each randomized search used a distinct
seed generated from a pseudo-random sequence, and
was limited to one hour of execution time and 2GB of
memory, with the exception of BoundedBuffer. Higher
bounds (14GB and four hours) were used for Bound-
edBuffer in order to evaluate the PRSS technique on a
program with a larger state-space.

2. To simulate a run of n parallel randomized searches for
a given artifact, we randomly sampled, with replace-
ment, the pool of 5000 randomized searches for that
artifact n times. We repeated this sampling process to
produce a total of 50 trials to account for potential vari-
ation across samples.

3. From each sample of size n, we chose the search with
the shortest time to represent the search that would
have completed first if the searches had actually been
performed in parallel. In the case of a tie, one search
result was selected from the group.

4.4 Threats to Validity

In this section, we describe the internal, external, con-
struct and conclusion threats to the validity of this study.
We also include the approaches we designed to minimize
the impact of these threats on our findings.

Internal threats. Setting different bounds for the model
checker can clearly impact the findings. For example, un-
limited time and memory would allow all searches to find
the program defect. Conversely, for some searches, one
might expect that increasing the time or memory bound
might simply allow the analysis to take longer to exhaust
those resources. Our choice for upper bound on time and
memory for JPF was primarily meant to be consistent with
settings used in other recent studies.

External threats. Our study was performed on a single
state-space search tool - JPF version 3.1.2. Different ver-
sions of JPF or different state-space analysis tools may yield
different results. Replicated studies with different versions
of JPF or with different tools would address this threat. The
artifacts chosen for this study may also affect the results.
We selected artifacts classified as ”realistic” programs from
the population of artifacts used in [6] in an attempt to eval-
uate the effectiveness of PRSS on detecting hard to find
defects. We do not know, however, if these artifacts and
the defects they contain are truly representative of hard to

find defects in the broader population of multi-threaded Java
programs.

Construct threats. The measures we selected for this study
provide what we believe are a reasonable way to evaluate its
results. However, other measures may provide perspectives
that we did not consider. Nevertheless, to be consistent with
other studies and more relevant to the model checking com-
munity, we decided to use the number of new states which
is platform-independent and commonly used in evaluating
model checking and other state-space analysis tools.

Conclusion threats. In order to execute this study, we
chose to simulate each parallel, randomized search for a
given artifact by randomly selecting a search from the pool
of 5000 randomized searches performed on that artifact. It
is possible that the pool size of 5000 randomized searches
per artifact is not sufficiently diverse to accurately represent
the set of all feasible randomized searches for that artifact.
It is also possible that the number of trials (50) performed
on each artifact for each parallel randomized search con-
figuration does not accurately represent the set of feasible
results. We attempted to mitigate these threats by choosing
the pool size and number of trials based on the experiences
gained in our previous study. For example, in our previ-
ous study, 500 randomized searches produced a stable vari-
ance in the number of states visited to first error for some
of our artifacts but not all. We therefore set the pool size at
5000, an order of magnitude larger, in an attempt to achieve
a more stable variance in all artifacts. Overall, given the ex-
ploratory nature of the study at this point we do not consider
limited pool size to be a major source of concern.

5. Study Results

Figure 5 provides a graphical depiction of the results of
our study in a series of seven plots, one per program. Within
each plot, for each PRSS configuration, we show the mean
cost, in new states explored, and the standard deviation in
cost over the 50 trials we evaluated. We only show data up
to 25 parallel nodes for PRSS for all of the programs except
BoundedBuffer, where we show data up through 50 par-
allel nodes. Only these configurations were included in the
graphs because the trends are nearly flat and unchanging
beyond these points.

The plots include three additional reference lines. De-
fault States and Min States represent the Default and Min-
imum values from Table 2, respectively. Note that in some
cases the default value is off the scale and therefore not
shown, because the default search either ran out of mem-
ory or exceeded the time limit. The 100% Runs Completed
line indicates the point at which all of the 50 trials for the
PRSS configurations to the right of the line completed and
found the error; to the left of this line, at least one of the 50
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Figure 5. Scaled PRSS performance
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Artifact States PDR
Default Found Minimum Maximum Nodes Mean States Speedup

w/ Default
BoundedBuffer(3,6,6,1) 2603200 OM 1702 1573469 20 313290 ≥8.3
Daisy() 101816

√
140 99865 5 37715 2.7

DEOS(false) 260039
√

75919 1465215 15 143860 1.8
Elevator() 11743698 TO 57082 6751854 10 116960 ≥100.4
RaxExtended(4,3,false) 3470398 TO 41 3176159 5 176 ≥19718.1
ReplicatedWorkers(5,2,0.0,10.7,0.05) 6231840 TO 372 6642260 15 226790 ≥27.5
RWNoDeadLckCk(2,2,100) 3147356

√
40 24796751 10 1847 1704.0

Table 2. Results Summary

trials of parallel searches at a given PRSS node configura-
tion either ran out of memory or exceeded the time bound.

In Table 2 we summarize the results of our study. We
show the number of states explored by the default search
and indicate if the search completed (

√
), timed out (TO)

or ran out of memory (OM). The Minimum and Maximum
values are the observed minimum and maximum number
of states explored by the random searches in the pool. The
Point of Diminishing Returns (PDR) values are explained
in Section 5.2. In the remainder of this section, we consider
each of the research questions in turn.

5.1. RQ1 - Cost Reduction

The plots in Figure 5 clearly indicate that, for our study,
there is always at least one, and often many, feasible PRSS
configurations capable of detecting an error more quickly
than the default search. In the case where the default search
does not complete execution (i.e., times out or runs out of
memory), this observation still holds because the number
of states explored by the default search, as presented in Ta-
ble 2, can be viewed as an under-approximation of the ac-
tual number of states that would need to be explored in order
to detect the error.

For Elevator and RaxExtended, even running a
single randomized DFS finds the error in all of the trials
we performed with one node. This is remarkable given the
size of the state space searched by the default run before
running out of resources.

For Daisy and DEOS, simply performing a single ran-
domized DFS may not yield a more efficient analysis ac-
cording to our experiment; however, increasing the paral-
lelism to 2 and 15 nodes, respectively, for these examples
beats the default in all 50 trials.

RWNoDeacLckCk shows a similar trend, but with the
additional fact that below 10 parallel randomized DFSs
there is a possibility that one or more randomized searches
fails to complete - even when the default completes. At
10 nodes, however, PRSS beats the performance of de-
fault by a factor of 1700, has almost no variation in this
performance across the 50 trials, and never fails to find

the error in our experiment. ReplicatedWorkers and
BoundedBuffer show similar trends where a degree of
parallelism of 25 and 50, respectively, is needed to achieve
100% error detection according to our study. Based on
these findings, it seems clear that there exist feasible con-
figurations of PRSS that can detect a program error more
quickly than performing a state-space search using the de-
fault search order.

5.2. RQ2 - Parallel Speedup

The plots in Figure 5 share a characteristic shape. For
all artifacts, the curve has a downward trend as parallelism
is increased and a leveling off towards higher degrees of
parallelism. These plots confirm that the performance of
PRSS improves with increased parallelism. Furthermore, as
parallelism increases, the variation in performance observed
decreases. This is because a larger degree of parallelism ef-
fectively increases the sample size of the set of randomized
searches and the likelihood of finding an inexpensive search
increases.

By inspecting these plots, we are able to approximate a
Point of Diminishing Returns (PDR) which is an estimate of
the degree of parallelism beyond which additional compu-
tational resources provide increased performance that is not
justified by those extra resources. Our definition of PDR is
informal and intuitive: all of the authors of this paper stud-
ied the data and determined what they believed the PDR to
be. We agreed on the PDR for all but one example, DEOS,
where some authors thought the value was 10 and others
thought 15.

Table 2 shows the relatively small number of parallel
nodes corresponding to the PDR; in all cases, we found
this number to be less than 20. The table also shows the
speedup of the PDR configuration of PRSS over the default
search; speedups for artifacts whose search did not finish
are considered lower bounds. These indicate the benefits
of using PRSS. The variation in speedups is enormous, but
all of the examples exhibit non-trivial speedup and many
have an order of magnitude or more speedup. For some
examples, it is clear that there are more efficient searches
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that could be performed with more nodes than the number
we identified as the PDR. For example, BoundedBuffer
and ReplicatedWorkers, speedups of 33.8 at 50 nodes
and 36231.6 at 25 nodes, respectively are achieved.

5.3. RQ3 - Fault Detection

In choosing the artifacts for this study, our goal was to
choose programs that contain hard to find defects. Of the
seven artifacts selected, four have defects that were not de-
tected by using the default search order because they either
timed out or ran out of memory. For all of those artifacts, we
were able to use PRSS to consistently find the error given a
sufficient level of parallelism.

For Elevator and RaxExtended, all configurations
of PRSS found the defect in our experiments in all of
the 50 trials performed. For ReplicatedWorkers and
BoundedBuffer, the error was consistently detected
when the degree of parallelism was increased to 25 and 50
nodes, respectively. We conclude that PRSS can be used to
detect an error in artifacts where the default searcher fails
because of insufficient system resources.

Since finding errors in large multi-threaded programs
is not cost-effective using existing state-space search ap-
proaches, some researchers have turned to more modular
approaches where an application is broken into pieces and
those pieces are analyzed independently [25, 26]. It would
be interesting to explore the application of PRSS to those
applications to see if errors can be detected without the
added costs associated with modular reasoning, for exam-
ple, through the construction of environments that simulate
the calling context of a program component.

6. Related Work

Given the computational cost of state-space search, it
is natural to wonder whether it can be effectively paral-
lelized. Stern and Dill report on the parallelization of the
Murφ model checker [23]. Their approach stands as the
model upon which all other techniques in the literature are
based. They distribute a collection of searches targeting
portions of the state-space rooted at different nodes. A
shared seen set is used to keep searches from performing
redundant work. This set must be locked to ensure coher-
ent updates. The overhead of locking, and the poor local-
ity in the sub-state-spaces searched in parallel, cause this
algorithm to scale poorly. Researchers have explored the
use of lock free shared structures, to minimize contention,
and dynamic load balancing [18], but even with those im-
provements the coordination of multiple searches seems to
greatly limit scalability. Our approach is embarrassingly
parallel, so it has no coordination overhead, but it may do ar-

bitrary amounts of redundant work, which reduces the use-
ful parallel work it performs.

The idea of using randomization in state-space search
dates back to West [28] who showed that it can be ef-
fective in finding bugs in large protocols. It is sup-
ported in modern tools, for example, JPF has had the
RandomOrderScheduler component for several years,
but it’s combination with parallel execution had not yet been
explored or validated empirically until our work.

Randomization in state space search can be used to con-
trol the schedulings explored, as in our work, or to control
which states are stored in the seen set. To control mem-
ory requirements, techniques like bit-state hashing [15] ran-
domly drop states from the seen set. While lossy, this ap-
proach can scale analyses to very large problems. In [14],
multiple bit-state hashing runs are explored in parallel to re-
duce the time to find errors. This approach is very similar to
ours except that our approach is not lossy, since the under-
lying randomization technique is not lossy. While [14] de-
scribes the techniques use for large systems, there is no em-
pirical study of the performance improvements seen when
parallelization and randomization are used together in dif-
ferent configurations.

Recent work has developed the concept of Monte Carlo
Model Checking [11] which computes a bound on the prob-
ability that randomized walks of the state-space, beyond a
specified value, will find an error; this is not a bound on the
probability that an error exists. We make no attempt to es-
timate the benefits of additional randomization, but instead
observe empirically that relatively small numbers of sam-
ples seem sufficient for error detection.

Randomization in software testing is an old idea [2] that
has proven to be effective in practice [8]. Approaches for
randomizing the input space of a program under constraints
designed to improve error-detection have been proposed
[3, 20] and they seem to be effective. These techniques
do not target concurrent executions explicitly and make no
attempt to randomize the scheduler’s behavior. This may
make them less effective at revealing concurrency errors.
It would be interesting to adapt the intuition of these ap-
proaches to randomized scheduling [24]. Our approach
considers program input to be fixed, and rather than per-
forming a stateless search, we randomize a stateful search.
Our experience suggests that both the randomness and the
state-fullness are key ingredients to its success.

7. Conclusions and Future Work

We have presented a simple and cost-effective technique
for amplifying the benefits of existing optimizations for
state-space search targeted at error detection. We believe
this approach to be broadly compatible with explicit-state
model checking approaches and applicable across a wide
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range of programs. Further empirical studies would be valu-
able in validating this belief, but the results from our study
suggest that a practical and significant cost-reduction can be
achieved in the analysis of programs with large state-spaces.

In the future, we would like to explore the impact of
parallelization and randomization on other forms of state-
space search, such as variants of breadth-first and heuristic
searches. Heuristics tend to focus a search on portions of
the state space, but when the heuristic scoring function is
discrete, multiple enabled transitions can receive the same
score. Given that randomization appears effective in im-
proving the performance of state-space search over the de-
fault order, it may also prove effective in shuffling the order
in which ties are broken and thereby speed error detection
for heuristic searches as well.
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