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Parallel Real-Time Scheduling of DAGs

Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill

Department of Computer Science and Engineering

Washington University in St. Louis

Abstract—Recently, multi-core processors have become main-
stream in processor design. To take full advantage of multi-core
processing, computation-intensive real-time systems must exploit
intra-task parallelism. In this paper, we address the open problem
of real-time scheduling for a general model of deterministic
parallel tasks, where each task is represented as a directed
acyclic graph (DAG) with nodes having arbitrary execution
requirements. We prove processor-speed augmentation bounds
for both preemptive and non-preemptive real-time scheduling for
general DAG tasks on multi-core processors. We first decompose
each DAG into sequential tasks with their own release times
and deadlines. Then we prove that these decomposed tasks
can be scheduled using preemptive global EDF with a resource
augmentation bound of 4. This bound is as good as the best
known bound for more restrictive models, and is the first for
a general DAG model. We also prove that the decomposition
has a resource augmentation bound of 4 plus a non-preemption
overhead for non-preemptive global EDF scheduling. To our
knowledge, this is the first resource augmentation bound for
non-preemptive scheduling of parallel tasks. Finally, we evaluate
our analytical results through simulations that demonstrate that
the derived bounds are safe, and reasonably tight in practice,
especially under preemptive EDF scheduling.

I. INTRODUCTION

As the rate of increase of clock frequencies is leveling off,

most processor chip manufacturers have recently moved to

increasing performance by increasing the number of cores on

a chip. Intel’s 80-core Polaris [1], Tilera’s 100-core TILE-

Gx, AMD’s 12-core Opteron [2], and ClearSpeed’s 96-core

processor [3] are some notable examples of multi-core chips.

With the rapid evolution of multi-core technology, however,

real-time system software and programming models have

failed to keep pace. Most classic results in real-time scheduling

concentrate on sequential tasks running on multiple proces-

sors [4]. While these systems allow many tasks to execute on

the same multi-core host, they do not allow an individual task

to run any faster on it than on a single-core machine.

If we want to scale the capabilities of individual tasks with

the number of cores, it is essential to develop new approaches

for tasks with intra-task parallelism, where each real-time

task itself is a parallel task that can utilize multiple cores at

the same time. Such intra-task parallelism may enable timing

guarantees for complex real-time systems that require heavy

computation, such as video surveillance, computer vision,

radar tracking, and hybrid real-time structural testing [5]

whose stringent timing constraints are difficult to meet on

traditional single-core processors.

There has been some recent work on real-time scheduling

for parallel tasks, but it has been mostly restricted to the

synchronous task model [6], [7]. In the synchronous model,
each task consists of a sequence of segments with synchro-

nization points at the end of each segment. In addition, each

segment of a task contains threads of execution that are of

equal length. For synchronous tasks, the result in [6] proves

a resource augmentation bound of 4 under global earliest

deadline first (EDF) scheduling. A resource augmentation
under a scheduling policy quantifies processor speed-up factor

(how much we have to increase the speed) with respect to an

optimal algorithm to guarantee the schedulability of a task set.

While the synchronous task model represents the kind of

tasks generated by the parallel for loop construct that is

common to many parallel languages such as OpenMP [8]

and CilkPlus [9], most parallel languages also have other

constructs for generating parallel programs, notably fork-join
constructs. A program that uses fork-join constructs will

generate a non-synchronous task, generally represented as a

directed acyclic graph (DAG), where each thread (sequence of

instructions) is a node, and the edges represent dependencies

between the threads. A node’s execution requirement can vary

arbitrarily, and different nodes in the same DAG can have

different execution requirements.

Another limitation of the state-of-the-art is that all prior

work on parallel real-time tasks considers preemptive schedul-
ing, where threads are allowed to preempt each other in

the middle of execution. While this is a reasonable model,

preemption can be a high-overhead operation since it often

involves a system call and a context switch. An alternative

scheduling model is to consider node-level non-preemptive
scheduling (simply called non-preemptive scheduling in this

paper), where once the execution of a particular node (thread)

starts it cannot be preempted by any other thread. Most

parallel languages and libraries have yield points at the end

of threads (nodes of the DAG), allowing low-cost, user-space

preemption at these yield points. For these languages and

libraries, schedulers that switch context only when threads

end (in other words, where threads do not preempt each other)

can be implemented entirely in user-space (without interaction

with the kernel), and therefore have low overheads. In addition,

fewer switches usually imply lower caching overhead. In this

model, since a node is never preempted, if it accesses the same

memory location multiple times, those memory locations will

be cached, and a node never has to restart on a cold cache.

This paper addresses the hard real-time scheduling problem

of a set of generalized DAGs sharing a multi-core machine. We

generalize the previous work in two important directions. First,

we consider a general model of deterministic parallel tasks,



where each task is represented by a general DAG in which

nodes can have arbitrary execution requirements. Second, we

address both preemptive and non-preemptive scheduling. In

particular, we make the following new contributions.

• We propose a novel task decomposition to transform the

nodes of a general DAG into sequential tasks. Since

each node of the DAG is transformed into a single

sequential subtask, these subtasks can be scheduled either

preemptively or non-preemptively.

• We prove that any set of parallel tasks of a general DAG

model, upon decomposition, can be scheduled using pre-

emptive global EDF with a resource augmentation bound

of 4. This bound is as good as the best known bound for

more restrictive models [6] and, to our knowledge, is the

first bound for a general DAG model.

• We prove that our decomposition requires a resource

augmentation bound of 4+2ρ for non-preemptive global

EDF scheduling, where ρ is the non-preemption overhead
of the tasks. To our knowledge, this is the first bound for

non-preemptive scheduling of parallel real-time tasks.

• We implement the proposed decomposition algorithm,

and evaluate our analytical results for both preemptive

and non-preemptive scheduling through simulations. The

results indicate that the derived bounds are safe, and

reasonably tight in practice, especially under preemptive

EDF that requires a resource augmentation of 3.2 in

simulation as opposed to our analytical bound of 4.

Section II reviews related work. Section III describes the

task model. Section IV presents the decomposition algorithm.

Sections V and VI present analyses for preemptive and non-

preemptive global EDF scheduling, respectively. Section VII

presents the simulation results. Section VIII offers conclusions.

II. RELATED WORK

There has been a substantial amount of work on traditional

multiprocessor real-time scheduling focused on sequential

tasks [4]. Scheduling of parallel tasks without deadlines has

been addressed in [10]–[15]. Soft real-time scheduling (where

the goal is to meet a subset of deadlines based on application-

specific criteria) has been studied for various parallel task

models and optimization criteria such as cache misses [16],

[17], makespan [18] and total work done within deadlines [19].

The schedulability analysis under hard real-time system
(where the goal is to meet all task deadlines) is intractable

for most cases of parallel tasks without resource augmen-

tation [20]. Some early work makes simplifying assump-

tions about task models [21]–[24]. For example, some ap-

proaches [21], [22] address the scheduling of malleable tasks,

where tasks can execute on varying numbers of processors

without loss in efficiency. The study in [23] considers non-

preemptive EDF scheduling of moldable tasks, where the

actual number of processors used by a particular task is

determined before starting the system, and remains unchanged.

Gang EDF scheduling [24] of moldable parallel tasks requires

the users to select (at submission time) a fixed number of

processors upon which their task will run, and the task must

then always use that number of threads.

Recently, preemptive real-time scheduling has been stud-

ied [6], [7] for synchronous parallel tasks with implicit dead-

lines. In [7], every task is an alternate sequence of parallel

and sequential segments with each parallel segment consisting

of multiple threads of equal length that synchronize at the

end of the segment. All parallel segments in a task have an

equal number of threads which cannot exceed the number of

processor cores. Each thread is transformed into a subtask,

and a resource augmentation bound of 3.42 is claimed under

partitioned Deadline Monotonic (DM) scheduling. This result

was later generalized for synchronous model with arbitrary

numbers of threads in segments, with bounds of 4 and 5 for

global EDF and partitioned DM scheduling, respectively [6],

and also to minimize the required number of processors [25].

Our earlier work [6] has proposed a simple extension to a

synchronous task scheduling approach that handles unit-node
DAG where each node has a unit execution requirement by

converting each task to a synchronous task allowing direct ap-

plication of the same approach. This model is quite restrictive
and over-simplified since each node or thread of execution has

unit-execution requirement that simplifies the analysis for re-

source augmentation. However, these assumptions do not hold

in general since this model does not represent a parallel task

that most parallel languages generate. Most parallel languages

that use fork-join constructs generate a non-synchronous task,

generally represented as a DAG where each node’s execution

requirement can vary arbitrarily, and different nodes in the

same DAG can have different execution requirements. Notably,

the decomposition in [6] for restrictive model is not applicable

for a general DAG. If one does so, a single node will split

into multiple smaller subtasks, each with its own release time

and deadline. As a result, when the decomposed tasks are

scheduled, there is no easy way of preserving the node-level

non-preemptive behavior of original tasks.

Scheduling and analysis of general DAGs introduces a

challenging open problem. For this general model, an aug-

mentation bound has been analyzed recently in [26], but it

considers the restricted case of a single DAG on a multi-core

machine with preemption. In this paper, we investigate the

open problem of scheduling and analysis for a set of any num-

ber of general DAGs on a multi-core machine. We consider

both preemptive and non-preemptive real-time scheduling of

general DAG tasks on multi-core processors, and provide

resource augmentation bound under both policies.

III. PARALLEL TASK MODEL

We consider n periodic parallel tasks to be scheduled on a

multi-core platform consisting of m identical cores. The task

set is represented by τ = {τ1, τ2, · · · , τn}. Each task τi, 1 ≤
i ≤ n, is represented as a Directed Acyclic Graph (DAG),

where the nodes stand for different execution requirements,

and the edges represent dependencies between the nodes.

A node in τi is denoted by W j
i , 1 ≤ j ≤ ni, with ni being

the total number of nodes in τi. The execution requirement of
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Fig. 1. A parallel task τi represented as a DAG

node W j
i is denoted by Ej

i . A directed edge from node W j
i to

node W k
i , denoted as W j

i → W k
i , implies that the execution

of W k
i cannot start unless W j

i has finished execution. W j
i , in

this case, is called a parent of W k
i , while W k

i is its child. A

node may have 0 or more parents or children. A node can start

execution only after all of its parents have finished execution.

Figure 1 shows a task τi with ni = 10 nodes.

The execution requirement (i.e., work) Ci of task τi is the

sum of the execution requirements of all nodes in τi; that is,

Ci =
∑ni

j=1 E
j
i . Thus, Ci is the maximum execution time of τi

if it was executing on a single processor of speed 1. For task τi,
the critical path length, denoted by Pi, is the sum of execution

requirements of the nodes on a critical path. A critical path is

a directed path that has the maximum execution requirement

among all other paths in DAG τi. Thus, Pi is the minimum
execution time of τi meaning that it needs at least Pi time

units on unit-speed processor cores even when the number of

cores m is infinite. The period of task τi is denoted by Ti

and the deadline Di of each task τi is considered implicit,
i.e., Di = Ti. Since Pi is the minimum execution time of task

τi even on a machine with an infinite number of cores, the

condition Ti ≥ Pi must hold for τi to be schedulable (i.e. to

meet its deadline). A task set is said to be schedulable when

all tasks in the set meet their deadlines.

IV. TASK DECOMPOSITION

We schedule parallel tasks by decomposing them into

smaller sequential tasks. This strategy allows us to leverage

existing schedulability analysis for traditional multiprocessor

scheduling (both preemptive and non-preemptive) of sequen-

tial tasks. In this section, we present a decomposition tech-

nique for a parallel task under a general DAG model. Upon

decomposition, each node of a DAG becomes an individual

sequential task, called a subtask, with its own deadline and

with an execution requirement equal to the node’s execution

requirement. (Henceforth, we will use the terms ‘subtask’ and

‘node’ interchangeably.) All nodes of a DAG are assigned

appropriate deadlines and release offsets such that when they

execute as individual subtasks all dependencies among them in

the original DAG task are preserved. Thus, an implicit deadline

DAG is decomposed into a set of constrained deadline (i.e.

deadline is no greater than period) sequential subtasks with

each subtask corresponding to a node of the DAG.

Our schedulability analysis for parallel tasks entails deriving

a resource augmentation bound [6], [7]. In particular, our

result aims at procuring the following claim: If an optimal

algorithm can schedule a task set on a machine of m unit-

speed processor cores, then our algorithm can schedule this

task set on m processor cores, each of speed ν, where ν is the

resource augmentation factor. Since an optimal algorithm is

unknown, we pessimistically assume that an optimal scheduler

can schedule a task set if each task of the set has a critical-

path length no greater than its deadline, and the total utilization

of the task set is no greater than m. Note that no algorithm

can schedule a task set that does not meet these conditions.

Our resource augmentation analysis is based on the densities

of the decomposed tasks, where the density of any task is

the ratio of its execution requirement to its deadline. We

first present terminology used in decomposition. Then, we

present the proposed technique for decomposition, followed

by a density analysis of the decomposed tasks.

A. Terminology

Our proposed decomposition technique converts each im-

plicit deadline DAG task into a set of constrained deadline

sequential tasks, and is based on the following definitions that

are applicable for any task, not limited to just parallel tasks.

The utilization ui of any task τi, and the total utilization
usum(τ) for any task set τ consisting of n tasks are defined as

ui =
Ci

Ti
; usum(τ) =

n∑
i=1

Ci

Ti

If the total utilization usum is greater than m, then no algorithm

can schedule τ on m identical unit-speed processor cores.

The density δi of any task τi, and the total density δsum(τ)
and the maximum density δmax(τ) for any set τ of n tasks are

defined as follows.

δi =
Ci

Di
; δsum(τ) =

n∑
i=1

δi; δmax(τ) = max{δi|1 ≤ i ≤ n}
(1)

The demand bound function (DBF) of task τi is the largest

cumulative execution requirement of all jobs generated by τi
that have both arrival times and deadlines within a contiguous

interval of t time units. For any task τi, the DBF is given by

DBF(τi, t) = max

(
0,
(⌊

t−Di

Ti

⌋
+ 1

)
Ci

)
(2)

Based on the DBF, the load, denoted by λ(τ), of any task set

τ consisting of n tasks is defined as follows.

λ(τ) = max
t>0

⎛
⎜⎜⎝

n∑
i=1

DBF(τi, t)

t

⎞
⎟⎟⎠ (3)

B. Decomposition Algorithm

The decomposition algorithm converts each node of a DAG

into an individual sequential subtask with its own execution

requirement, release offset, and a constrained deadline. The

release offsets are assigned so as to preserve the dependencies

3
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(a) τ∞i : a timing diagram for when τi executes on an infinite number of processor cores

(b) τ
syn
i

Fig. 2. τ∞i and τ
syn
i of DAG τi (of Figure 1)

of the original DAG, namely, to ensure that a node (subtask)

can start after the deadlines of all the parent nodes (subtasks).

That is, a node starts after its latest parent finishes. The

(relative) deadlines of the nodes are assigned by splitting the

task deadline into intermediate subdeadlines. The intermediate

subdeadline assigned to a node is called node deadline.

Note that once task τi is released, it has a total of Ti time

units to finish its execution. The proposed decomposition algo-

rithm splits this deadline Ti into node deadlines by preserving

the dependencies in τi. For task τi, the deadline and the offset

assigned to node W j
i are denoted by Dj

i and Φj
i , respectively.

Once appropriate values of Dj
i and Φj

i are determined for

each node W j
i (respecting the dependencies in the DAG),

task τi is decomposed into nodes. Upon decomposition, the

dependencies in the DAG need not be considered, and each

node can execute as a traditional sequential multiprocessor

task. Hence, the decomposition technique for τi boils down to

determining Dj
i and Φj

i for each node W j
i as presented below.

The presentation is accompanied by an example using the

DAG τi from Figure 1. For the example, we assign execution

requirement of each node W j
i as follows: E1

i = 4, E2
i = 2,

E3
i = 4, E4

i = 5, E5
i = 3, E6

i = 4, E7
i = 2, E8

i = 4, E9
i = 1,

E10
i = 1. Hence, Ci = 30, Pi = 14. Let period Ti = 21.

To perform the decomposition, we first represent DAG τi
as a timing diagram τ∞i (Figure 2(a)) that shows its execution

time on an infinite number of unit-speed processor cores.

Specifically, τ∞i indicates the earliest start time and the earliest

finishing time (of the worst case execution requirement) of

each node when m = ∞. For any node W j
i that has no

parents, the earliest start time and the earliest finishing time
are 0 and Ej

i , respectively. For every other node W j
i , the

earliest start time is the latest finishing time among its parents,

and the earliest finishing time is Ej
i time units after that. For

example, in τi of Figure 1, nodes W 1
i , W 2

i , and W 3
i can start

execution at time 0, and their earliest finishing times are 4,

2, and 4, respectively. Node W 4
i can start after W 1

i and W 2
i

complete, and finish after 5 time units at its earliest, and so

on. Figure 2(a) shows τ∞i for DAG τi. Next, based on τ∞i ,

the calculation of Dj
i and Φj

i for each node W j
i involves the

following two steps. In Step 1, for each node, we estimate the

time requirement at different parts of the node. In Step 2, the

total estimated time requirements at different parts of the node

is assigned as the node’s deadline.
As stated before, we analyze the schedulability of the de-

composed tasks based on their densities. The efficiency of the

analysis is largely dependent on the total density (δsum) and the

maximum density (δmax) of the decomposed tasks. Namely,

we need to keep both δsum and δmax bounded and as small as

possible (since a higher value of density implies a higher value

of execution requirement to deadline ratio) to minimize the

resource augmentation requirement. Therefore, the objective of

the decomposition algorithm is to split the entire task deadline

into node deadlines so that each node (subtask) has enough

slack. The slack of any task represents the extra time beyond

its execution requirement and is defined as the difference

between its deadline and execution requirement.
1) Estimating Time Requirements of the Nodes: In DAG

τi, a node can execute with different numbers of nodes in

parallel at different times. Such a degree of parallelism can

be estimated based on τ∞i . For example, in Figure 2(a), node

W 5
i executes with W 1

i and W 3
i in parallel for the first 2 time

units, and then executes with W 4
i in parallel for the next time

unit. In this way, we first identify the degrees of parallelism

4



at different parts of each node. Intuitively, the parts of a node

that may execute with a large number of nodes in parallel

demand more time. Therefore, different parts of a node are

assigned different amounts of time considering these degrees

of parallelism and execution requirements. Later, the total time

of all parts of a node is assigned to the node as its deadline.

To identify the degree of parallelism for different portions

of a node based on τ∞i , we assign time units to a node in

different (consecutive) segments. In different segments of a

node, the task may have different degrees of parallelism. In

τ∞i , starting from the beginning, we draw a vertical line at

every time instant where a node starts or ends (as shown in

Figure 2(b)). This is done in linear time using a breadth-

first search over the DAG. The vertical lines now split τ∞i
into segments. For example, in Figure 2(b), τi is split into 7
segments (numbered in increasing order from left to right).

Once τ∞i is split into segments, each segment consists of

an equal amount of execution by the nodes that lie in the

segment. Parts of different nodes in the same segment can

now be thought of as threads of execution that run in parallel,

and the threads in a segment can start only after those in the

preceding segment finish. We denote this synchronous form of

τ∞i by τ syn
i . We first allot time to the segments, and finally add

all times allotted to different segments of a node to calculate

its deadline. Note that τi is never converted to a synchronous
model; the procedure only identifies segments to estimate time
requirements of nodes, and does not decompose τi in this step.

We split Ti time units among the nodes based on the number

of threads and execution requirement of the segments where a

node lies in τ syn
i . We first estimate time requirement for each

segment. Let τ syn
i be a sequence of si segments numbered

as 1, 2, · · · , si. For any segment j, we use mj
i to denote

the number of threads in the segment, and eji to denote the

execution requirement of each thread in the segment (see

Figure 2(b)). Since τ syn
i has the same critical path and total

execution requirements as those of τi,

Pi =

si∑
j=1

eji ; Ci =

si∑
j=1

mj
i .e

j
i

For any segment j of τ syn
i , we calculate a value dji , called the

segment deadline, so that the segment is assigned a total of dji
time units to finish all its threads. Now we calculate the value

dji that minimizes both thread density and segment density that

would lead to minimizing δsum and δmax upon decomposition.

Since segment j consists of mj
i parallel threads, with

each thread having an execution requirement of eji , the total

execution requirement of segment j is mj
ie

j
i . Thus, the seg-

ments with larger numbers of threads and with longer threads

are computation-intensive, and demand more time to finish

execution. Therefore, a reasonable way to assign the segment

deadlines is to split Ti proportionally among the segments by

considering their total execution requirement. Such a policy

assigns a segment deadline of Ti

Ci
mj

ie
j
i to segment j. Since

this is the deadline for each parallel thread of segment j, by

Equation 1, the density of a thread becomes Ci

mj
iTi

which can

be as large as m (i.e. total number of processor cores). Hence,

such a method does not minimize δmax, and is not useful.

Instead, we classify the segments of τ syn
i into two groups based

on a threshold θi of the number threads per segment: each

segment j with mj
i > θi is classified as a heavy segment, and

each segment j with mj
i ≤ θi is classified as a light segment.

Among the heavy segments, we allocate a portion of time Ti

that is no less than that allocated among the light segments.

Before assigning time among the segments, an important issue

is to determine a value of θi and the fraction of time Ti to be

split among the heavy and light segments.

We show below that choosing θi =
Ci

2Ti−Pi
helps us keep

both thread density and segment density bounded. Therefore,

each segment j with mj
i > Ci

2Ti−Pi
is classified as a heavy

segment while other segments are called light segments. Let

Hi denote the set of heavy segments, and Li denote the set of
light segments of τ syn

i . This raises three different cases: when

Li = ∅ (i.e., when τ syn
i consists of only heavy segments),

when Hi = ∅ (i.e., when τ syn
i consists of only light segments),

and when Hi �= ∅, Li �= ∅ (i.e., when τ syn
i consists of both

light segments and heavy segments). We use three different

approaches for these three scenarios.

Case 1: when Hi = ∅. Since each segment has a smaller

number (≤ Ci

2Ti−Pi
) of threads, we only consider the length of

a thread in each segment to assign time for it. Hence, Ti time

units is split proportionally among all segments according to

the length of each thread. For each segment j, its deadline dji
is calculated as follows.

dji =
Ti

Pi
eji (4)

Since the condition Ti ≥ Pi must hold for every task τi,

dji =
Ti

Pi
eji ≥

Ti

Ti
eji = eji (5)

Hence, the maximum density of a thread in any segment is at

most 1. Each segment has at most Ci

2Ti−Pi
threads. Hence, the

total density of a segment is at most

Ci

2Ti − Pi
≤ Ci

2Ti − Ti
=

Ci

Ti
(6)

Case 2: when Li = ∅. All segments are heavy, and Ti time

units is split proportionally among all segments according to

the work (i.e. total execution requirement) of each segment.

For each segment j, its deadline dji is given by

dji =
Ti

Ci
mj

ie
j
i (7)

Since for every segment j, mj
i >

Ci

2Ti−Pi
, we have

dji =
Ti

Ci
mj

ie
j
i >

Ti

Ci

Ci

2Ti − Pi
eji =

2Ti

2(2Ti − P )
eji ≥

eji
2

(8)

Hence, the maximum density of any thread is at most 2. The

total density of segment j is at most

mj
ie

j
i

dji
=

mj
ie

j
i

Ti

Ci
mj

ie
j
i

=
Ci

Ti
(9)
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Algorithm 1: Decomposition Algorithm

Input: a DAG task τi with period and deadline Ti, total execution
requirement Ci, critical path length Pi;

Output: node deadline Dj
i , release offset Φj

i for each node W j
i of τi;

for each node W j
i of τi do Φj

i ← 0; Dj
i ← 0; end

Represent τi as τ
syn
i ;

θi ← Ci/(2Ti − Pi); /* heavy or light threshold */
total heavy ← 0; /* total heavy segments */
total light ← 0; /* total heavy segments */

C
heavy
i ← 0; /* total work of heavy segments */

P
light
i ← 0; /* light segments’ critical path len. */

for each j-th segment in τ syn
i do

if mj
i > θi then /* it is a heavy segment */
total heavy ← total heavy + 1;

C
heavy
i ← C

heavy
i +mj

i e
j
i ;

else /* it is a light segment */
total light ← total light+ 1;

P
light
i ← P

light
i + eji ;

end
end
if total heavy = 0 then /* all segments are light */

for each j-th segment in τ syn
i do dji = Ti

Pi
eji ;

else if total light = 0 then /* all segments are heavy */

for each j-th segment in τ syn
i do dji = Ti

Ci
mj

i e
j
i ;

else /* τsyni has both heavy and light segments */
for each j-th segment in τ syn

i do
if mj

i > θi then /* for heavy segment */

dji =
Ti−Pi/2

C
heavy
i

mj
i e

j
i ;

else /* for light segment */

dji =
Pi/2

P
light
i

eji ;

end
end

end
/* Remove seg. deadlines. Assign node deadline */

for each node W j
i of τi in breadth-first search order do

if W j
i belongs to segments k to r in τ syn

i then
Dj

i = dki + dk+1
i + · · ·+ dri ; /* node deadline */

Φj
i ← max{Φl

i +Dl
i|W l

i is a parent of W j
i }; /* offset */

end

Case 3: when Hi �= ∅ and Li �= ∅. The task has both heavy

segments and light segments. A total of (Ti−Pi/2) time units

is assigned to heavy segments, and the remaining Pi/2 time

units is assigned to light segments. (Ti − Pi/2) time units

is split proportionally among heavy segments according to the

work of each segment. The total work (execution requirement)

of heavy segments of τ syn
i is denoted by Cheavy

i , defined as

Cheavy
i =

∑
j∈Hi

mj
i .e

j
i

For each heavy segment j, the deadline dji is calculated as

dji =
Ti − Pi

2

Cheavy
i

mj
ie

j
i (10)

Since for each heavy segment j, mj
i >

Ci

2Ti−Pi
, we have

dji =
(Ti − Pi

2 )mj
ie

j
i

Cheavy
i

>
(Ti − Pi

2 ) Ci

2Ti−Pi
eji

Cheavy
i

≥ eji
2

(11)

Hence, maximum density of a thread in any heavy segment is

at most 2. The total density of a heavy segment becomes

mj
ie

j
i

dji
=

mj
ie

j
i

Ti−Pi
2

Cheavy
i

mj
ie

j
i

=
Cheavy

i

Ti − Pi

2

≤ Ci

Ti − Ti

2

=
2Ci

Ti
(12)

Now, to distribute time among the light segments, Pi/2 time

units is split proportionally among light segments according

to the length of each thread. The critical path length of light

segments is denoted by P light
i , and is defined as follows.

P light
i =

∑
j∈Li

eji

For each light segment j, its deadline dji is calculated as

dji =
Pi

2

P light
i

eji (13)

The density of a thread in any light segment is at most 2 since

dji =
Pi

2

P light
i

eji ≥
Pi

2

Pi
eji =

eji
2

(14)

Since a light segment has at most Ci

2Ti−Pi
threads, the total

density of a light segment is at most

2Ci

2Ti − Pi
≤ 2Ci

2Ti − Ti
=

2Ci

Ti
(15)

2) Calculating Deadline and Offset for Nodes: We have

assigned segment deadlines to (the threads of) each segment

of τ syn
i in Step 1 (Equations 4, 7, 10, 13). Since a node may

be split into multiple (consecutive) segments in τ syn
i , now we

have to remove all segment deadlines of a node to reconstruct

(restore) the node. Namely, we add all segment deadlines of

a node, and assign the total as the node’s deadline.

Now let a node W j
i of τi belong to segments k to r (1 ≤

k ≤ r ≤ si) in τ syn
i . Therefore, the deadline Dj

i of node W j
i

is calculated as follows.

Dj
i = dki + dk+1

i + · · ·+ dri (16)

Note that the execution requirement Ej
i of node W j

i is

Ej
i = eki + ek+1

i + · · ·+ eri (17)

Node W j
i cannot start until all of its parents complete. Hence,

its release offset Φj
i is determined as follows.

Φj
i =

{
0; if W j

i has no parent

max{Φl
i +Dl

i|W l
i is a parent of W j

i }; otherwise.

Now that we have assigned an appropriate deadline Dj
i

and release offset Φj
i to each node W j

i of τi, the DAG τi
is now decomposed into nodes. Each node W j

i is now an

individual (sequential) multiprocessor subtask with an execu-

tion requirement Ej
i , a constrained deadline Dj

i , and a release

offset Φj
i . Note that the period of W j

i is still the same as

that of the original DAG which is Ti. The release offset Φj
i

ensures that node W j
i can start execution no earlier than W j

i

time units following the release time of the original DAG. Our

6



method guarantees that for a general DAG no node is split

into smaller subtasks to ensure node-level non-preemption.

Thus, the (node-level) non-preemptive behavior of the original

task is preserved in scheduling the nodes as individual tasks,

where nodes of the DAG are never preempted. The entire

decomposition method is presented as Algorithm 1 which runs

in linear time (in terms of the DAG size i.e., number of nodes

and edges). Figure 3 shows the complete decomposition of τi.

C. Density Analysis after Decomposition

After decomposition, let τ dec
i denote all subtasks (i.e., nodes)

that τi generates. Note that the densities of all such subtasks

comprise the density of τ dec
i . Now we analyze the density of

τ dec
i which will later be used to analyze schedulability.

Let node W j
i of τi belong to segments k to r (1 ≤ k ≤

r ≤ si) in τ syn
i . Since W j

i has been assigned deadline Dj
i , by

Equations 16 and 17, its density δji after decomposition is

δji =
Ej

i

Dj
i

=
eki + ek+1

i + · · ·+ eri
dki + dk+1

i + · · ·+ dri
(18)

By Equations 5, 8, 11, 14, dki ≥ eki
2 , ∀i, k. Hence, from 18,

δji =
Ej

i

Dj
i

≤ 2eki + 2ek+1
i + · · ·+ 2eri

eki + ek+1
i + · · ·+ eri

= 2 (19)

Let τ dec be the set of all generated subtasks of all original DAG

tasks, and δmax be the maximum density among all subtasks

in τ dec. By Equation 19,

δmax = max
{
δji
∣∣1 ≤ j ≤ ni, 1 ≤ i ≤ n

}
≤ 2 (20)

Theorem 1. Let a DAG τi, 1 ≤ i ≤ n, with period Ti,
critical path length Pi, and maximum execution requirement
Ci be decomposed into subtasks (nodes) denoted τ dec

i using
Algorithm 1. The density of τ dec

i is at most 2Ci

Ti
.

Proof: Since we decompose τi into nodes, the densities of

all decomposed nodes W j
i , 1 ≤ j ≤ ni, comprise the density

of τ dec
i . In Step 1, every node W j

i of τi is split into threads

in different segments of τ syn
i , and each segment is assigned a

segment deadline. In Step 2, we remove all segment deadlines

in the node, and their total is assigned as the node’s deadline.

If τi is scheduled in the form of τ syn
i , then each segment is

scheduled after its preceding segment is complete. That is,

at any time at most one segment is active. Since a segment

has density at most 2Ci

Ti
(Equations 6, 9, 12, 15), the overall

density of τ syn
i never exceeds 2Ci

Ti
.

Hence, it is sufficient to prove that removing segment

deadlines in the nodes does not increase the task’s overall

density. That is, it is sufficient to prove that the density δji
(Equation 18) of any node W j

i after removing its segment

deadlines is no greater than the density δj,syn
i that it had before

removing its segment deadlines.

Let node W j
i of τi be split into threads in segments k to r

(1 ≤ k ≤ r ≤ si) in τ syn
i . Since the total density of any set of

tasks is an upper bound on its load (proven in [27]), the load

of the threads of W j
i must be no greater than the total density

of these threads. Since each of these threads is executed only

once in the interval of Dj
i , by Equation 2, the DBF of the

thread, threadli, in segment l, k ≤ l ≤ r, in the interval Dj
i

DBF(threadli, D
j
i ) = eli

Therefore, using Equation 3, the load, denoted by λj,syn
i , of

the threads of W j
i in τ syn

i for interval Dj
i is

λj,syn
i ≥ eki

Dj
i

+
ek+1
i

Dj
i

+ · · ·+ eri

Dj
i

=
Ej

i

Dj
i

= δji

Since δj, syn
i ≥ λj, syn

i , for any W j
i , we have δj, syn

i ≥ δji .

Let δsum be the total density of all subtasks τ dec. Then, from

Theorem 1,

δsum ≤
n∑

i=1

2Ci

Ti
= 2

n∑
i=1

Ci

Ti
(21)

V. PREEMPTIVE EDF SCHEDULING

Once all DAG tasks are decomposed into nodes (i.e.,

subtasks), we consider scheduling the nodes. Since every node

after decomposition becomes a sequential task, we schedule

them using traditional multiprocessor scheduling policies. In

this section, we consider the preemptive global EDF policy.

Lemma 2. For any set of parallel DAG tasks τ =
{τ1, · · · , τn}, let τ dec be the decomposed task set. If τ dec

is schedulable under some preemptive scheduling, then τ is
preemptively schedulable.

Proof: In each τ dec
i , a node is released only after all of

its parents finish execution. Hence, the precedence relations in

original task τi are retained in τ dec
i . Besides, for each τ dec

i , the

deadline and the execution requirement are the same as those

of original task τi. Hence, if τ dec is preemptively schedulable,

a preemptive schedule must exist for τ where each task in τ
meets its deadline.

To schedule the decomposed subtasks τ dec, the EDF policy

is the same as the traditional global EDF policy where jobs

with earlier absolute deadlines have higher priorities. Due to

the preemptive policy, a job can be suspended (preempted) at

any time by arriving higher-priority jobs, and is later resumed

with (in theory) no cost or penalty. Under preemptive global

EDF, we now present a schedulability analysis for τ dec in terms

of a resource augmentation bound which, by Lemma 2, is also

a sufficient analysis for the original DAG task set τ . For a

task set, a resource augmentation bound ν of a scheduling

policy A on a multi-core processor with m cores is a processor

speed-up factor. That is, if there exists any way to schedule the

task set on m identical unit-speed processor cores, then A is

guaranteed to successfully schedule it on an m-core processor

with each core being ν times as fast as the original.

Our analysis hinges on a result (Theorem 3) for preemptive

global EDF scheduling of constrained deadline sporadic tasks

on a traditional multiprocessor platform [28]. This result is a

generalization of the result for implicit deadline tasks [29].

Theorem 3. (From [28]) Any constrained deadline sporadic
sequential task set π with total density δsum(π) and maximum

7
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(b) Removing segment deadlines, and calculating node deadlines and offsets

Fig. 3. Decomposition of τi (shown in Figure 1) when Ti = 21

density δmax(π) is schedulable using preemptive global EDF
policy on m unit-speed processor cores if

δsum(π) ≤ m− (m− 1)δmax(π)

Note that τ dec consists of constrained deadline (sub)tasks

that are periodic with offsets. If they do not have offsets,

then the above condition directly applies. Taking the offsets

into account, the execution requirement, the deadline, and

the period (which is equal to the period of the original

DAG) of each subtask remains unchanged. The release offsets

only ensure that some subtasks of the same original DAG

are not executed simultaneously to preserve the precedence

relations in the DAG. This implies that both δsum and δmax

of the subtasks with offsets are no greater than δsum and

δmax, respectively, of the same set of tasks with no offsets.

Hence, Theorem 3 holds for τ dec. We now use the results of

density analysis from Subsection IV-C, and prove that τ dec is

guaranteed to be schedulable with a resource augmentation of

at most 4 (Theorem 4).

Theorem 4. For any set of DAG model parallel tasks τ =
{τ1, τ2, · · · , τn}, let τ dec be the decomposed task set. If there
exists any algorithm that can schedule τ on m unit-speed
processor cores, then τ dec is schedulable under preemptive
global EDF on m processor cores, each of speed 4.

Proof: If τ is schedulable on m identical unit-speed

processor cores, the following condition must hold.
n∑

i=1

Ci

Ti
≤ m (22)

To be able to schedule the decomposed tasks τ dec, let each

processor core be of speed ν. On an m-core platform where

each core has speed ν, let the total density and the maximum

density of task set τ dec be denoted by δsum,ν and δmax,ν ,

respectively. From Equation 20, we have

δmax,ν =
δmax

ν
≤ 2

ν
(23)

Based on Equation 22, when each processor core is of speed

ν, the total density of τ dec given in Equation 21 becomes

δsum,ν =
δsum

ν
≤ 2

n∑
i=1

Ci

ν

Ti
=

2

ν

n∑
i=1

Ci

Ti
≤ 2m

ν
(24)

Using Equations 23 and 24 in Theorem 3, τ dec is schedulable

under preemptive EDF on m cores each of speed ν if

2m

ν
≤ m− (m− 1)

2

ν
⇔ 4

ν
− 2

mν
≤ 1

From the above condition, τ dec must be schedulable if

4

ν
≤ 1 ⇔ ν ≥ 4.
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VI. NON-PREEMPTIVE EDF SCHEDULING

We now address non-preemptive global EDF scheduling

considering that the original task set τ is scheduled based

on node-level non-preemption. In node-level non-preemptive
scheduling, whenever the execution of a node in a DAG

starts, the node’s execution cannot be preempted by any task.

Most parallel languages and libraries have yield points at the

ends of threads (nodes of the DAG), where they allow low

cost, user-space preemption. For these languages and libraries,

schedulers that switch context only when threads end (in other

words, where threads do not preempt each other) can be

implemented entirely in user-space (without interaction with

the kernel), and therefore have low overheads.

The decomposition converts each node of a DAG to a tradi-

tional multiprocessor (sub)task. Therefore, we consider fully

non-preemptive global EDF scheduling of the decomposed

tasks. Namely, once a job of a decomposed (sub)task starts

execution, it cannot be preempted by any other job.

Lemma 5. For a set of DAG parallel tasks τ = {τ1, · · · , τn},
let τ dec be the decomposed task set. If τ dec is schedulable under
some fully non-preemptive scheduling, then τ is schedulable
under node-level non-preemption.

Proof: Since the decomposition converts each node of a

DAG to an individual task, a fully non-preemptive scheduling

of τ dec preserves the node-level non-preemptive behavior of

task set τ . The rest of the proof follows from Lemma 2.

Under non-preemptive global EDF, we now present a

schedulability analysis for τ dec in terms of a resource augmen-

tation bound which, by Lemma 5, is also a sufficient analysis

for the DAG task set τ . This analysis exploits Theorem 6 for

non-preemptive global EDF scheduling of constrained dead-

line periodic tasks on traditional multiprocessor. The theorem

is a generalization of the result for implicit deadline tasks [30].

For a task set π, let Cmax(π) and Dmin(π) be the maximum

execution requirement and the minimum deadline among all

tasks in π. In non-preemptive scheduling, Cmax(π) represents

the maximum blocking time that a task may experience, and

plays a major role in schedulability. Hence, a non-preemption
overhead, defined in [30], for the task set π is given by ρ(π) =
Cmax(π)
Dmin(π)

. The value of ρ(π) indicates the added penalty or

overhead associated with non-preemptivity. In other words,

since preemption is not allowed, the capacity of each processor

is reduced (at most) by a factor of ρ(π). In non-preemptive

scheduling, this capacity reduction is recompensed by reducing

the cost associated with context-switch, saving state etc.

Theorem 6. (From [30]) Any constrained deadline peri-
odic task set π with total density δsum(π), maximum density
δmax(π), and a non-preemption overhead ρ(π) is schedulable
using non-preemptive global EDF on m unit-speed cores if

δsum(π) ≤ m
(
1− ρ(π)

)− (m− 1)δmax(π)

Let Emax and Emin be the maximum and minimum exe-

cution requirement, respectively, among all nodes of all DAG

tasks. In node-level non-preemptive scheduling of the DAG

tasks, the processor capacity reduction due to non-preemptivity

is at most Emax

Emin
. Hence, this value is the non-preemption

overhead of the DAG tasks, and is denoted by ρ:

ρ =
Emax

Emin
(25)

Theorem 7 derives a resource augmentation bound of 4+2ρ for

non-preemptive global EDF scheduling after decomposition.

Theorem 7. For DAG model parallel tasks τ = {τ1, · · · , τn},
let τ dec be the decomposed task set with non-preemption
overhead ρ. If there exists any way to schedule τ on m unit-
speed processor cores, then τ dec is schedulable under non-
preemptive global EDF on m cores, each of speed 4 + 2ρ.

Proof: After decomposition, let Dmin be the minimum

deadline among all subtasks in τ dec. Since Emax (i.e. the

maximum execution requirement among all subtasks in τ dec)

represents the maximum blocking time that a subtask may

experience, the non-preemption overhead of the decomposed

tasks is Emax

Dmin
. From Equations 19 and 25, the non-preemption

overhead of the decomposed tasks

Emax

Dmin
≤ Emax

Emin/2
=

2Emax

Emin
= 2ρ (26)

Similar to Theorem 4, suppose we need each processor core

to be of speed ν to be able to schedule the decomposed tasks

τ dec. From Equation 26, the non-preemption overhead of τ dec

on ν-speed processor cores is

Emax/ν

Dmin
≤ 2ρ

ν
(27)

Now considering a non-preemption overhead of at most 2ρ
ν

on ν-speed processor cores, and using Equations 23 and 24

in Theorem 6, τ dec is schedulable under non-preemptive EDF

on m cores each of speed ν if

2m

ν
≤ m(1− 2ρ

ν
)− (m− 1)

2

ν
⇔ 4 + 2ρ

ν
− 1

mν
≤ 1

From the above condition, task set τ dec is schedulable if

4 + 2ρ

ν
≤ 1 ⇔ ν ≥ 4 + 2ρ.

VII. EVALUATION

The derived resource augmentation bounds provide a suf-

ficient condition for schedulability. Namely, if a set of DAG

tasks is schedulable on a unit-speed m-core machine by a

(potentially unrealizable) ideal scheduler, then the tasks upon

our proposed decomposition are guaranteed to be schedulable

under global EDF on an m-core machine where each core has

a speed of 4 (with preemption) or 4+2ρ (without preemption).

In this section, we evaluate our scheduler using simulations.

We want to accomplish two things. First, we want to validate

that our theoretical bounds are correct, that is, an augmentation

of 4 for preemptive EDF (or 4+2ρ for non-preemptive EDF)

is sufficient to schedule any task set that an ideal scheduler

can schedule. Second, we want to see how effective our

scheduling strategy is in practice and, if the bounds are an

9



accurate representation of how much augmentation is needed

in practice. We do not compare with any baseline since no

other strategies for real-time scheduling of general DAGs exist.

A. Task and Task Set Generation

We want to evaluate our scheduler using task sets that

an optimal scheduler could schedule on 1-speed processors.

However, as we cannot determine this ideal scheduler, we

assume that an ideal scheduler can schedule any task set whose

total utilization is no greater than m, and that each individual

task is schedulable in isolation (that is, its critical path length

is no greater than its deadline). Therefore, in our experiments,

for each value of m (i.e. the number of processor cores), we

generate task sets whose utilization is exactly m, fully loading

a machine of 1-speed processors.

We use the Erdös-Rényi method G(ni, p) [31] to generate

task sets for evaluation. The precise methodology is as follows.

Number of nodes. To generate a DAG τi, we pick the number

of nodes ni uniformly at random in range [50, 350]. We found

that these values would allow us to generate varied task sets

within a reasonable amount of time.

Adding edges. We add edges to the graph using the Erdös-

Rényi method G(ni, p) [31]. We scan all the possible edges

directing from lower node id to higher node id to avoid

introducing a cycle into the graph. For each possible edge,

we generate a random value in range [0, 1] and add the edge

only if the generated value is less than a predefined probability

p. (We will vary p in our experiments to explore the effect of

changing p.) Finally, we add an additional minimum number

of edges so that each node (except the first and the last node)

has at least one incoming and one outgoing edge in order

to make the DAG weakly connected. Note that the critical

path length of a DAG generated using the pure Erdös-Rényi

method increases as p increases. However, since our method

is slightly modified, the critical path is also large when p is

small. Therefore, as p increases, the critical path first decreases

up to a certain value of p and then increases again.

Execution time of nodes. We assign every node an execution

time chosen randomly from a specified range. The range is

based on the value and type (continuous or discrete) of the

non-preemption overhead ρ (explained in the next subsection).

At this point, we have the DAG structure and the execution

times for its nodes. For each DAG τi, we now assign a period

Ti (which is also its deadline) that is no less than the critical

path length Pi. We consider two types of task sets:

Task sets with harmonic periods. These deadlines are care-

fully picked so that they are multiples of each other, so as to

ensure that we can run our experiments up to the hyper-period

of the task sets. In particular, we pick deadlines that are powers

of two. We find the smallest value a such that Pi ≤ 2a, and

randomly set Ti to be one of 2a, 2a+1, or 2a+2. These choices

for period are due to the fact that we want some high utilization

tasks and some low utilization tasks. The ratio Pi/Ti of the

task is in the range [1, 1/2], (1/2,1/4], or (1/4, 1/8], when its

period Ti is 2a, 2a+1, or 2a+2, respectively.

Task sets with arbitrary periods. We first generate a random

number Gamma(2, 1) using the gamma distribution [32]. Then

we set period Ti to be (Pi+
Ci

0.5m )∗ (1+0.25∗Gamma(2, 1)).
We choose this formula for three reasons. First, we want to

ensure that the assigned value is a valid period, i.e., Pi ≤
Ti. Second, we want to ensure that each task set contains a

reasonable number of tasks even when the number of cores is

small. At the same time, with more cores, we do not want to

limit average DAG utilization to a certain small value. Hence

the minimum period is a function of m. Third, while we want

the average period to be close to the minimum valid period

(to have high utilization tasks), we also want some tasks with

large periods. Table I shows the average number of DAGs per

task set achieved by the random period generation process.

TABLE I
NUMBER OF TASKS PER TASK SET

����m
p

0.01 0.05 0.1 0.2 0.4 0.6 0.8

4 4 4 4 5 6 7 8
8 4 4 5 7 9 11 13
16 4 6 7 10 15 19 22
32 5 8 11 17 26 34 41

To create a task set we combine individual DAGs as follows.

We add DAGs to the task set until the total utilization of the

set exceeds m. We then remove the last generated DAG. Thus,

at this point, the total utilization is smaller than m. To make

the total utilization exactly m, we add small DAGs with long

periods (and therefore small utilization). We stop adding small

DAGs when the total utilization is larger than 99% of m.

B. Experimental Methodology

We run experiments by varying the following 4 parameters.

Harmonic vs. arbitrary periods. We want to evaluate

whether arbitrary periods are better or worse than harmonic

ones. For harmonic period task sets, we run simulation up to

their hyper-period. For arbitrary period task sets, the hyper-

period can be too long to simulate, and hence we run simula-

tion up to 20 times the maximum period.

Number of cores (m). We want to evaluate if parallel

scheduling is easier or harder as the number of cores increases.

We run experiments on m: 4, 8, 16, and 32.

Probability of an edge (p). As stated before, p affects

the critical path length, the density, and the structure of the

DAG. We test using 14 values of p: 0.01, 0.02, 0.03, 0.05,
0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

Non-preemption overhead (ρ). This is the ratio of the max-

imum node execution length to the minimum node execution

length. For non-preemptive EDF scheduling, the resource

augmentation bound increases as ρ increases. We want to

evaluate whether the effect of increased ρ is really that severe

in practice. For all of our experiments, we set the minimum

node execution requirement to be 50, and vary the maximum

execution requirement. To get ρ = 1, 2, 5, and 10, the maxi-

mum execution requirements are chosen to be 50, 100, 250,
and 500, respectively. In addition, when we evaluate the

performance of non-preemptive EDF, we want to maximize the

influence of ρ. Therefore, besides using uniformly generated
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node execution time between maximum and minimum (called

continuous ρ), we also generate by choosing from discrete

values 50, 2 ∗ 50, · · · , ρ ∗ 50 (called discrete ρ).

In all experiments, we simulate 1000 task sets. For each task

set, we start by simulating its execution on 1-speed processors,

and increase the speed by 0.1 intervals until all task sets are

schedulable. Using these different task sets, we conduct two

sets of experiments. In our first set, we evaluate the scheduler

under preemptive global EDF. Hence, we vary the types of

period, m and p, but keep ρ constant at 2, leading to 112
combinations. In the second set, we evaluate the scheduler

under non-preemptive global EDF by varying all four factors,

leading to 896 combinations.
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Fig. 4. Failure ratio in preemptive EDF on 32 cores under different edge
probability

C. Results

Of the 896 combinations of parameters (each having 1000
task sets) we have tested, preemptive EDF has the maximum

required speed of 3.2 to meet all deadlines (this data point is

not shown in figures for better resolution), which is close to

our analytical resource augmentation bound of 4. In contrast,

among the combinations of parameters with ρ = 1, 2, 5, 10,

the maximum required speed for non-preemptive EDF are 4.0,

5.8, 8.6, and 12.6, respectively, which look much smaller than

the analytical bound of 6, 8, 14, and 24, respectively. These

issues are discussed upon presenting the results. For brevity,

we present only a subset of the experimental results.

Effect of harmonic vs. arbitrary periods. We find that

it is slightly harder to schedule harmonic period tasks using

preemptive EDF, and vice-versa for non-preemptive EDF.

However, the difference is not significant, and the trends

are very similar under both. Here we will only show the

experiments for arbitrary periods.
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Fig. 5. Failure ratio in preemptive EDF on different numbers of cores

Effect of p in preemptive scheduling. For each value of p,

Figure 4 shows the failure ratio defined as the ratio of the

number of task sets where some task missed a deadline to the

total number of task sets (which is 1000 in our experiment)

attempted to be scheduled. To preserve resolution of the figure,

we show the results for only 7 (out of 14) values of p. In

these experiments, ρ = 2, m = 32. Note that the failure ratio

increases as p increases from 0.01 to 0.1, and then falls again.

As we explained in Section VII-A, as p increases, the critical-

path length first decreases (making the tasks more “parallel”

or “DAG-like”) and then increases again (making the tasks

more sequential). Therefore, for both small and large p, the

tasks are largely sequential. These results seem to conform to

our intuition that, in general, parallel tasks are more difficult

to schedule than sequential ones. The results for 4, 8, and 16

cores also follow this trend, and hence are omitted.

Effect of m in preemptive scheduling. Figure 5 shows the

failure ratio in logarithmic scale for each value of m with fixed

p = 0.2, and ρ = 2. We can see that the failure ratio increases

as m increases, suggesting that it is harder to schedule on

larger number of cores. The trend is similar for different values

of p, and hence is not shown.
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Fig. 6. Failure ratio in non-preemptive EDF on 8 cores under different
non-preemption overhead

Effect of ρ in non-preemptive scheduling. The most im-

portant factor to evaluate is the effect of ρ. Figure 6 shows

the failure ratio for discrete ρ for each value of ρ, with fixed

p = 0.2, m = 8. With the increase in ρ, the failure ratio

becomes much higher, which is expected. However, this trend

is not quite strong for continuous ρ, and we omit plotting

those results. Following may be the reason for this anomaly.

The maximum value of ρ only affects the schedule if a

node having the maximum execution interferes with a node

having the minimum execution. Since ρ is continuous, a node’s

execution requirement is assigned from many different values.

This causes only a small number of nodes to be at these

extremes, thereby reducing the chances of such interference.
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Fig. 7. Required speed in non-preemptive EDF on different numbers of cores
with increasing non-preemption overhead

Effect of m in non-preemptive scheduling. Figure 6 shows

the required speed for each combination of m and ρ, with

11



p = 0.2. Note that this figure is different from the previous

ones in that it only shows the speed at which all task sets

become schedulable. We can see that for each value of m,

when ρ increases, the required speed increases, which is

expected. However, when m increases, this trend becomes

less obvious. One possible reason is that when there are

more cores, the overhead from interference between executing

low priority subtask and a newly released higher priority

subtask will, on average, be smaller. This happens because

the overhead is the minimum remaining work of all m running

lower priority subtasks, instead of the average or worst case

subtask execution time. When m is higher, the minimum will

be much smaller than average, making the system much less

influenced when ρ increases.

The simulation results show a maximum speed requirement

of 3.2 for preemptive EDF suggesting that our analytical

resource augmentation bound of 4 is reasonably tight. The cor-

responding bounds for non-preemptive EDF sound relatively

looser in our simulation results. However, considering that the

bound of 4 for preemptive EDF is tight, it is unlikely that a

bound better than 4+ρ can be derived for non-preemptive EDF,

since non-preemptivity can cause processor capacity reduction

of up to ρ in the worst case. Due to decomposition, this

value increases to 2ρ (see Equation 26). Therefore, for the

sake of non-preemptivity in scheduling the decomposed tasks,

the processor capacity reduction can be up to 2ρ in extreme

cases, requiring a speed increase of 2ρ in addition to that

for preemptive scheduling. Hence, there may be task sets that

require a resource augmentation of 4+2ρ, but our simulation

does not encounter those tasks. In other words, our results

may be an artifact of our experimental set up and random

task generation strategies. Randomly generated tasks may be

very unlikely to exhibit the pathological behavior required for

the worst case to manifest itself. More work, both theoretical

and experimental, is needed to decide whether the bounds are

pessimistic, or if these simulations are optimistic.

VIII. CONCLUSIONS

As multi-core technology becomes mainstream in processor

design, real-time scheduling of parallel tasks is crucial to

exploit its potential. In this paper, we consider a general task

model and through a novel task decomposition we prove a

resource augmentation bound of 4 for preemptive EDF, and

4 plus a non-preemption overhead for non-preemptive EDF

scheduling. To our knowledge, these are the first bounds for

real-time scheduling of general DAG model tasks. Through

simulations, we have observed that the required augmentation

is close to 4 in practice for preemptive tasks. However, for

non-preemptive task sets, the worst augmentation requirement

we found in practice was much smaller than the theoretical

bounds. Our results suggest several possible directions of

future work. One direction is to provide better bounds and/or

provide lower bound arguments to argue that the bounds are

in fact tight. Another possible direction is to study the effect

of caches on scheduling overhead. While non-preemption

mitigates this problem to some extent, more can be done

to optimize cache-locality. Finally, we can generalize our

results to models that take into account the effects of non-

deterministic synchronization such as locks.
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