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Abstract, We present efficient parallel algorithms for recognizing chordal graphs and locating 
all maximal cliques of a chordal graph G=(V,E). Our techniques are based on partitioning the 
vertex set V using information contained in the distance matrix of the graph. We use these 
properties to formulate parallel algorithms which, given a graph G=(V,E) and its adjacency-level 
sets, decide whether or not G is a chordal graph, and, if so, locate all maximal cliques of the 
graph in time O(k) by using 82,n2/k processors on a CRCW-PRAM, where 8 is the maximum 
degree of a vertex in G and 1 <k_<n. The construction of the adjacency-level sets can be done by 
computing first the distance matrix of the graph, in time O(logn) with O(n~D~) processors, 
where D e is the output size of the partitions and 13=2.376, and then extracting all necessary set 
information. Hence, the overall time and processor complexity of both algorithms are O(logn) 
and O(max{62,n 2/logn, nl3+Dc} ), respectively. These results imply that, for 6<4nlogn, the 
proposed algorithms improve in performance upon the best-known algorithms for these problems. 

Keywords. Parallel algorithms, Chordal graphs, Recognition, Maximal cliques, Distance matrix, 
Graph partition, Complexity. 

1 I n t r o d u c t i o n  

A graph G=(V,E) is called chordal (or triangulated) if every cycle of length, at least, 

four has a chord, i.e., an edge joining two nonconsecutive vertices of the cycle. Triangulated 

graphs arise in the study of Gaussian elimination on sparse symmetric matrices [14, 15], in 

the study of acyclic relational schemes [2], and are related to and useful for many location 

problems [8, 9]. 

Our objective is to study the parallel recognition of a chordal graph, as well as the 

parallel location of all maximal cliques of such a graph. Fulkerson and Gross [7] suggested 

an iterative procedure to recognize chordal graphs and pointed out a property of the maximal 

cliques of a chordal graph [8]. Edenbrandt [5] proposed a parallel algorithm for recognizing 

chordal graphs which can be executed in time O(logn) with O(n 5) processors on a CRCW- 

PRAM or in time O(log2n) with O(n 5) processors on a CREW-PRAM. Naor, Naor and 

Sch/iffer [13] proposed a parallel recognition algorithm which runs in time O(log2n) by 

using O(n 3) processors on a CREW-PRAM. They also proposed parallel algorithms for 

some other problems on chordal graphs among which a parallel algorithm for computing all 

maximal cliques which runs in time O(Iog3n) using O(n 4) processors or in time O(log2n) 
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using O(n 5) processors on the same type of computational model. After the publication of 

Naor, et. al. [13], Dahlhaus and Karpinski [4] proposed a new parallel algorithm for finding 

maximal cliques in time O(log2n) using O(n 4) processors on a CREW-PRAM. Klein [11] 

has announced efficient parallel algorithms for several problems on chordal graphs, which 

run in time O(Iog2n) using O(n+m) processors on a CRCW-PRAM, where m is the 

number of edges in the graph. Ho and Lee [9] formulated an algorithm which computes a 

clique tree in time O(Iogn) with O(n 3) processors on a CRCW-PRAM. Subsequently these 

authors [8] formulated an algorithm which, given a clique tree of a graph, computes a perfect 

vertex elimination scheme in time O(logn) with O(n 2) processors in the same type of 

computational model. This implies that a chordal graph can be recognized in time O(logn) 
with O(n 3) processors on a CRCW-PRAM. Moreover, these authors [9] proposed an 

algorithm which computes all maximal cliques of a chordal graph in time O(logn) on a 

CRCW-PRAM or in time O(IogZn) on a CREW-PRAM using O(n 3) processors. 

In this paper we present efficient parallel algorithms for the problems of recognising a 

chordal graph and finding all maximal cliques of a chordal graph. We start with the notion 

of partitioning the vertex set V of a graph G=(V,E), with respect to a vertex vE V, into" a set of 
(mutually disjoint) adjacency-level sets AL(v, 0), AL(v, 1) ..... AL(v, L), 0 < L< n, using the 

information contained in the distance matrix of the graph. We show the following properties 

of the adjacency-level sets of a chordal graphs G=(V,E): 

(i) The vertex set adj(x)n AL(v,g -1) is a clique, for every x~ AL(v,s ), 1<~ <L. 

(ii) If (x,y)~E, then either adj(x)nAL(v,g -1) c adj(y)c~AL(v,g -1) or 

adj(y)n AL(vs -t) c adj(x)n AL(v,e -1), for every x,ye AL(v,s ), 1<~ <L. 

(iii) If a vertex set C is a maximal clique of the graph G, then the graph G(C) 

induced by C is a subgraph of the graph G(AL(v, g -1)tJAL(v,s )), 

(iv) Given a vertex xe AL(v,g ), a maximal clique of the graph G containing the 

vertex x has the form 

{adj(x) c~ AL(v,g -1)} u Cx,y 

where ye adj(x)nAL(v,g ), l<g <L, and Cx,y is a clique in graph G(AL(v,s )) 

containing vertices x and y. 

Subsequently, based on these properties, we formulate parallel algorithms which, given a 
graph G=(V,E) and its adjacency-level sets, solve the problems mentioned above, directly, in 

time O(k) by using 62.n2/k processors on a CRCW-PRAM, where 6 is the maximum 

degree of a vertex in G and l_<k.~.n. 
For the process of partitioning, we first compute the distance matrix D of a graph by 

using the parallel algorithm in [3] which runs in time O(logn) with O(nI~+DG) processors, 

where [3=2.376 and D~ is the output size of the partitions of the graph. Then, given the 

distance matrix of a graph, it is possible to construct the adjacency-level sets AL(v,~ ), 

0 -< g < I. v, in constant time O(1) using O(n) processors on a CRCW-PRAM. 
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It turns out that, the overall time and processor complexity of both algorithms 

proposed in this paper are O(logn) and O(max{62.n2/logn, n6+DG}), respectively. These 

results imply that the proposed algorithms run in time O(logn) and have a total cost of 

O(max{f2.n 2, logn.(n6+DG)}). The best-known parallel algorithms for the recognitlon and 

all maximal clique location problems run in time O(logn) by using O(n 3) processors [9, 10] 

or in time O(log2n) by using (n+m) processors [11]. Therefore, for 6<,]nlogn, we improve 

upon the best-known algorithms for these problems in performance. Moreover, some other 

advantages of our algorithms over previous ones are: 

(i) their correctness proof is simple, (ii) they avoid computing ftrst a number of other entities 

such as clique trees or perfect elimination schemes; and (iii) they work with the same 

number of  processors in constant time O(1) on a CRCW-PRAM computational model if the 

distance matrix of the graph is given. 

2 Adjacency-Level Sets and Distance Matrices 

Given a graph G=(V, E) and a vertex w V ,  we define a partitions of the vertex 

set V (we shall frequently use the term partition of the graph G), with respect to the vertex v, 

as follows: 

/~(G,v) = { AL(v,g ) I veV, 0< g < L v, 1 < L v < Iwl} 

where AL(v,g ), 0<g  < L  v, are the adjacency-level sets, and L v is the length of the partition 

s The adjacency-level sets of the partition s are defined as follows: 

AL(v,g) ={w I d(v,w)=g, 0 < e < L v }  

where d denotes the minimum distance in G. Note that d(v,w)>_0 and d(v,w)=0 iff v=w. 

By definition, the adjacency-level sets have the following properties: 

AL(v,g) c~ AL(v,g ' ) = O fore*g" 
and 

Moreover, 

I,...) AL(v,g ) = V 

0--.~ < L  v 

adj(x) n AL(v,g - 1 ) ,  O 

adj(x) m AL(v,e -2) = O 

V xeAL(v,e ), 1 <e_<I_, 

V xeAL(v,g), 2 < e < L  v. 

The computation of the adjacency-level sets can easily be done by considering first the 
distance matrix of the graph G and then extracting all set information that is necessary. 

Let D be the distance matrix of G. Then, the vertex set AL(v,g ) containts the vertex x if and 

only if D[v,x] = e ,  1 < s < L v. Then, the vertex set AL(v,s ), 1 < g < L v, can be constructed as 

follows: Set AL(v,e ) ~-- x, if D[v, x] = g ,  for every xeV.  
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3 Properties 

The following lemmas provide some properties of the adjacency-level sets of a chordal 
graph leading to a fast parallel recognition algorithm and to a fast parallel maximal clique 

location algorithm. 

Lemma  1. Consider a chordal graph G=-(EE) and its adjacency-level sets AL(v,O), 

AL(v,1) ..... AL(v, Lv), w V. Let x be a vertex of set AL(v,~), ]<~ <L v. The vertex set 

adj(x)nAL(v,~-l) is a clique. 

Proof. We assume that adj(x)n AL(v,e-1) is not a clique. Then there exist verti.ces Ul, 

u2eadj(x)~AL(v,g-1)  such that (Ul,U2)~E, (ul,x)EE and (u2,x)~E. Therefore, graph 

G(AL(v,0) u ...w AL(v, ~ -1)w AL(v,g )) contains a cycle Iv ..... ul, x, u 2 ..... v] of length 

greater than 3, which is absurd. [] 

L e m m a  2, Consider a chordal graph G=-(EE) and its adjacency level sets AL(v,O), 

AL(v, 1) ..... AL(v, L v), w V. Let x, y be vertices of AL(v,~), I<~ <L v. If  (x,y)~ E, then one of 

the following alternatives holds: 

(i) adj(x)nAL(v,~-1) c_ adj(y)nAL(v,g-l) 

(ii) adj(y)nAL(v,g-1) c_ adj(x)nAL(v,g-1). 

Proof. (i) Let ladj(x)cTAL(v,g -1)1 - ladj(y)nAL(v,e -1)1, where x,ye AL(v,~ ). Assume that 

adj(x)cTAL(v,g-li c adj(y)nAL(v,g-1). Then there exists vertex uleadj(y)nAL(v,~-1) 

such that ul~adj(x)cTAL(v,g-1); i.e., (ul,Y)~E and (Ul,X)~E. Since [adj(x)nAL(v,g-1)1 > 

ladj(y)cTAL(v,g-1)1, there follows that there is a vertex u2~adj(x)nAl_(v,~-1) sucl~ that 

(u2,x)eE, (u2,Y)~E and (ul,u2)~E. Therefore, we are led to the conclusion that there is a 

cycle [u 1, y, x, u 2 ..... Ul] in graph G(AL(v,0) u ...uAL(v,g -1)uAL(v,g )) of length greater 

than 3, which is absurd. Thus, adj(x)nAL(v,e -1) c_ adj(y)cTAL(v,g -1). 

(ii) Let ladj(x)~AL(v,g-1)1 <- ladj(y)nAL(v,e -1)1. In an similar way it is shown that 

adj(y)nAL(v,g -1) c_ adj(x)nAL(v,e-1). [] 

4 Parallel Recognition 

The recognition algorithm proposed here is simple and based on the results provided 

by Lernma 1 and Lemma 2, as well as on the following observation: Let G=-(V,E) be an 
undirected graph which contains a cycle C of length grater than 3. Let w V  be a vertex of the 
cycle C, i.e., wC .  If we partition the graph G, with respect to vertex w C ,  then exactly one of 

the following alternatives holds: 

(i) There exists a vertex x~AL(v,g ), l<e  <__Iv, such that the set adj(x)nAL(v,g -1) is not 

a clique (see lemma 1). 

(ii) There exists vertices x ,yeAL(x,g) ,  l<g  < L v, such that adj(y)nAL(x,  g-1)  

adj(z)~AL(x, g -1), (see lemma 2). 
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Obviously, (i) holds if the length of the cycle C is even, while (ii) holds if  the length of the 

cycle C is odd. 

Based on the previous facts and observation, we formulate a parallel algorithm for 

determining whether or not a graph is a chordal graph. The correctness of the algorithm 

follows directly from Lemmas of Section 3. The recognition algorithm is listed in fig. 1. 

Algorithm RECOGNITION 

input : Graph G=(V, E) and the a.l.s AL(v, 0), AL(v, ~ ) ..... AL(v, Lv), v~ V, of G. 

output : Is G chordal graph? 
begin 
1. 

1.1. 

1.2. 

1.2.1. 

1.2.2. 

2. 

end. 

for each ve V do in parallel 
for each x ~ AL(v,g ), 1 < g < L v, do in parallel 

Sv,x +-- adj(x) n AL(v,g -1); 

end; 

for each x ~ AL(v,~ ), l<g <L v, do in parallel 
if Sv, x is not a clique then return "G is not a chordal graph"; 

for eachy~ adj(x) ca AL(v,g ), l<g <L v, do in parallel 

if Sv, x ;e Sv,y then return "G is not a chordal graph"; 
end; 

end; 
end; 
return "G is a chordal graph"; 

Fig. 1. The Parallel Recognition Algorithm RECOGNITION 

4.1 The Complexity of the Recognition Algorithm 

Having proved the correctness of algorithm RECOGNITION, let us now analyse its 

complexity. We shall obtain the overall computational complexity of the algorithm by 

computing the complexity of  each step separately. We take our processors to be Concurrent- 

Read Concurrent-Write (CRCW) PRAM [1, 6, 12, 16]. 

Step 1. This step consists of two substeps, i.e., substeps 1.1 and 1.2, which are executed 

sequentially. In substeps 1.1 the intersection of n-1 pairs of  vertex sets are computed. The 

number of vertices in set adj(x), x~V, is6, where 6 is the maximum degree of a vertex in 

G=(V,E). Therefore,  this substeps is executed in constant t ime O(1) using 6.(n-1) 

processors. Substeps 2.2.1 checks n vertex sets for completeness. This can be done in 

constant time O(1) with 62.n processors. Substeps 2.2.2 checks 6.n pairs of vertex sets to 

determine whether or not there is a pair with not equal elements. This operation can be 

executed in constant time O(1) with 62.n processors. Clearly, step 2 is executed in constant 

time O(1) with 62.n 2 processors. Moreover, from the above analysis, it is easy to ~ee that 

this step can also be executed in time O(Iogn) with 62.n2/logn processors. 

The computation of the adjacency-level sets can easily be done by considering first the 

distance matrix of the graph G and then extracting all set information that is necessary. This 
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can be done in t ime O(logn) with O(n~+DG) processors with matrix multiplication 

techniques [2] for [3=2.376, where DG is the output size of the partitions s for all w V .  

Thus, given the adjacency-level sets of a graph G=(V,E), with respect to every vertex 

w V ,  the algorithm RECOGNITION runs in time O(logn) when 62.n211ogn processors are 

available on a CRCW-PRAM model. Consequently, we can formulate the following 

theorem. 

Theorem 3. A chordal graph G=(V,E) can be recognized in time O(logn) with 

O(max{ SE.n2/logn, n[3+DG}) processors on a CRCW-PRAM model. 

5 Parallel Location of all Maximal Cliques 

Let G=(V,E) be a chordal graph and let AL(v, 0), AL(v, 1) . . . . .  AL(V, Lv) be the 

adjacency-level sets of a partition L(G,v), vcV. We consider an arbitrary vertex xe AL(v,g ), 

1 < s < L v. The following statements hold: 

(i) Graph G({x}u  { adj(x)nAL(v,g -1)}) is a clique, (see lemma 1). 

(ii) If  x, y~ AL(v,g ) and (x,y)e E, then 

adj(x) n AL(v,g - t )  _c adj(y) n AL(v,g -1) or 

adj(y) n AL(v,g -1) _c adj(x) n AL(v,s -1), (see lemma 2). 

(iii) If  C is a maximal clique in graph G=(V,E), then C~_ AL(v,g )uAL(v,s -1), 

1< g < L v, (see properties of the adjacency-level sets of G). 

Next we define four sets of vertices for each vertex xe AL(v,s ), 1 -< s -< L v, which we 

denote by B x, F x, W x and Cx,y, where ye AL(v, g ). 

B x is defined to be the set that contains all the vertices of AL(v,g -1) which join vertex 

xe AL(v,g ) by an edge, i.e., 

Bx={y [ y e adj(x) n AL(v,g -1)}. 

F x is defined to be the set that contains all the vertices of AL(v,g ) which join every vertex 

o fB  x by an edge, i.e., 

F x = { y l y e  AL(v,g) & (y ,z )e  E, V Z e B x } .  

W x is defmed to be the set that contains all the vertices of F x which join vertex xe F x by an 

edge, i.e., 

W x = { y ] y e  F x & ( y , x ) e E } .  

Cx,y is defined as the set which contains the vertex x~ AJ~v,g ), the vertex y~W x and all the 

vertices of  W x which join vertices x and y by an edge, i.e., 

Cx,y = {x,y} t.) {adj(x) n adj(y) n Wx}. 

Notice that Cx,x={X}. Clearly, if Cx,y is a clique in G(AL(v,g )) which contains 

vertices x and y, then Cx,y is a maximal clique in G(AL(v,g )). It is also clear that graph 
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G(AL(v,g )) may contain more than one maximal cliques which contain vertices x and y. 

In fig. 2(a) Bx={U 1, u2}, Fx={y }, Wx={y }, Cx,y={X, y} and By={U 1, u 2, u3, u4}, 

Fy=O, Wy=O, Cy,y={y}. In fig. 2(a) there is one maximal clique which contains vertices x 

and u, i.e., C={x,u}, while in fig. 2(b) there are two such maximal cliques, i.e., C={x, u, y} 

a n d C '  ={x,u,z}.  

tl u 

x x 

Y Y 

g - 2  g - 1  g g - 2  ~- -1  

Fig. 2(a) & 2(b). Three consecutive adjacency-level sets of a chordal graph 

The following I_emma shows that we can always compute a maximal clique Cx,y of the 

graph G(AL(v, e )), x~ AL(v,g ) and ye W x, 1 < g < L v. 

L e m m a  4. Let G=(EE) be a chordal graph, and let AL(v,O), AL(v,1) ..... AL(v, Lv) be the 

adjacency-level sets of l'.(G,v), w V. Let C be a maximal clique of  graph G(AL(v,g)), 

l < g < L  v, which contains the vertex x. Then, there exists a vertex y~C such that 

{ x, y } u { adj(x)nadj(y)nAL( v,g ) }=C, l_~g ~_L v. 

Proof If  [CI=I then there is nothing to prove. Consider the case where IC[>I. Since vertex 

xe C and vertex set C is a maximal clique in graph G(AL(v,g )), 1 < g < L v, there follows that 

Cc_{x}u {adj(x)nAL(v,g )} (see fig. 2(b), C={x, y, u}). Let ze {x}u{adj(x)nAL(v,g )} 

and z~C. Then, there exists a vertex yeC such that (y,z)~E (vertex set C is a maximal 

clique). Since vertex ysAL(v2  ), there follows that vertex z~ad j (y )nAL(vs  ). Thus, 

{x,y}u {adj(x)nadj(y)nAL(vs )}=C, l<g <L v. [] 

Observat ions  

(1) Vertex set {x}uB x is a maximal clique in graph G({x}wAL(v,g-1)), xeAL(v,g), 

l < g < L  v. 

(2) Vertex set W x has the following properties: (i) it is a subset of vertex set AL(v,g ), 

1 < g  < L v, and (ii) if a vertex y e W  x then (y,x)eE and (ad j (x )nAL(vs  -1)) c_ 

(adj(y)nAL(v,g -1)), i.e., B x c By. 

(3) Clique Cx,y is a maximal clique in graph G ( { x } u W x )  which contains vertex 

x~ AL(v,g ) and yeW x, 1 <g < L  v. 
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Based on the previous facts and observations, we conclude that a maximal clique of the 

graph G(AL(v ,g -1 )uAL(v ,g  )) which contains vertices x and y, where x~AL(v,g ) and 

y e W  x, 1 <~  < L  v, has the form 

B x u Cx,y 

We are now in a position to formulate an algorithm for parallel location of all maximal 

cliques of a chordal graph. The algorithm, which we call MAXCLIQUES, is listed in fig. 3. 

Algorithm MAXCLIQUES 

input : Graph G=(V, E) and the a.l.s AL(v, 0), AL(v, 1) ..... AL(v, Lv), w V, of G. 

output : All maximal cliques of G. 
begin 
1. for eachx ~ AL(v, ~ ), 1 <~ _< Lv, do in parallel 

1.1 B x ~- adj(x) r~ AL(v,g -1); 

1.2 Fx ~,--- {y [y ~  AL(v,~) & (y,z) ~ E, ~ ' z~  Bx}; 

1.3 W x ~ { {x} u adj(x) } c~ Fx; 

1.4 if W x = {x} then MC ~ {x} u Bx; goto step 2; 

1.5 for each y a W x, do in parallel 

Cx,y ~ {x,y} u { adj(x) n adj(y) } c~ W x ; 

if Cx,y is a clique then MC x +-- B x u Cx,y; 
end; 

end; 
for eachx e AL(v,g ), l<g < L v, do in parallel 

for each y e W x, do in parallel 

ifMCx=MCy & x<y then MC e--MCx; 

end; 
end; 

2. 

2.1 

end. 

Fig. 3. The All Maximal Cliques Location Algorithm MAXCLIQUES 

In substep 1.5, the algorithm computes a maximal clique Cx,y in the graph G(AL(vg )), 

which contains vertices x and y, where x~AI~v~ ), y~W x, 1 _< e -< L v. It is possible to exist 

two (or more )  ver t ices  z , u e W  x, such that Cx,y=Cz, u and  Bx=B z, and  therefore  

BxUCx,y=BzUCz, u, i.e., MCx=MC z. In substep 2.1, we eliminate the duplicate elements of 

the set MC, i.e., the maximal cliques of graph G(AL(v,~ - 1)uAL(v,s )), 1 _< ~ _< L v. 

The correctness of the algorithm MAXCLIQUES is established through the following 

theorem. 

T h e o r e m  5, Let G=(V,E) be a chordal graph. The algorithm MAXCLIQUES correctly 

computes the maximal cliques of the graph G. 

Proof Let AL(v,0), AL(v, 1) ..... AL(v, Lv) be the adjacency-level sets of the chordal graph 

G=(V, E), vEV. For each vertex x~ AL(v,~ ), 1 < ~ < L v, the algorithm computes the maximal 

clique BxUCx,y, y~W x, of the graph G(AL(v, g -1)uAL(v ,s  )), 1 < ~ < L v. Therefore, the 



357 

algorithm computes all maximal cliques of the graph G(AL(v,g -1)uAL(v,g )), 1 _< g _< L v. 

Since AL(v,g-1) ~ AL(v,g +1), 0 < g < L  v, there follows that the algorithm computes all 

maximal clique of the graph G=-(V,E). [] 

5.1 The Complexity of Algorithm MAXCLIQUES 

We shall obtain the overall computational complexity of the algorithm by computing 

the complexity of each step separately. 

Step 1. This step consists of four substeps, i.e., substeps 1.1 through 1.5, which are 

executed sequentially. Each of these subsets is executed concurrently for n vertices. 

Substep 1.1. The intersection of two vertex sets can be executed in constant time O(1 ) with 6 

processors. Substep 1.2. Similarly, the intersection of IBxl pairs of vertex sets is executed in 

constant time O(1) with [Bxl.8 < 8 z processors. Substep 1.3. It is easy to see that the time 

complexity of this substep is O(1) when 6 processors are available. Step 1.4. Clearly, the 

union of two vertex sets is executed in constant time O(1) with 8 processors. Step 1.5. The 

operation of testing whether or not a vertex set Cx,y is a clique requires constant time O(1) 

and 62 processors. Here, IWxl such a vertex sets are tested, where IWxl < 6. Therefore, 

substep 1.5 can be executed in constant time O(1) with 63 processors. Hence, the total 

execution time for the step 1 is constant O(1), and is accomplished with n.83 processors. 

Step 2. The operation of testing whether two sets are equal or not can be executed in 

constant time O(1) with n processors. Therefore, this step is executed in constant time O(1) 

with n.lWxl.n < 8.n 2 processors. 

Taking into consideration the time and processor complexity of each step of the 

algorithm and the fact that max{n.63, 6.n2}< 62.n 2, we can compute the overall 

computational complexity of the algorithm. Thus, given the adjacency-level sets of a chordal 

graph, the algorithm MAXCLIQUES runs in constant time O(1) when 62.n 2 processors are 

available on a CRCW-PRAM model. Moreover, since vertex sets MC x can be computed 

independently for each vertex xe V, the algorithm can be also executed in time O(logn) with 

82.n2/logn processors. Consequently, we can formulate the following theorem. 

Theorem 6. The maximal cliques of a chordal graph G=-(V,E) can be located in time 

O(Iogn) with O(max {62.n2/logn, n[3+D~}) processors on a CRCW-PRAM model. 
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