
Parallel Recognition and Location Algorithms for Chordal
Graphs using Distance Matrices

Stavros D. Nikolopoulos

Department of Computer Science, University of Cyprus,
75 Kallipoleos Str., P.O.Box 537, Nicosia, Cyprus.

stavros@jupiter.cca.ucy.cy

Abstract, We present efficient parallel algorithms for recognizing chordal graphs and locating
all maximal cliques of a chordal graph G=(V,E). Our techniques are based on partitioning the
vertex set V using information contained in the distance matrix of the graph. We use these
properties to formulate parallel algorithms which, given a graph G=(V,E) and its adjacency-level
sets, decide whether or not G is a chordal graph, and, if so, locate all maximal cliques of the
graph in time O(k) by using 82,n2/k processors on a CRCW-PRAM, where 8 is the maximum
degree of a vertex in G and 1 <k_<n. The construction of the adjacency-level sets can be done by
computing first the distance matrix of the graph, in time O(logn) with O(n~D~) processors,
where D e is the output size of the partitions and 13=2.376, and then extracting all necessary set
information. Hence, the overall time and processor complexity of both algorithms are O(logn)
and O(max{62,n 2/logn, nl3+Dc}), respectively. These results imply that, for 6<4nlogn, the
proposed algorithms improve in performance upon the best-known algorithms for these problems.

Keywords. Parallel algorithms, Chordal graphs, Recognition, Maximal cliques, Distance matrix,
Graph partition, Complexity.

1 I n t r o d u c t i o n

A graph G=(V,E) is called chordal (or triangulated) if every cycle of length, at least,

four has a chord, i.e., an edge joining two nonconsecutive vertices of the cycle. Triangulated

graphs arise in the study of Gaussian elimination on sparse symmetric matrices [14, 15], in

the study of acyclic relational schemes [2], and are related to and useful for many location

problems [8, 9].

Our objective is to study the parallel recognition of a chordal graph, as well as the

parallel location of all maximal cliques of such a graph. Fulkerson and Gross [7] suggested

an iterative procedure to recognize chordal graphs and pointed out a property of the maximal

cliques of a chordal graph [8]. Edenbrandt [5] proposed a parallel algorithm for recognizing

chordal graphs which can be executed in time O(logn) with O(n 5) processors on a CRCW-

PRAM or in time O(log2n) with O(n 5) processors on a CREW-PRAM. Naor, Naor and

Sch/iffer [13] proposed a parallel recognition algorithm which runs in time O(log2n) by

using O(n 3) processors on a CREW-PRAM. They also proposed parallel algorithms for

some other problems on chordal graphs among which a parallel algorithm for computing all

maximal cliques which runs in time O(Iog3n) using O(n 4) processors or in time O(log2n)

350

using O(n 5) processors on the same type of computational model. After the publication of

Naor, et. al. [13], Dahlhaus and Karpinski [4] proposed a new parallel algorithm for finding

maximal cliques in time O(log2n) using O(n 4) processors on a CREW-PRAM. Klein [11]

has announced efficient parallel algorithms for several problems on chordal graphs, which

run in time O(Iog2n) using O(n+m) processors on a CRCW-PRAM, where m is the

number of edges in the graph. Ho and Lee [9] formulated an algorithm which computes a

clique tree in time O(Iogn) with O(n 3) processors on a CRCW-PRAM. Subsequently these

authors [8] formulated an algorithm which, given a clique tree of a graph, computes a perfect

vertex elimination scheme in time O(logn) with O(n 2) processors in the same type of

computational model. This implies that a chordal graph can be recognized in time O(logn)
with O(n 3) processors on a CRCW-PRAM. Moreover, these authors [9] proposed an

algorithm which computes all maximal cliques of a chordal graph in time O(logn) on a

CRCW-PRAM or in time O(IogZn) on a CREW-PRAM using O(n 3) processors.

In this paper we present efficient parallel algorithms for the problems of recognising a

chordal graph and finding all maximal cliques of a chordal graph. We start with the notion

of partitioning the vertex set V of a graph G=(V,E), with respect to a vertex vE V, into" a set of
(mutually disjoint) adjacency-level sets AL(v, 0), AL(v, 1) AL(v, L), 0 < L< n, using the

information contained in the distance matrix of the graph. We show the following properties

of the adjacency-level sets of a chordal graphs G=(V,E):

(i) The vertex set adj(x)n AL(v,g -1) is a clique, for every x~ AL(v,s), 1<~ <L.

(ii) If (x,y)~E, then either adj(x)nAL(v,g -1) c adj(y)c~AL(v,g -1) or

adj(y)n AL(vs -t) c adj(x)n AL(v,e -1), for every x,ye AL(v,s), 1<~ <L.

(iii) If a vertex set C is a maximal clique of the graph G, then the graph G(C)

induced by C is a subgraph of the graph G(AL(v, g -1)tJAL(v,s)),

(iv) Given a vertex xe AL(v,g), a maximal clique of the graph G containing the

vertex x has the form

{adj(x) c~ AL(v,g -1)} u Cx,y

where ye adj(x)nAL(v,g), l<g <L, and Cx,y is a clique in graph G(AL(v,s))

containing vertices x and y.

Subsequently, based on these properties, we formulate parallel algorithms which, given a
graph G=(V,E) and its adjacency-level sets, solve the problems mentioned above, directly, in

time O(k) by using 62.n2/k processors on a CRCW-PRAM, where 6 is the maximum

degree of a vertex in G and l_<k.~.n.
For the process of partitioning, we first compute the distance matrix D of a graph by

using the parallel algorithm in [3] which runs in time O(logn) with O(nI~+DG) processors,

where [3=2.376 and D~ is the output size of the partitions of the graph. Then, given the

distance matrix of a graph, it is possible to construct the adjacency-level sets AL(v,~),

0 -< g < I. v, in constant time O(1) using O(n) processors on a CRCW-PRAM.

351

It turns out that, the overall time and processor complexity of both algorithms

proposed in this paper are O(logn) and O(max{62.n2/logn, n6+DG}), respectively. These

results imply that the proposed algorithms run in time O(logn) and have a total cost of

O(max{f2.n 2, logn.(n6+DG)}). The best-known parallel algorithms for the recognitlon and

all maximal clique location problems run in time O(logn) by using O(n 3) processors [9, 10]

or in time O(log2n) by using (n+m) processors [11]. Therefore, for 6<,]nlogn, we improve

upon the best-known algorithms for these problems in performance. Moreover, some other

advantages of our algorithms over previous ones are:

(i) their correctness proof is simple, (ii) they avoid computing ftrst a number of other entities

such as clique trees or perfect elimination schemes; and (iii) they work with the same

number of processors in constant time O(1) on a CRCW-PRAM computational model if the

distance matrix of the graph is given.

2 Adjacency-Level Sets and Distance Matrices

Given a graph G=(V, E) and a vertex w V , we define a partitions of the vertex

set V (we shall frequently use the term partition of the graph G), with respect to the vertex v,

as follows:

/~(G,v) = { AL(v,g) I veV, 0< g < L v, 1 < L v < Iwl}

where AL(v,g), 0<g < L v, are the adjacency-level sets, and L v is the length of the partition

s The adjacency-level sets of the partition s are defined as follows:

AL(v,g) ={w I d(v,w)=g, 0 < e < L v }

where d denotes the minimum distance in G. Note that d(v,w)>_0 and d(v,w)=0 iff v=w.

By definition, the adjacency-level sets have the following properties:

AL(v,g) c~ AL(v,g ') = O fore*g"
and

Moreover,

I,...) AL(v,g) = V

0--.~ < L v

adj(x) n AL(v,g - 1) , O

adj(x) m AL(v,e -2) = O

V xeAL(v,e), 1 <e_<I_,

V xeAL(v,g), 2 < e < L v.

The computation of the adjacency-level sets can easily be done by considering first the
distance matrix of the graph G and then extracting all set information that is necessary.

Let D be the distance matrix of G. Then, the vertex set AL(v,g) containts the vertex x if and

only if D[v,x] = e , 1 < s < L v. Then, the vertex set AL(v,s), 1 < g < L v, can be constructed as

follows: Set AL(v,e) ~-- x, if D[v, x] = g , for every xeV.

352

3 Properties

The following lemmas provide some properties of the adjacency-level sets of a chordal
graph leading to a fast parallel recognition algorithm and to a fast parallel maximal clique

location algorithm.

Lemma 1. Consider a chordal graph G=-(EE) and its adjacency-level sets AL(v,O),

AL(v,1) AL(v, Lv), w V. Let x be a vertex of set AL(v,~),]<~ <L v. The vertex set

adj(x)nAL(v,~-l) is a clique.

Proof. We assume that adj(x)n AL(v,e-1) is not a clique. Then there exist verti.ces Ul,

u2eadj(x)~AL(v,g-1) such that (Ul,U2)~E, (ul,x)EE and (u2,x)~E. Therefore, graph

G(AL(v,0) u ...w AL(v, ~ -1)w AL(v,g)) contains a cycle Iv ul, x, u 2 v] of length

greater than 3, which is absurd. []

L e m m a 2, Consider a chordal graph G=-(EE) and its adjacency level sets AL(v,O),

AL(v, 1) AL(v, L v), w V. Let x, y be vertices of AL(v,~), I<~ <L v. If (x,y)~ E, then one of

the following alternatives holds:

(i) adj(x)nAL(v,~-1) c_ adj(y)nAL(v,g-l)

(ii) adj(y)nAL(v,g-1) c_ adj(x)nAL(v,g-1).

Proof. (i) Let ladj(x)cTAL(v,g -1)1 - ladj(y)nAL(v,e -1)1, where x,ye AL(v,~). Assume that

adj(x)cTAL(v,g-li c adj(y)nAL(v,g-1). Then there exists vertex uleadj(y)nAL(v,~-1)

such that ul~adj(x)cTAL(v,g-1); i.e., (ul,Y)~E and (Ul,X)~E. Since [adj(x)nAL(v,g-1)1 >

ladj(y)cTAL(v,g-1)1, there follows that there is a vertex u2~adj(x)nAl_(v,~-1) sucl~ that

(u2,x)eE, (u2,Y)~E and (ul,u2)~E. Therefore, we are led to the conclusion that there is a

cycle [u 1, y, x, u 2 Ul] in graph G(AL(v,0) u ...uAL(v,g -1)uAL(v,g)) of length greater

than 3, which is absurd. Thus, adj(x)nAL(v,e -1) c_ adj(y)cTAL(v,g -1).

(ii) Let ladj(x)~AL(v,g-1)1 <- ladj(y)nAL(v,e -1)1. In an similar way it is shown that

adj(y)nAL(v,g -1) c_ adj(x)nAL(v,e-1). []

4 Parallel Recognition

The recognition algorithm proposed here is simple and based on the results provided

by Lernma 1 and Lemma 2, as well as on the following observation: Let G=-(V,E) be an
undirected graph which contains a cycle C of length grater than 3. Let w V be a vertex of the
cycle C, i.e., wC . If we partition the graph G, with respect to vertex w C , then exactly one of

the following alternatives holds:

(i) There exists a vertex x~AL(v,g), l<e <__Iv, such that the set adj(x)nAL(v,g -1) is not

a clique (see lemma 1).

(ii) There exists vertices x ,yeAL(x,g) , l<g < L v, such that adj(y)nAL(x, g-1)

adj(z)~AL(x, g -1), (see lemma 2).

353

Obviously, (i) holds if the length of the cycle C is even, while (ii) holds if the length of the

cycle C is odd.

Based on the previous facts and observation, we formulate a parallel algorithm for

determining whether or not a graph is a chordal graph. The correctness of the algorithm

follows directly from Lemmas of Section 3. The recognition algorithm is listed in fig. 1.

Algorithm RECOGNITION

input : Graph G=(V, E) and the a.l.s AL(v, 0), AL(v, ~) AL(v, Lv), v~ V, of G.

output : Is G chordal graph?
begin
1.

1.1.

1.2.

1.2.1.

1.2.2.

2.

end.

for each ve V do in parallel
for each x ~ AL(v,g), 1 < g < L v, do in parallel

Sv,x +-- adj(x) n AL(v,g -1);

end;

for each x ~ AL(v,~), l<g <L v, do in parallel
if Sv, x is not a clique then return "G is not a chordal graph";

for eachy~ adj(x) ca AL(v,g), l<g <L v, do in parallel

if Sv, x ;e Sv,y then return "G is not a chordal graph";
end;

end;
end;
return "G is a chordal graph";

Fig. 1. The Parallel Recognition Algorithm RECOGNITION

4.1 The Complexity of the Recognition Algorithm

Having proved the correctness of algorithm RECOGNITION, let us now analyse its

complexity. We shall obtain the overall computational complexity of the algorithm by

computing the complexity of each step separately. We take our processors to be Concurrent-

Read Concurrent-Write (CRCW) PRAM [1, 6, 12, 16].

Step 1. This step consists of two substeps, i.e., substeps 1.1 and 1.2, which are executed

sequentially. In substeps 1.1 the intersection of n-1 pairs of vertex sets are computed. The

number of vertices in set adj(x), x~V, is6, where 6 is the maximum degree of a vertex in

G=(V,E). Therefore, this substeps is executed in constant t ime O(1) using 6.(n-1)

processors. Substeps 2.2.1 checks n vertex sets for completeness. This can be done in

constant time O(1) with 62.n processors. Substeps 2.2.2 checks 6.n pairs of vertex sets to

determine whether or not there is a pair with not equal elements. This operation can be

executed in constant time O(1) with 62.n processors. Clearly, step 2 is executed in constant

time O(1) with 62.n 2 processors. Moreover, from the above analysis, it is easy to ~ee that

this step can also be executed in time O(Iogn) with 62.n2/logn processors.

The computation of the adjacency-level sets can easily be done by considering first the

distance matrix of the graph G and then extracting all set information that is necessary. This

354

can be done in t ime O(logn) with O(n~+DG) processors with matrix multiplication

techniques [2] for [3=2.376, where DG is the output size of the partitions s for all w V .

Thus, given the adjacency-level sets of a graph G=(V,E), with respect to every vertex

w V , the algorithm RECOGNITION runs in time O(logn) when 62.n211ogn processors are

available on a CRCW-PRAM model. Consequently, we can formulate the following

theorem.

Theorem 3. A chordal graph G=(V,E) can be recognized in time O(logn) with

O(max{ SE.n2/logn, n[3+DG}) processors on a CRCW-PRAM model.

5 Parallel Location of all Maximal Cliques

Let G=(V,E) be a chordal graph and let AL(v, 0), AL(v, 1) AL(V, Lv) be the

adjacency-level sets of a partition L(G,v), vcV. We consider an arbitrary vertex xe AL(v,g),

1 < s < L v. The following statements hold:

(i) Graph G({x}u { adj(x)nAL(v,g -1)}) is a clique, (see lemma 1).

(ii) If x, y~ AL(v,g) and (x,y)e E, then

adj(x) n AL(v,g - t) _c adj(y) n AL(v,g -1) or

adj(y) n AL(v,g -1) _c adj(x) n AL(v,s -1), (see lemma 2).

(iii) If C is a maximal clique in graph G=(V,E), then C~_ AL(v,g)uAL(v,s -1),

1< g < L v, (see properties of the adjacency-level sets of G).

Next we define four sets of vertices for each vertex xe AL(v,s), 1 -< s -< L v, which we

denote by B x, F x, W x and Cx,y, where ye AL(v, g).

B x is defined to be the set that contains all the vertices of AL(v,g -1) which join vertex

xe AL(v,g) by an edge, i.e.,

Bx={y [y e adj(x) n AL(v,g -1)}.

F x is defined to be the set that contains all the vertices of AL(v,g) which join every vertex

o fB x by an edge, i.e.,

F x = { y l y e AL(v,g) & (y ,z)e E, V Z e B x } .

W x is defmed to be the set that contains all the vertices of F x which join vertex xe F x by an

edge, i.e.,

W x = { y] y e F x & (y , x) e E } .

Cx,y is defined as the set which contains the vertex x~ AJ~v,g), the vertex y~W x and all the

vertices of W x which join vertices x and y by an edge, i.e.,

Cx,y = {x,y} t.) {adj(x) n adj(y) n Wx}.

Notice that Cx,x={X}. Clearly, if Cx,y is a clique in G(AL(v,g)) which contains

vertices x and y, then Cx,y is a maximal clique in G(AL(v,g)). It is also clear that graph

355

G(AL(v,g)) may contain more than one maximal cliques which contain vertices x and y.

In fig. 2(a) Bx={U 1, u2}, Fx={y }, Wx={y }, Cx,y={X, y} and By={U 1, u 2, u3, u4},

Fy=O, Wy=O, Cy,y={y}. In fig. 2(a) there is one maximal clique which contains vertices x

and u, i.e., C={x,u}, while in fig. 2(b) there are two such maximal cliques, i.e., C={x, u, y}

a n d C ' ={x,u,z}.

tl u

x x

Y Y

g - 2 g - 1 g g - 2 ~- -1

Fig. 2(a) & 2(b). Three consecutive adjacency-level sets of a chordal graph

The following I_emma shows that we can always compute a maximal clique Cx,y of the

graph G(AL(v, e)), x~ AL(v,g) and ye W x, 1 < g < L v.

L e m m a 4. Let G=(EE) be a chordal graph, and let AL(v,O), AL(v,1) AL(v, Lv) be the

adjacency-level sets of l'.(G,v), w V. Let C be a maximal clique of graph G(AL(v,g)),

l < g < L v, which contains the vertex x. Then, there exists a vertex y~C such that

{ x, y } u { adj(x)nadj(y)nAL(v,g) }=C, l_~g ~_L v.

Proof If [CI=I then there is nothing to prove. Consider the case where IC[>I. Since vertex

xe C and vertex set C is a maximal clique in graph G(AL(v,g)), 1 < g < L v, there follows that

Cc_{x}u {adj(x)nAL(v,g)} (see fig. 2(b), C={x, y, u}). Let ze {x}u{adj(x)nAL(v,g)}

and z~C. Then, there exists a vertex yeC such that (y,z)~E (vertex set C is a maximal

clique). Since vertex ysAL(v2), there follows that vertex z~ad j (y)nAL(vs). Thus,

{x,y}u {adj(x)nadj(y)nAL(vs)}=C, l<g <L v. []

Observat ions

(1) Vertex set {x}uB x is a maximal clique in graph G({x}wAL(v,g-1)), xeAL(v,g),

l < g < L v.

(2) Vertex set W x has the following properties: (i) it is a subset of vertex set AL(v,g),

1 < g < L v, and (ii) if a vertex y e W x then (y,x)eE and (ad j (x)nAL(vs -1)) c_

(adj(y)nAL(v,g -1)), i.e., B x c By.

(3) Clique Cx,y is a maximal clique in graph G ({ x } u W x) which contains vertex

x~ AL(v,g) and yeW x, 1 <g < L v.

356

Based on the previous facts and observations, we conclude that a maximal clique of the

graph G(AL(v ,g -1)uAL(v ,g)) which contains vertices x and y, where x~AL(v,g) and

y e W x, 1 <~ < L v, has the form

B x u Cx,y

We are now in a position to formulate an algorithm for parallel location of all maximal

cliques of a chordal graph. The algorithm, which we call MAXCLIQUES, is listed in fig. 3.

Algorithm MAXCLIQUES

input : Graph G=(V, E) and the a.l.s AL(v, 0), AL(v, 1) AL(v, Lv), w V, of G.

output : All maximal cliques of G.
begin
1. for eachx ~ AL(v, ~), 1 <~ _< Lv, do in parallel

1.1 B x ~- adj(x) r~ AL(v,g -1);

1.2 Fx ~,--- {y [y ~ AL(v,~) & (y,z) ~ E, ~ ' z~ Bx};

1.3 W x ~ { {x} u adj(x) } c~ Fx;

1.4 if W x = {x} then MC ~ {x} u Bx; goto step 2;

1.5 for each y a W x, do in parallel

Cx,y ~ {x,y} u { adj(x) n adj(y) } c~ W x ;

if Cx,y is a clique then MC x +-- B x u Cx,y;
end;

end;
for eachx e AL(v,g), l<g < L v, do in parallel

for each y e W x, do in parallel

ifMCx=MCy & x<y then MC e--MCx;

end;
end;

2.

2.1

end.

Fig. 3. The All Maximal Cliques Location Algorithm MAXCLIQUES

In substep 1.5, the algorithm computes a maximal clique Cx,y in the graph G(AL(vg)),

which contains vertices x and y, where x~AI~v~), y~W x, 1 _< e -< L v. It is possible to exist

two (or more) ver t ices z , u e W x, such that Cx,y=Cz, u and Bx=B z, and therefore

BxUCx,y=BzUCz, u, i.e., MCx=MC z. In substep 2.1, we eliminate the duplicate elements of

the set MC, i.e., the maximal cliques of graph G(AL(v,~ - 1)uAL(v,s)), 1 _< ~ _< L v.

The correctness of the algorithm MAXCLIQUES is established through the following

theorem.

T h e o r e m 5, Let G=(V,E) be a chordal graph. The algorithm MAXCLIQUES correctly

computes the maximal cliques of the graph G.

Proof Let AL(v,0), AL(v, 1) AL(v, Lv) be the adjacency-level sets of the chordal graph

G=(V, E), vEV. For each vertex x~ AL(v,~), 1 < ~ < L v, the algorithm computes the maximal

clique BxUCx,y, y~W x, of the graph G(AL(v, g -1)uAL(v ,s)), 1 < ~ < L v. Therefore, the

357

algorithm computes all maximal cliques of the graph G(AL(v,g -1)uAL(v,g)), 1 _< g _< L v.

Since AL(v,g-1) ~ AL(v,g +1), 0 < g < L v, there follows that the algorithm computes all

maximal clique of the graph G=-(V,E). []

5.1 The Complexity of Algorithm MAXCLIQUES

We shall obtain the overall computational complexity of the algorithm by computing

the complexity of each step separately.

Step 1. This step consists of four substeps, i.e., substeps 1.1 through 1.5, which are

executed sequentially. Each of these subsets is executed concurrently for n vertices.

Substep 1.1. The intersection of two vertex sets can be executed in constant time O(1) with 6

processors. Substep 1.2. Similarly, the intersection of IBxl pairs of vertex sets is executed in

constant time O(1) with [Bxl.8 < 8 z processors. Substep 1.3. It is easy to see that the time

complexity of this substep is O(1) when 6 processors are available. Step 1.4. Clearly, the

union of two vertex sets is executed in constant time O(1) with 8 processors. Step 1.5. The

operation of testing whether or not a vertex set Cx,y is a clique requires constant time O(1)

and 62 processors. Here, IWxl such a vertex sets are tested, where IWxl < 6. Therefore,

substep 1.5 can be executed in constant time O(1) with 63 processors. Hence, the total

execution time for the step 1 is constant O(1), and is accomplished with n.83 processors.

Step 2. The operation of testing whether two sets are equal or not can be executed in

constant time O(1) with n processors. Therefore, this step is executed in constant time O(1)

with n.lWxl.n < 8.n 2 processors.

Taking into consideration the time and processor complexity of each step of the

algorithm and the fact that max{n.63, 6.n2}< 62.n 2, we can compute the overall

computational complexity of the algorithm. Thus, given the adjacency-level sets of a chordal

graph, the algorithm MAXCLIQUES runs in constant time O(1) when 62.n 2 processors are

available on a CRCW-PRAM model. Moreover, since vertex sets MC x can be computed

independently for each vertex xe V, the algorithm can be also executed in time O(logn) with

82.n2/logn processors. Consequently, we can formulate the following theorem.

Theorem 6. The maximal cliques of a chordal graph G=-(V,E) can be located in time

O(Iogn) with O(max {62.n2/logn, n[3+D~}) processors on a CRCW-PRAM model.

References

1. Beame, P, Hastad, J.: Optimal Bounds for Decision Problems on the CRCW PRAM.

J. Assoc. Comput. Mach. 36 (1989) 643-670.

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the Desirability of Acyclic Database

Schemes, J. Assoc. Comput. Mach. 30 (1983) 479-513.

3. Coppersmith, A., Winogrand, S.: Matrix Multiplication via Arithmetic Prograssion, in

ST087, 1-6, 1987.

358

4. Dahlhaus, E., Karpinski, M.: Fast Parallel Computation of Perfect and Strongly Perfect
Elimination Schemes, Res. Rept. RJ 5901 (59206), IBM Research Division, 1987.

5. Edenbrandt, A. Chordal Graph Recognition is in NC, Inform. Process. Lett. 24" (1987)
239-241.

6. Fich, F.E., Ragde, P.L., Wigderson, A.: Relations Between Concurrent-Write Models
of Parallel Computation, Proc. 3rd Annual ACM Symposium on Principles of
Distributed Computing, 179-189, 1984.

7. Fulkerson, D.R., Gross, O.A.: Incidence Matrices and Interval Graphs, Pacific J.

Math. 15 (1965) 835-855.

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Academic Press,

Inc., New York, 1980.

9. Ho, C-W., Lee, R.C.T.: Efficient Parallel Algorithms for Maximal Cliques, Clique
Tree, and Minimum Colouring on Chordal Graphs, Inform. Process. Lett. 28 (1988)

301-309.

10. Ho, C-W., Lee, R.C.T.: Counting Clique Trees and Computing Perfect Elimination
Schemes in Parallel, Inform. Process. Lett. 31 (1989) 61-68.

11. Klein, P.N.: Efficient Parallel Algorithms for Chordal Graphs, 4th SIAM Conference

on Discrete Mathematics, San Francisco, CA, 1988.

12. Kucera, L.: Parallel Computation and Conflicts in Memory Access, Inform. Process.

Lett. 14 (1982) 93-96.

13. Naor, J., Naor, M., Schaffer, A.: Fast Parallel Algorithms for Chordal graphs, Proc.

19th ACM Symp. on Theory of Computing, 355-364, 1987.

14. Nikolopoulos, S.D., Danielopoulos, S.D.: Parallel Computation of Perfect Elimination
Schemes using Partition Techniques on Triangulated Graphs, Computers and
Mathematics with Applications (to appear).

15. Tarjan, R.E., Yannakakis, M.: Simple Linear-Time Algorithms to Test Chordality of
Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs,
SIAMJ. Computing 13 (1984) 566-579.

16. Vishkin, U.: Implementation of Simultaneous Memory Address Access in Model that

Forbid It, J. of Algorithms 4 (1983) 45-50.

