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Parallel Rectilinear Shortest Paths

with Rectangular Obstacles

Mikhail J. Atallah' Danny Z. Chent

Abstract

Given a redilinear convex polygon P having O(n) vertices and which conlains n pair

wise disjoint. rectangular rectilinear obstacles, we compute, in parallel, a data structure

that supports queries about shortest rectilinear obstacle-avoiding paths in P. That

is, a query specifies a Bource and a destination, and the data structure enables e f f i ~

dent processing of the query. We construct the data structure in O(log2 n) time, with

O(n2 jlog2 n) prace6S0rs in the CREW-PRAM model if all queries are such that the

source and the destination are on the boundary of P, with O(n2 jlogn) processors if
the source is an obstacle vertex and the destination is on the boundary of P, and with

0(n2
) processors if both the source and destination are arbitrary points in the plane.

The data strucLure we compute enables one processor to obtain the path length for

any pair of query vertices (of obsLacles or of P) in constant time, or O( p:/ log n1) pro
cessors to retrieve the shortest path itself in logarithmic time, where k is the number

of segments of that path. If the two query points are arbitrary rather than vertices,

then one processor takes O(log n) time (instead of constant time) for finding the path

length, while the complexity bounds for reporting an actuailihortest path remain un

changed. A number of other related shortest paths problems are solved. The techniques

we use involve a fast computation of staircase separators, and a scheme for partitioning

the obstacles' boundaries in a way that ensures that the resulting path length matrices

have a monotonicity property that is apparently absent before applying our partitioning
scheme. Sequentially, the data structure can be built in O(n2) time.

1 Introduction

The problem of computing shortest paths that avoid obstacles is fundamental in computa·

tional geometry and has many applications. It has been studied in both sequential [8, 9, 11,

16, 17, 20-29, 31, 33, 38, 39] and parallel [12-15] settings, and using various metrics. The

rectilinear version of the problem, which assumes that each path's constituent segments are

parallel to the coordinate axes, is motivated by applications in areas such as wire layout,

circuit design, plant and facility layout, urban transportation, and robot motion. There

are many efficient sequential algorithms that compute rectilinear shortest paths avoiding
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DCR-8451393, and the National Libraxy of Medicine under Grant ROI-LM05118.
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different classes of polygonal obstacle sets [9, 11, 20, 22, 25, 26, 38, 39]. In this paper, we

will present parallel techniques for solving several rectilinear shortest paths problems in the

presence of rectangular obstacles.

The parallel computational model we use is the CREW·PRAM. Recall that this is

the synchronous shared-memory model where concurrent reads are allowed, but no two

processors can simultaneously attempt to write in the same memory location (even when

they are trying to write the same thing).

We establish the following complexity bounds. Let P be a rectilinear convex polygon

having O(n) vertices and inside which lie n pairwise disjoint rectangular obstacles whose

edges are parallel to the coordinate axes. We are interested in computing, in parallel, a

data structure that supports queries about shortest rectilinear obstacle-avoiding paths in

P. That is, a query specifies a source and a destination, and the data structure enables

efficient processing of the query. We construct the data structure in O(log2 n) time, with

O(n2flog2 n) processors if all queries are such that the source and the destination are on

the boundary of P, with O(n2 jlogn) processors if the source is an obstacle vertex and

the destination is on the boundary of P, and with O(n2
) processors if both the source and

destination are arbitrary points in the plane. The data structure we compute enables one

processor to obtain the path length for any pair of query vertices (of obstacles or of P) in

constant time, or O( rkj log n1) processors to retrieve the shortest path itself in logarithmic

time, where k is the number of segments of that path. If the two query points are arbitrary

rather than vertices, then one processor takes O(logn) time (instead of constant time) for

finding the path length, while the complexity bounds for reporting an actual shortest path

remain unchanged. We also solve the case when P is a convex N-gon with n ::::; o(N), in

which case we are able to get an O(N) rather than an O(N2
) term in the work complexity by

implicitly representing the O(N2
) paths of interest, and the data structure for this implicit

representation supports queries on lengths and paths within the same time and processor

bounds as the data structure for the explicit representation. A number of other related

shortest paths problems are solved. Sequentially, the data structure can easily be built in

O(n') time.

The techniques we develop involve a fast computation of staircase separators and a

scheme for partitioning the obstacles' boundaries in a way that ensures that the resulting

path length matrices have a monotonicity property that is apparently absent before applying

our partitioning scheme. These techniques may be useful for other related problems. The
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most general version of our algorithm uses a novel pipelining of the computation up and

down the recursion tree, with. O(n) computational "flows" that originate from all nodes and

proceed only to the nodes whose associated problem size is larger than that of the flow's

origin.

De Rezende et al. [11] gave a sequ.ential algorithm for computing rectilinear shortest

paths avoiding a set of n rectangles between a fixed point s (the source) and arbitrary

destination points in the plane. That is, the algorithm in [11) solves the single source case

of the shortest path problem. In O(n log n) time, this algorithm constructs a data structure

that can, in o (log n) time, answer a query that asks for the length of a rectilinear shortest

path between the fixed source point oS and an arbitrary destination point a. The data

structure also enables the reporting of an actual rectilinear shortest path between s and a,

in time proportional. to the number of segments on the reported path. The method used in

constructing the data structure of [11] is plane sweeping [32]. The queries we consider in

this paper are more general than the ones in [11], because the data structure we build is

for all pairs shortest paths between arbitrary points in the plane. OUf algorithm is not a

parallelized version of the algorithm in [11], and it indeed takes a very different approach to

solve the problem. Recently, Guha and Stout [15] and, independently, EIGindy and Mitra

[13] have given an O(log3 n) time and O(n1.5(log2 n) processor algorithm for the special

case where both the source and destination are fIxed. Note that answering our queries

using this approach would be inefficient, both in terms of the time and of the processor

complexity.

The rest of the paper is organized a.s follows. Section 2 introduces some terminology

and preliminary results. Section 3 gives one of the main ingredients we shall be using (the

Staircase Separator Theorem). Section 4 proves some technical results that will be needed

later in the "conquer" stages of our algorithms. Section 5 presents an algorithm which

computes a data structure for an explicit representation for the lengths of the rectilinear

shortest paths between the vertices of P for the case IPI = O(n). Section 6 generalizes our

solution to paths between arbitrary pairs of points (Subsection 6.3 is the most difficult part

of the paper). Section 7 deals with the case n = o([PI). Section 8 extends the algorithms to

computing the actual paths (rather than just their lengths). Section 9 sketches a sequential

algorithm for building the data structure in O(n2
) time. Section 10 concludes.

Throughout, all geometric objects (segments, polygons, paths, rectangles, etc.) are

implicitly assumed to be rectilinear; that is, each of their constituent segments is parallel
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to one of the two coordinate axes. From now on, all paths (shortest or otherwise) are

Msumed to be obstacle-avoiding. To avoid cluttering the exposition, we Msume that no

two distinct edges from P or R are collinear (the general case can be taken care of without

much difficulty).

2 Preliminaries

A rectilinear convex polygon is a rectilinear simple polygon such that every line segment

which joins two points of the polygon and is parallel to a coordinate axis is contained in

the polygon.

The input polygon P is a convex polygon of N vertices. We use Bound(P) to denote

the boundary of P. Polygon P is specifted by a circular sequence of vertices Vb v2, ..• ,

vN, as encountered by a counterclockwise walk along Bound(P) starting at VI' A circular

ordering of the points on Bound(P) is defined by the order in which they are encountered in

the walk along Bound(P) that foUows the circular sequence of vertices of P. The boundary

of P is said to be clear since it does not intersect the interior of any obstacle.

The set of rectangular obstacles is denoted by R. R is contained in P. The vertex set

of R is denoted by VR (hence IVRI ;;:: 4n). We assume that VR has already been sorted in

O(logn) time using O(n) processors {lO].

We use x(p) and y(P) to denote the two coordinates of a point p. In the L1 metric, the

d;'tance between two points p and q is d(p,q) = [.(p) - .(q)[ + [y(p) - y(q)[. A segment

with endpoints V and w is denoted by 'D'W (~ ID"U). The length of a path C connecting two

points is the sum of the lengths of its constituent segments. On the other hand, we use ICI

to denote the size of C, which is the number of segments of C (not its length).

A path is said to be monotone with respect to the x·ax.is (resp., y-axis) iff its intersection

with every vertical (resp., hodzontal) line is a contiguous portion of that line. A path is

convex if it is monotone with respect to both the x-axis and the y-axis. A convex path

has the shape of a staircase, and in fact we shall henceforth use the word "staircase" as

a shorthand for "convex path". Note that a staircase from a point p to a point q is a

shortest path between p and q since its length equals d(p,q). Staircases can be increasing

or decreasing, depending on whether they go up or down as we move along them from left

to right. A staircase is unbounded if it starts and ends with a semi-infinite segment, i.e., a

segment that extends to infinity on one side. A stalrcase is said to be deadf it does not
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Figure 1: illustrating MAXNE(R') and MAXsw(R').

intersect the interior of any obstacle.

A point p is strictly below (resp., to the left of) a point q iff x(p) = :c(q) and yep) < y(q)

(resp., yep) = y(q) and x(p) < x(q»j we can equivalently say that q is strictly above (resp.,

to the right of) p. A rectangle r is below (resp., to the left of) an unbounded staircase 8 if

no point of r is strictly above (resp., to the right of) a point of 8; we can equivalently say

that S is above (resp" to the right of) r.

For a subset R' of R, let S be a decreasing unbounded staircase that is above aU rect

angles in R'. Among all such staircases S, choose the lowest-leftmost one; that is, if 8 11 is

the chosen one, then there is no unbounded decreasing staircase S' above R' with a point of

S' strictly below or to the left of a point of S". Denote such an S/I by MAXNE(R'), where

"N" is mnemonic for "North", and "E" is mnemonic for "East". Note that MAXNE(R')

goes through all the maximal elements of VR , (see [32J for the definition of maximal el

ements of a point set). Using "Sn and "Wn as mnemonics respectively for "South" and

"West", one can similarly define MAXNW(R'), MAXsE(R' ), and MAXsw(R'): MAXNW(R')

is the lowest-rightmost increasing unbounded staircase above R', MAXsE(R/) is the highest

leftmost increasing unbounded staircase below R' , and MAXsw(R') is the highest-rightmost

decreasing unbounded staircase below R' , See Figure 1.

The rectilinear convex hull of a set of objects in the plane, if it exists, is a (rectilinear)

convex polygon that contains the set of objects and has minimum area [30]. In this paper,

all convex hulls are rectilinear.

Given a subset R' of R, it is possible that the convex hull of R' does not exist (see [30] for

example). This can happen in exactly one of two ways (but not both): (i) MAXNE(R') and

MAXsw(R') intersect, or (ii) MAXNW(R') and MAXsE(R') intersect. In case (i) (resp., (ii))
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Figure 2: illustrating Env(R') and the circular ordering on Bound(EJnv(R' )).

we define the convex connected region Env(R' ) that contains R' , called the envelope of R',

as follows: consider the disconnected convex region of the plane that is below MAXNE(R')

and MAXNW(R') , and above MAXsE(RI
) and MAXsw(R'), and let Env(R' ) be the union

of that region with the finite segments of MAXNE(R') (resp., MA\"NW(R' )). Figure 2 (a)

illustrates case (i), and Figure 2 (b) illustrates case (ii). Note that the definition of Env(R')

does not rule out that Env(R') intersects the interior of an obstacle in R - R'j however,

throughout the paper, we shall use the EJnv(R') notation only in cases where Env(R') does

not intersect the interior of any obstacle in R - R'. Also note that if the convex hull of R'

exists then it coincides with EJnv(R') (see Figure 2 (c)). It is trivial to construct Env(R')

in O(log IR'I) time using O(IR'lflog IR'I) processors when VR, 1s already sorted, by using

parallel prefix [18, 191 and parallel merging [351.

Let R' be a subset of R such that Env(R' ) does not intersect the interior of any obstacle

in R - R'. We now extend the circular ordering on the points of Bound(Q) we defined

earlier (where Q was a polygon) to the case when Q = Env(R'). We need to be able

to say, for any three points p,]I, p" on Bound(Q) (cL Figure 2 (a)), that (for example)

p' is between p and '/' in the (extended) circular ordering (i.e., starting at p and moving

along the circular ordering we encounter p' before p'). For each X E {NE,NW,SE,5'W},

we define MAX"x(Q) similarly to the way we defined MAXx(R'). Observe that there is

an obvious total ordering that one can define for the points of MAXx(Q) that are on the

boundary of Env(R') (i.e., MAXx(Q) n Bound(Q)). The circular ordering we seek can

then be viewed as the concatenation of these four total orderings. The concatenation may

result in some points (from MAXNE(R') in case (i), and from MAXNW(R') in case (u))

appearing more than once in the ordering, and we duplicate those points and treat them as
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Figure 3: Illustrating B(Q).

different points on Bound(Q). More formally, the circular ordering is the circular version

of the total order obtained as follows: start with the (totally ordered) points of Bound(Q)

n MAXNE(Q), followed by those on (Bound(Q) n MAXNW(Q)) - MAXNE(Q), followed by

those on (Bound(Q) n MAXsw(Q)) - MAXNW(Q), and followed by those on (Bound(Q) n

MAXSE(Q)) - (MAXsw(Q) U MAXNE(Q)).

Let Q be a convex connected region containing R', for a subset R' of R, such that Q

does not intersect the interior of any obstacle in R - R' (hence Bound(Q) is clear). In

particular, Q can be either Env(R') or a convex polygon. In what follows, when we talk

about "visibility", it is assumed that the obstacles as well as Bound(Q) are opaque.

Definition 1 Let B(Q) be the set oj point.9 p on .Bound(Q) such that either (i) p is a vertex

oj Q, or (ii) p is horizontally or vertically visible from a vertex in VR' or from a vertex of

Q (see Figure 3).

That is, point p E Bound(Q) is in B(Q) jff there is a vertex v oCQ or of an obstacle contained

in Q, such that segment pv is horizontal or vertical, and tlle interior of pv does not jntersect

Bound(Q) or any obstacle. Obviously, IB(Q)I = O(IQI+IR'I). Using [41 and parallel merging

[35), B(Q) can be comp.ted in O(log IQI + log IR'I) time and O(IQI + IR'pog IR'I) work.

We assume that B(Q) is sorted according to the order in which its pojnts are visited by a

counterclockwise walk around Bound(Q), starting at some vertex.

We shall repeatedly make use of Brent's theorem [7J.

Theorem 1 (Brent) Any synchronous parallel algorithm taking time T that consist.9 of a

total of W operations can be simulated by P processors in time O((WJP) +T).
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There are actually two qualifications to the above Brent's theorem before one can apply

it to a PRAM: (1) at the beginning of the i-th parallel step, we must be able to compute

the amount of work Wi done by that step, in time O(Wi/P) and with P processors, and (ii)

we must know how to assign each processor to its task. Both qualifications (1) and (ii) to

the theorem will be easily satisfied in our algorithms, therefore the main difficulty will be

how to achieve W operations in time T.

Another result we shall be using deals with multiplying special kinds of matrices. All

matrix multiplications are henceforth assumed to be in the (min,+) closed semi-ring, i.e.,

(M' .. M")(i,i) = mindM'( i,k) + M"(k,i)}. If X, Y, and Z are finite sets of points in the

plane, and if Mxz (resp., Mzy) denotes the matrix containing the lengths of the shortest

paths from X to Z (resp., Z to Y), then it is not hard to see that the matrix Mxz * Mzy

contains the lengths of the shortest X-to-Y paths that are constrained to go through Z (Le.,

they might not be best in absolute terms). Of course if for every path P from p E X to

q E Y there exists a p-to-q path pI that goes through Z and is not longer than P, then

(Mxz of< Mzy )(p,q) does contain the length of a shortest (unconstrained) p-to-q path.

A matrix M is said to be Monge [1] iff for any two successive rows i, i + 1 and columns

i, i + 1 we have M(i,j) + M(i + l,j + 1) :$ M(i,j + 1) + M(i + l,j). Now, consider

two finite point sets X and Y, each totally ordered in some way (50 we can talk about the

predecessor and successor of a point in X or in Y), and such that that the rows (resp.,

columns) of the path lengths matrix Mxy are as in the ordering for X (resp., Y). Matrix

Mxy is Monge iff for any two successive points p, p in X and two successive points q, q' in

Y we have Mxy(p,q)+ Mxy(P' ,q') ~ Mxy(p, q') +Mxy(p',q). Figure 4 give, example, for

Mxy. Suppose that Q is a connected region whose boundary is clear and that X and Yare

two finite point sets that are on two disjoint portions of the boundary of Q. In Figure 4 (a),

Q is convex, and hence Mxy is Monge (assuming the points in X (resp., Y) are ordered as

shown by the arrow). Figure 4 (b) shows an X and a Y for which Mxy is non-Monge (this

figure also illustrates how length matrices that are non-Monge can arise in our problem).

We shall later frequently make statements like "Mxy is Monge (or non-Monge)" without

explicitly specifying what ordering we are assuming for the points in X and Y, when such

an ordering is obvious from the context; for example, if X and Y are each a contiguous

subset of the vertices of a convex polygon Q and are on two disjoint portions of Bound(Q)

(as in Figure 4 (a)), then the implicit ordering assumed for X and Y is the obvious one for

which Mxy is Monge (X in clockwise order along Q's boundary and Y in counterclockwise
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Figure 4: illustrating Monge and non-Monge matrices of path lengths.

order, or X in counterclockwise order and Y in clockwise order). The following lemma

summarizes these easy observations.

Lemma 1 Let CR be a convex connected region whose boundary is clear. Let X and Y be

finite sets of points on the boundary of CR, such that the portion of that boundary spanned

by X is disjoint from that spanned by Y (as in Figure ./ (a)). The matrix Mxy of path

lengths between X and Y is Monge.

The next lemma is frequently used later.

Lemma 2 Let X and Y be two finite point sets that belong to two unbounded staircase.5 Sx

and (respectively) Sy. Assume that Sx and By are both clear. If X is completely on one

side of BYl and Y is completely on one side of Sx, then Mxy is Monge.

Proof. It is easy to see that the lemma's hypotheses imply the existence of a convex

connected region CR having the properties stated in Lemma 1. 0

The following lemma is well known [3, 1].

Lemma 3 Assume Mxz and Mzy are Monge, with IXI = cdZI $ c21Y1 for positive con

stants CI and C2' Then Mxz * Mzy, which is also Mangel can be computed in O(log]ZI)

t;me and O(lXIIYIJ wo,k in the CREW-PRAM model.

The next two lemmas are easy consequences of the previous one.

Lemma 4 Let Mxz and Mzy be Monge, where IXI $ 0, WI $ P, and IZI $ "(1 such that

0= CI"( $ C2P for positive constants CI and C2. Then Mxz * Mzy (which is also Monge)

can be computed in O(log"() time and O(afJ) work in the CREW-PRAM model.
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Proof. "Pad" the matrices Mxz and Mzy with +00 entries so that they become MXlz and

Mzyl, where IX'I ::::: 0 and W/I ::::: p. Apply Lemma 3 to multiply these padded matrices.

The Mxz *Mzy product is readily available from the lvlx'z * Mzy, product. 0

Lemma 5 (Monge Multiply) Let X, Y, and Z be finite point sets such that for any p

E X and q E Y, a shortest p-to-q path can be chosen to go through Z, where IXI .::; 0,

WI .::; p, and [ZI .::; '"(, such that a::::: en ~ q{J for poaitive constants Cl and C2. Asaume

that X (re.sp., Y, Z) can be partitioned into a constant number of subsets Xi, 1 .::; i .::; lx

(resp., Ji, Zk, 1 ~ j ~ ly, 1 ~ k ~ lz) such that all MX"z/t and MZ"Yj are Monge. Given

Mxz and Mzy, the matrix Mxy can be computed in O(log,) time and O(a/1) work in the

CREW-PRAM model.

Proof. Trivial.

3 Computing a Staircase Separator

This section establishes the following theorem:

o

Theorem 2 (Staircase Separator) In O(1ogn) time and using O(n) processors. it is

possible to find an unbounded staircase, Sep, which partitions R into two subsets Rl' R2

such that the following properties hold:

1. Sep does not intersect the interior of any obstacle in R.

2. Each of RI and R2 contains no more than 7n/8 rectangular obstacles.

3. Sep consists ofO(n) segments.

Note: It is trivial to prove the existence of a Sep" for which IRII ::::: IR21 ::::: n/2. The main

contribution of this theorem is the parallel algorithm.

The rest of this section proves the Staircase Separator Theorem. We first introduce

some terminology. For any point p, the North West path of p (denoted by the shorthand

NW(p)) is the path to infinity obtained by starting at p and going north until reaching

an obstacle, at which point we go west along the obstacle's boundary until we clear the

obstacle and are able to resume our trip north. One can in this way define an XY(p) path

and a YX(p) path for any comhination of X E {N,S} and Y E {E,W}. An XY(p} path

starts at p and goes in the X direction whenever it can, and uses a "go in the Y direction"

policy for getting around obstacles. A YX(p) path is defined similarly. See 5 for example.
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Figure 5: Illustrating NE(p) and WS(p).

To prove the theorem, it clearly suffices to find an unbounded staircase of size D(n) that

does not properly intersect any obstacle in R (it may run along an obstacle's boundary,

however) and that has no less than nl8 obstacles all either side of it. The following lemma.

is one of the ingredients that will be used in computing such a staircase.

Lemma 6 (Path Tracing) Given a point p not in the interior of any obstacle, an XY(p)

or a YX(p) path can be computed in O(logn) time using D(n) processors, where X E {N,B}

and Y E {E, W}.

Proof. Without loss of generality (WLOG). we just show how to compute NW(p) (the

other AY(p) and YX(p) paths can be obtained similarly). The ingredients we need for

this computation are the parallel trapezoidal decomposition method [4J and the Euler Tour

technique for tree computation [36J. Let the bottom edge of each obstacle have a ''parent''

pointer to the left edge of the obstacle. Using the algorithm in [4J we obtain, for the upper

left vertex v of each obstacle, the trapezoidal segment above v (the trapezoidal segment

is thus above the left edge containing v). The trapezoidal segment for point p is easy to

find. These trapezoidal segments are the bottom edges of obstacles. (In the case where a

trapezoidal segment does not exist, we assume that it is the "segment at infinity".) Then

let p and the left edges of the obstacles each have a "parent" pointer to their respective

trapezoidal segments. In this way, we create a forest whose nodes are left edges and bottom

edges of obstacles, and point p. The roots of the trees in the forest are the nodes whose

trape"zoidal segment is at jnfinity. Using the Euler Tour technique for tree computation [36J,

we find the path from p to the root of the tree to which p belongs. The path so found is

NW(p). 0
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The algorithm for computing the desired staircase separator Sep is as follows: we first

find a vertical line V such that there are as many vertices of R to its left as to its right. Let

v be the number of obstacles in R that are properly intersected by V. If v ~ n/4 then we are

essentially done: we find a point p on V such that half of the obstacles properly intersected

by V are above it, and half of them below it. Assume that p is not in any obstacle (the

algorithm can be easily modified for the case when p lies inside an obstacle). Then we take

Sep to be the union of NE(p) and SW(p). So suppose, in what follows, that v < n/4. Find

a horizontal line H such that there are as many vertices of R above it as below it. Let h be

the number of obstacles in R properly intersected by H. If h ~ n/4 then we are done for the

same reason as in the case where v ~ nJ4. So suppose, in what follows, that h < nJ4. Let

p be the intersection of V and H, and assume that p is not in any obstacle (the algorithm

can be easily modified for the case when p lies inside an obstacle).

Lines V and H together partition the plane into fOUf quadrants which we call NE

(NorthEast), NW, SE and SW. Let RNW be the subset of R that lies only in the NW

quadrant (hence no obstacle in RNW properly intersects either V or H). Let RNE, RSE,

and Rsw be defined analogously. Note that

IRNEI + IRNWI + IRsEI + IRswl = n - v-h.

WLOG, assume that

We now show that Sep can be taken to be the union of NE(p) and WS(p). Since such a Sep

is obviously a staircase that consists of no more than 2n + 2 segments, does not properly

intersect any obstacle, and separates R into two subsets, it suffices to prove that there are

(i) at least nJB obstacles above Sep and (ii) at Least nJB obstacles below Sep. Now, (i)

is trivially true because, since each of h and v is less than nJ4, we must have IRNEI +

IRNWI + IRsEI + IRswl > n/2, which implies IRNWI > n18. The proof of (li) requires

some work. Suppose to the contrary that there are fewer than n/B obstacles below Sep.

The staircase Sep partitions RNE into two subsets: call them R ~ E and R!J.JE (see Figure

6). Similarly, Sep partitions Rsw into two subsets: call them R:sw and R ~ (see Figure

6). WLOG, assume that IRArEl ~ IRSwI (the other case is symmetrical). We obtain a

contradiction to the definition of H, as follows. The number of vertices of R above H is ~

41RNW 1+2h+41RNEI+ 4IR~EI ~ 41RNW I+2h+ 41RNE I. The number of vertices of R below
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Figure G: Illustrating the algorithm for Sep.

H is < 4(niB) +2h +41RSw I (where we used the assumption that there are fewer than niB

obstacles below Sep and the fact that the number of obstacles that are simultaneously below

both Sep and H is no more than the number of obstacles that are below Sep). Now, let us

compare 41RMVI +2h +41RNE I (which is less than or equal to the number of vertices of R

above H) with 4(nIB) +2h + 4tRSw I (which is strictly larger than the number of vertices

of R below H). Since IRNWI > n/8 and IRNEI ~ IRSwI, we have

41RNWI +2h +41RNEI > 4(n/8) +2h +4IRSw I.

It follows that the number of vertices of R below H is smaller than the number of vertices of

R above H. This contradicts the definition of H, and completes the proof of the Staircase

Separator Theorem.

4 Other Building Blocks

This section introduces further technical results that wiOlater be used. In what follows, Q

is a convex connected region containing a subset R' of R such that either (i) Q is a convex

polygon with O(IR'I) vertices, or (il) Q = Env(R'). The lemmas in this section assume that

Q does not intersect the interior of any obstacle in R - R' . Note that the boundary of Q is

clear. For such a Q, we define arrays Horiz and Vert (of size IB(Q)I each) as follows. Let

p, q be a pair of adjacent points in B(Q)j that is, pq is on Bound(Q) and p, q are the only

points of B(Q) that are on pq. Then Horizljiq) (resp., Vert(pq») is the portion of Bound(Q)

- pq that is horizontally (resp., vertically) visible from pqj that is, either Horiz(jiq) (resp.,

Vert(pq)) is empty, or for each point a E Horiz(pq) (resp., a E Vert(pq)) there is a point b

E pq such that a is horizontally (resp., vertically) visible from b. In Figure 7, Vert(pq) =
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Figure 7: Illustrating array Vert.

]lei, and Vert(qr) is empty. The procedures that later use these lemmas will always make

sure that the Horiz and Vert arrays are available (it is hl fact quite easy to compute these

arrays, by using parallel prefix [18, 19]).

When computing the shortest paths between pairs of vertices of Q, we shall also concern

ourselves with the nonvertex points in B(Q). The reason we do this is that (as will become

apparent later) it is easier to solve the more general problem of computing the B(Q).to

B(Q) paths.

Notation 1 We use Dq to denote the IB(Q)I X IB(Q)I matrix containing the lengths of

shortest paths between all pairs of points in B(Q).

Lemma 7 (Discretization) Given the matrix DQ and arrays Horiz and Vert, the length

of a shortest path between any pair of points on Bound(Q) can be found in O(1og IB(Q)I)

time using one processor.

Proof. Let bl and b2 be two points on Bound(Q). Let v (resp., w) be the first point of B(Q)

encountered by a clockwise (resp., counterclockwise) walk from bl along Bound(Q). If bl E

B(Q), then bl = v = w. Let points Vi and Wi be similarly defined for ~ . WLOG, assume

that both b1 and b, are not in B(Q). The o(log IB(Q)IJ time is needed only for finding

U'ID' and vlw'. If 'UlIJ is contained in Horiz( tlw' ) or in Vert(v'w' ), or if 17U1 is contained in

Horiz(TffIJ) or in Vert('UlIJ), then the br to-b2 path length is simply d ( b l ' ~ ) ' Otherwise the

path length we seek is one of the four following quantities: (i) d(b l , v) +DQ(v, vI) +d(11, b2 ),

(ii) d(bl> v) +DQ(v, uI) +d(w' ,b,), (iii) d(bl> w)+ DQ(w, v') +d(v' .b,). and (iv) d(bl> w) +

Dq(w, Wi) +d(w', 62 ), This can be proved by contradiction: assuming that none of (i)-(iv)
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Figure 8: Illustrating Lemma 8.

is the length we seek leads to a contradiction with the definition of one of {v, w} or {11, w'}.

D

To avoid introducing new notation, we shall from now on use Env(X) even when X

consists of arbitrary objects (not just rectangular obstacles). The definition we gave earlier

for the case X = R extends to other objects in a natural way. In particular, X can now be

a collection of polygons, staircases, etc.

Lemma 8 (Staircase Extension) Let C be a bounded staircase originating on Bound(Q)

such that (i) C is a contiguolJ.5 portion of the boundary of QI = Env(Q U C), and (ii)

Q' intersects the interior of an obstacle only if the obstacle is contained in Q. Let C'

(resp./ B') be B(QI) n C (resp., H(Q') n Bound(Q)}. Then given the matrix DQ, we can

obtain the matrix of the B'·to-C1 path lengths in O(1ogm) time and O(m2) work, where

m = lei + IB(Q)I·

Proof. WLOG, we a1isume that C starts at the highest edge of Q and is decreasing (Figure

8). Let Cro8s be the set of points on Bound(Q) - Bound(QI) that either are in B(Q) or are

horizontal or vertical projections of the vertices of C. We partition Cross into two subsets:

CrO.!l81 wb..ich contains those points of Cro8s on MAXNE(Q), and Cro8s2 = Cross - Cros81

(see Figure 8). The matrix M of the B'-to-Cross path lengths can be obtained from DQ

within the desired complexity bounds, by using the Discretization Lemma (Lemma 7). and

similarly for the matrix M' of the Cro8s2-to-Cro881 path lengths. The matrix MI of the

Crossl-to-C' path lengths is trivially available (each v-to-w path length in it is simply

d( v, w». The lengths of shortest paths between Cross2 and the portion of C' that is above

Cro8s1 can be obtained by multiplying M' with M1 ; since both M 1 and Ml are Monge
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(by Lemma 1), they can be multiplied within the desired complexity bounds (by using the

Monge Multiply Lemma (Lemma 5)). The lengths of shortest paths between Cross2 and

the portion of C' that is not above Crossl are trivial to obtain (they are described by the

function d(- , .)). Hence we now have the matrbc M* of the lengths of the Cross-ta-C'

paths. To obtain the lengths of the B'·to-C' paths, we use the Monge Multiply Lemma on

length matrices M and lor, with B' playing the role of X, G' playing the role of Y, and

Gros/} playing the role of Z. 0

Lemma 9 Let SeI! be the stairClJse obtained by applying the Staircll8e Separator Theorem

(Theorem 2) to R'I and let R1and R;. be the two subsets of R' on either side of Sep'. Then

both Bonnd(Ehv(RD) and Bonnd(Env(R;») are clear.

Proof. This follows from the facts that Serf is a staircase that does not properly intersect

the obstacles in R', that Env(RD and Env(.R2) are both contained in Q, and that Q does

not intersect the interior of any obstacle in R - R'. 0

Lemma 10 (Containment) Let points q1 and q2 belong to Q and let P be a path between

q1 and q2· Then there e:J;ists a path P' between q1 and q2 which does not go outside of Q

and i.s not longer than P.

Proof. Since Q is a convex connected region whose boundary is clear, any portion of P

that goes outside Q can be replaced by going along the boundary of Q. The length of the

path P' obtained from the replacement is not longer than that of P because of the convexity

~ Q . 0

Lemma 11 (Single Intersection) If a shortest path between points p and q intersects a

clear staircase S', then there exists a shortest path between p and q whose intersection with

S' is one connected component.

Proof. This is an immediate consequence of the fact that for any two points 091 and 092 of

5', a shortest path between them is the path along S'. 0

5 Computing the Lengths Matrix Dp When IPI = O(IRI)

Recall that the input polygon P is convex and contains all the obstacles in R, and that Dp

is the matrix of the B(P)-to.B(P) shortest path lengths. In this section, we assume that

IPI = N :s; clRI for some positive constant c, and we only concern ourselves with computing
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Dp. It suffices to give an algorithm for the case where the input consists of only R and

where we wish to compute the lengths of paths between pairs of points in B(Q) where

Q = Env(R). This is enough because if the input includes both P and R, then we first

compute DO and then easily obtain Dp from it with a. constant number of applications of

the Staircase Extension Lemma (Lemma 8).

The algorithm takes as input the set R of n rectangular obstacles, and computes the

IB(Q)I x IB(Q)I matrix DQ, where Q = Env(H). It does '0 by first finding a ,taircase

separator Sep that partitions R into two subsets Rl and R2. Then it recursively solves,

in parallel, the subproblems for Rl and R2, respectively, obtaining two matrices DOl and

DQ'l' where Ql =Env(R1) and Q2 = EnV(R2). Finally it obtains matrix DQ from matrices

DOL and DQ'l'

We use the Staircase Separator Theorem (Theorem 2) to find Sep. Computing Ql and

Q2 is trivial. Because of Lemma 9 and the Containment Lemma (Lemma 10), the two

matrices returned by the two recursive calls contain, respectively, the lengths of the B(Qd

to-B(Qd paths and the B(Q2)-to-B(Q2) paths (Le., they are indeed DQ) and DQ'l)' Thus

the main difficulty is how to efficiently obtain DQ from DOl and DQ'l'

Let T(n) and W(n) respectively denote the time and work complexities of the algorithm.

Then to show that T(n) = O(log2 n) and Wen) = O(n2
), it suffices to prove Theorem 3

below. This would be enough because we would then have:

T(n) ~ T(7n/8) + c,(logn)

W(n) ~ W(lHd) +W(!H,1l + c,(n')

with the boundary conditions T(l) =C3 and W(I) =C4, where the C;'s are positive constants,

IH,I + IH,I = n, n/8 ~ IH,I, IH,! ~ 7n/8. Brent', theorem [71 would then imply a processor

complexity of O(n2
/ log2 n).

Theorem 3 The matrix DQ can be computed from DO) and DQ~ in O(log n) time and

O(n') wor/;.

Proof. Let Qle/t (resp., QrighC) be the portion of Q on the left (resp., right) side

of Sep (see Figure 9). (Note that Qle/t and Q r i g h ~ both include the portion of Sep that

is in Q.) Since Ql is contained in Qle/t and the matrix DO) is known, we can apply

the Discretization Lemma (Lemma 7) and the Staircase Extension Lemma (Lemma 8) a

constant number of times to obtain the matrix DQ,C!!' Tbe matrix DQri,,,r is obtained
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Figure 9: Illustrating the proof of Theorem 3.

similarly. Let left (resp., Right) be the subset of B(Q) that is in Q'e/t (resp., Qright),

and let Middle be the subset of B(QleftJ U B(Qrighd that lies on Sep. From matrix DQIO!,

(resp., DQrillh')' using the Discretization Lemma, we call obtain the matrix Mle/! (resp.,

Mright} of the lengths of shortest paths between left (resp., Right) and Middle. The Single

Intersection Lemma. (Lemma 11) implies that the problem of computing DQ is essentially

that of multiplying Mle/t and Mright. By Lemma 1, these two matrices are Monge. Hence

by using the Monge Multiply Lemma (Lemma 5), these two matrices can be multiplied

within the desired bounds. The correctness of the computation of DQ easily follows from

the fact that for any points p, q, where P E left and q E Right, there exists a p-to-q shortest

path that goes through a. point in Middle. 0

6 Path Lengths between Arbitrary Points

We extend the techniques of the previous sections to computing the lengths of shortest paths

between arbitra.ry query points. The query time is logarithmic using one processor. We first

consider the structure for the B(P)-to-VR paths and construct it using an 0(1og2 n ) time

algorithm with O(n2jlogn) processors. We then consider the structure for the VR-to-VR

paths and construct it using an 0(1og2 n) time algorithm with O(n2 ) processors. Finally,

we show that even with arbitrary query points we can use essentially the same structure as

in the VR-to-VR case. The first subsection gives some observations that are crucial in all of

the above cases.
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Figure 10: illustrating U, U', W, and WI at anode v ofT.

6.1 Some Useful Observations

Let T be the recursion tree for the algorithm in Section 5; that is, the root of T corre·

sponds to the "top-Ievel" recursive call (the one associated wHIt R), the children of the

root correspond to the recursive calls for R1 and R2 , and so on. It is easy to modify that

algorithm so that the information (path length matrices, separators, etc.) produced by

each recursive call remains stored in T even after that call returns. We assume that this

modification has already been done, so that each node v ofT stores the obstacle set Rv ~ R

a.'>sociated with v, as well as Qv = Env(R,,), the staircase Sepv partitioning Rv (WLOG, as

sume Sepv is increasing), and the following matrices in addition to matrix DO
v

• Let LeltRv

(resp., Rightllv) be the subset of Rv to the left (resp., right) of Sepv' Let Left-Sepv (resp.,

Right-Sepv) be the bounded staircase consisting of the portion of MAXsE(Env(LeftRv))

(resp., Jl,fAXNW(Env(Rightllv))) that is in the interior of Qv. Let Uv consist of the subset

of B(Env(LeftJl" ULeft-Sep.)) that is on Left-Sep._ Let U; be tbe sub,et of B(Env(LeftR.))

that is in the interior of Qv and is not on Left-Sepv (see Figure 10). Let Wv be the subset of

B(Env(RightJl"URight-Sep.)) ou Right-Sep., and iet W; be the subset of B(Env(RightJl,,))

that is in the interior of Qv and is not on Right-&pv (see Figure 10). The additional ma

trices we store at node v are (i) Mv,u for the lengths of the Uv-to-B(Qv) paths, (ii) MV,UI

for the length, of the U;-to-B(Euv(Leftfl" U Left-Sop.)) paths, (ill) M.,w (with ohvious

meaning), and (iv) Mv,w'. The reader may observe that the above four matrices were not

explicitly computed by the algorithm in Section 5, but it is easy to modify that algorithm so

that it does compute them, using the Discretization Lemma (Lemma 7) and the Staircase

Extension Lemma (Lemma 8).
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The storage space taken by T and all the information associated with its nodes obeys

the same recurrence as for the work complexity, and hence is O(n2
).

For convenience, we now introduce a notation Chain(·) such that, if X is a finite set of

points that were obtained from some contiguous portion of a staircase, then Chain(X) is

that contiguous portion of the staircase; usually the context makes it clear which contiguous

portion of the staircase is meant-we shall typically use Chain(X) for X E {Uu, U~, Wv , W~}.

For example, Chain(Uu) = Le/t-Sepu, and C h a i n ( U ~ ) = the portion of Bound(Env(Le/tR,J)

that is in the interior of Qv and is not on Le/t-Sepv' Observe that staircases Chain(Uu)

and Chain(Wv) both divide Qu into two halves, each of which is a convex connected region,

whereas staircases C h a i n ( U ~ ) and C h a i n ( W ~ ) respectively cut Env(Le/tllv U Lejt-Sepv) and

Env(RightRuURight-Sepu) into two halves, each of which is also a convex connected region.

Each obstacle vertex p E VR occurs on at least one of the Uu, U~, Wv • W~ lists, for some

VET. Therefore to compute the Vwto-B(P) path lengths, it suffices to compute, for all v

E T and X E {U, U' •W, WI}, the Xv-to-B(P) path lengths. The reader may wonder why

we have partitioned the points in B(Env(Le/illv)) - Bound(Qv) into two subsets Uv and

U ~ : the reason is that it will enable the use of the Monge Multiply Lemma (Lemma 5),

by making the path length matrices Monge, something which would not have been true

otherwise (this will become clearer in the proofs of the lemmas below).

We henceforth assume that a. pre-processing stage has explicitly computed, for each p E

VR, the eight paths X(p) for all X E {NE,NW,SE,SW,EN ,ES, WN, WS} (the definitions

of these paths were given in Section 3; see Figure 5 for example). This is done by first

computing the forest that implicitly describes all the NE(p)'s (call it the "NE forest") in

O(logn) time with O(n) processors, as in the proof of the Path Tracing Lemma (Lemma

6). Then we extract from that NE forest an explicit description of NE(p), for each p E YR'

This extraction is easily done in o(log n) time and 0(n2
) work, by making a copy of the tree

that contains p for each p E VR and obtaining NE(p) from that copy using standard parallel

tree computation methods [36]. Given points p and q, where p E VR and q is arbitrary,

determining whether NE(p) goes above or below q can be done in logarithmic time using

one processor (by a. binary search on NE(p)). The same holds for the other 7 forests that

describe the other 7 kinds of paths. We can speak of the segments associated with a forest

(say, the NE forest): these are the segments that lie on NE(p) for some p E YR. There are

clearly O(n) such segments associa.ted with ea.ch of the 8 forests. In fact, all of the chains

associated with the recursion tree's nodes (i.e., the chains for {Uv , U~, Wv , W~}) use only
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segments associated with the eight forests. We pre-process the segments Msociated with

these 8 forests in the following way: for each such forest (say, the NE one), we compute

an indicator ma.trix INS of size D(n) X D(n) which is defined M follows. For each p E VR

and each segment s Msodated with the 8 forests, INE(p, s) = i, where s' is the segment

of NE(p) tha.t intersects the infinite line l ~ containing s. These eight indicator matrices

are easily computed in D(1og n) time and using a quadratic amount of work. It is eMily

seen that these indicator matrices enable us to determine, for any point p E VR and any

staircase G which uses only segments associated with the 8 forests, whether, for example,

NE(p) intersects C, and to find a point on that intersection, in D(log ICI) time and D(IG!)

work. This last observation is used implicitly in the proof of the Bridging Lemma (Lemma

14). The next two lemmas are also needed for proving the Bridging Lemma.

Definition 2 Two staircases P and pi are said to cross once iff (i) their intersection is

not empty, (ii) each staircase has at least one point that is strictly to the left of the other

staircase and one point that is strictly to its right, and (iii) for either staircase, the portion

of that staircase that is on or to the left (resp., right) of the other staircase consists of one

connected component. We adopt the convention that the crossing point between two such

staircasea is one that belongs to their intersection and partitions them into pieces that do

not satisfy (ii) (if many such points can be so chosen, we choose the one with, say, the

smalleat x coordinate).

Intuitively, "crossing once" means a staircase switching from being strictly on one side

of the other staircase to being strictly on the other side of it, exactly one time. For example,

two unbounded increasing staircases P a.nd pI such that no point of P is strictly above pi

cannot be said to cross once even if their intersection is non-empty.

Lemma 12 LetC be a clear staircase. Foranyp E VR and anyX E {NE,NW,SE,SW,EN,

ES,WN,WS}, X(p) crossesG at most once.

Proof. IT one ofC and X(p) is increasing and the other decreasing, then the lemma trivially

holds. So suppose that both C and X(p) are increasing (the proof is similar if they are both

decreasing). To prove that C and X(p) cross at most once, first observe that one of the

two classes of segments of X(p) (horizontal or vertical.) consists of segments that coincide

with obstacle boundaries. WLOG, assume the horizontal segments of X(p) all coincide

with obstacle boundaries. In order for C and X(p) to cross more than once, at least one
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vertical segment of C would have to properly intersect one of the horizontal obsta.cle edges

along which runs one of X(p)'s horizontal segments. This would imply that C penetrates

the interior of an obstacle, contradicting the hypothesis that C is clear. 0

Lemma 13 Letv be a node afT andX be any of {U,U', W,W'}. Fora pointp E Xv and

a point q nat in the interior of Qv. there exists a shortest p-to-q path that goetJ through a

point of B(Q.l.

Proof. Let P be a shortest p-to-q path. Since q is not in the interior of Qv, P must

intersect Boll.nd(Qv) before reaching p. By the Containment Lemma (Lemma 10), P can be

chosen so that it enters Qv only once, say, P intersects .Boll.nd(Qv) in between two adjacent

points bl,b2 E B(Qv). (Note that b162 is on Bound(Qv) and no other point of B(Qv) is on

bib2.) WLOG, assume bib2 is vertical and the interior of Qv is to its left. Imagine shooting

leftward horizontal rays from all the points of b1b2 , and let Region be the region illuminated

by these rays, assuming that obstacles as well as Bound(Qv) are opaque. Point p cannot

lie in the interior of Region, since otherwise b1 and b2 would not be adjacent in B(Qv)

and would be separated in B(Qv) by the horizontal projection of p on~. This meaos

that P has to intersect one of the two rays from bl and (respectively) b2 , and hence can be

deformed so that it goes through either bl (if it intersects the ray of b:t) or 62 , 0

Lemma 14 (Bridging) Let X and Y be any of {U, UI
, W, W'}. Let v and w be two nodes

ofT such that lRvI ::; clRwl for some positive con.stant c and Chain(Yw) does not intersect

the interior ofQv' If. in addition to the information stored in T, we are given the lengths of

the Yw·to-B(Q.) paths, then we can compute, in O(log(IR,l)l time and O(IR.IIRwI) work,

the lengths matrix of the shortest X v ~ t o - Y w paths.

Proof. We begin with the case Xv ::; Uv or Wvi WLOG, assume Xv ::; Uv' Note that

Chain(Xv) partitions Qv into two halves such that each half of Qv is convex and connected.

Let p, rJ be the endpoints of Chain(Xv), and q, q' be the endpoints of Chain(Yw).

WLOG, assume that Chain(Yw) is increasing, that q' is the lower-left endpoint of Chain(Yw),

and that q is the upper-right endpoint of Chain(Yw). Now, augment Chain(Yw) by adding

to it NE(q) and 5W(q), thus obtaining an unbounded staircase Chain'(Yw)' We distinguish

two cases, depending on whether Chain'(Yw) intersects the interior of Qv or not. Testing

whether such an intersection occurs is easy to do, by using the indicator matrices.
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Figure 11: Illustrating the proof of Lemma 14.

The first case, when Chain/(Yw ) does not intersects the interior of Qu, is handled as

follows. WLOG, assume that Qu is below Chain/(Yw )' Let I, r, t, and b be respectively a

leftmost, rightmost, top, and bottom vertex of Qu (there are at most two candidates for

each, and we choose one of these two arbitrarily). The idea is to use the Monge Multiply

Lemma (Lemma 5), with B(Qu) playing the role of Z in that lemma, Xu playing the role

of X in that lemma, and Yw playing the role of Y in that lemma. (Note that by Lemma

13, the Xu-to-Yw paths can be chosen to go through B(Qu).) But in order to be able to use

that lemma, we need to judiciously partition each of B(Qu) and Yw into a constant number

of pieces (Xu will not need to be partitioned). The partitioning of B(Qu) is quite simple:

the points determining the partition are l, r, t, b, p, and p' (see Figure 11); hence B(Qu)

gets partitioned into at most six pieces-fewer if the six points determining the partition

are not distinct. Note that the path lengths matrix between Xu and any of these six pieces

is Monge (by Lemma I), thus satisfying one of the requirements for the Monge Multiply

Lemma. To satisfy the other requirement, however, we must partition Yw with great care,

in such a way that the path lengths matrix between each piece of Yw and each piece of

B(Qu) is indeed Monge. TIllS partitioning of Yw is induced by a partitioning of Chain(Yw )

into at most seven pieces, according to the following (at most six) points: the points at

which Chain(Yw ) crosses each of NE(r), NE(t), NW(t), NW(I), 5W(l), and 5W(b) (see

Figure 11). (Note that Chain(Yw ) can cross each of NE(r), NE(t), NW(t), NW(I), 5W(I),

and 5W(b) at most once, by Lemma 12.) Finding these six points is easy to do by using the

indicator matrices. It is not hard to see that this is a suitable partition of Yw , by Lemma

2.

The second case, when G1lain' (Yw ) intersects the interior of Qf'" is handled as follows.
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Figure 12: lllustrating Lemma 15.

Dy Lemma 12, Chain'(Yw) can cross Chain(Xv) at most once and Bound(Qv) at most twice.

The crossing point between Chain(Xv) and Chain'(Yw ) (if one exists), as well as the (at

most) two crossing points of Chain'(Yw) with the boundary of Qv, can easily be computed

by using the indicator matrices. Chain'(Yw ) defines two independent subproblems, one on

each side of it; they are independent because of the Containment Lemma (Lemma 10). We

solve each of these two subproblems separately, similarly to the way we solved the first case.

We now turn our attention to the case Xv = V~ or W ~ j WLOG, assume Xv = V~.

Suppose that we have computed the lengths of the Uv·to-Yw paths using the algorithm in

the previous paragraphs (hence the lengths of the Yw-to-B(Env(l£ftR.v U l£ft-Sepv)) paths

are known). Then essentially the same algorithm as for the case Xv = Uv works except that

Env(LeftRv ULeft-Sepv) now plays the role of Qv and V ~ plays the role of Vv (Yw being the

same). 0

Lemma 15 Let w be an ancestor of v in T. Let X be any of {V, V', W, W'}. If, in addition

to the information stored in T, we are given the lengths of the B(Qv)-to-B(Qw) paths, then

we can compute, in O(log(l1l"I)) time and 0(111"1111,,,1) work, the lengths mat';" of the

shortest Xv-to-B(Qw) paths.

Proof. If w = v, then the computation is trivial. Otherwise, Qw properly contains Qv (see

Figure 12). Hence Bound(Qw) does not intersect the interior of Qv' Partition Bound(Qw)

into four staircases, in the obvious way, and for each such staircase C use the same proof

as in the Bridging Lemma (Lemma 14), with B(Qw) n C playing the role of Yw . 0

Lemma 16 For each v in T and all X,Y E {V,V/,W,W/}, the lengths matrix of the

X.·to-Y. paths can be computed in O(log 111,,1) time and 0(111,,1') work (see Figure 10).
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Proof. Similar to that of the Bridging Lemma (Lemma 14) and omitted.

The observations presented in this subsection will be used in what follows.

6.2 The B(P)-to-VR Path Lengths

o

We begin with the case P = Env(R). First, we construct the recursion tree T and all its

associated information, as explained in the previous subsection. Let root be the root of T

(hence Qroot = Env(R)). We would like to compute, for each node VET, the four matrices

containing the X,,-to-B(Qroot) path lengths, for each X E {U, U1
, W, W'}. We do this from

the root down, one level at a time. At Toot, we use Lemma 15 to do titis in O(l.R,.ootj2)

work (the condition for the lemma is trivially satisfied there, since we are using it with

Toot = v = w). Having done this for Toot makes the application of Lemma 15 at each child

v of Toot possible (with w = root), which takes O(IRrootllR,,1) work for each such v. This in

turn makes the application of the lemma at each grandchild v of the root possible, etc. We

proceed in this way from the root down, one level at a time, until we reach the leaf level.

Let the height of T be height(T). The time for this is clearly O(log IRrootl * height(T))

and the work is O(IR,.ootILuET IR"I). This implies an O(log2 n ) time and O(n2 10gn) work

complexities (where the fact that LuETIR,,1 = O(nlogn) was used). By Brent's theorem,

the processor complexity is O(n2 jlogn). The case where P properly contains Env(R) is

easily handled by the method for the above case, in conjunction with that of Section 5.

6.3 The VR-tO-VR Path Lengths

First we do the following pre-processing. In parallel for each WET, we compute the

lengths of the Xu-to-B(Qw) paths and the Xu-to-Yw paths for all descendants v of w, and

all X, Y E {U, U/,W, W'}. These two computations are trivial to do if v = w (in the first

case the information is already stored in T, in the second case we can use Lemma 16). So

suppose v i- w, Le., v is a proper descendant of w. Then the computation of the X,,-to

B(Qw) path lengths is done exactly as in the previous subsection (with w now playing the

role of Toot), resulting in O(log2 n) time and O(IRw1210g IRwI) work for this particular w.

This also gives us some but not all of the desired X,,-to-Yw path lengthsj for example, if u is

the child of w whose Qu contains Xu, and if U:U is on Bound(Qu), then we already know the

Xll-to-U:U path lengths but not the Xll-to-W:U path lengths-these must still be computed.

We compute the remaining Xll-to-YW path lengths also in a top-down manner, in parallel

for all w, from w down, by using repeatedly the Bridging Lemma (Lemma 14) at each level
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of the downward trip from Wj the lemma's hypothesis is satisfied, Le., we do know the

Yw-to-B(Qu) path lengths, because they would already have been computed earlier by w's

top-down computation. Th..is too takes O(log2 n) time and O(IRwj21og IRw I) work. Summed

over aU such w, the total work for the pre-processing is O(logn EWET IRwj2) = O(n2Iogn).

Since we already computed, in the previous subsection, the lengths of the paths having

an endpoint in B(Env(R)), it suffices to compute the lengths of paths having both endpoints

in VR - B(Env(R)). Each vertex in VR - B(Env(R)) appears on some Xv, vET, X E

{U, UI,W, WI}. Therefore it suffices to compute the lengths of the Xv-to-Yw paths for all

v, wET and X, Y E {U, U', W, WI}. This is done in the rest of this subsection.

Before going into the details, we point out the main reason behind the elaborate c o n ~

structions that are abollt to follow: unless great caution is exercised, when computing the

X ll-to-Yw path lengths for a particular v, w pair, the associated Monge matrix multipli

cation might not satisfy the size requirements of the Monge Multiply Lemma (Lemma 5)i

that is, the required relations between Ct, fJ, and I of that lemma might be violated. This

is the main reason for the condition "IRvI :$ IRwI" that is about to play such an important

role in the concept of "flowll that is given next.

For nodes v, wET, let the tree distance between v and w, denoted by l(v, w), be the

number of edges on the v-to-w path in the undirected version ofT. Clearly,l(v,v) = O. The

computation for the VR-tO' VR path lengths proceeds in 2 *' height(T) stages, each of which

takes O(log n) time. Whereas the approach in the previous subsection was a "top-down

flow" from the root of T, repeatedly making use of Lemma 15, here the flow is from each v

to the w's that have IRwI 2:: IRvI, in the order of their tree distance from v. The flows for

all v's start at the same time. Thus, if IRvI :::; IRwI, then the flow for v reaches w at stage

[(v,w) (which is at most 2 * height(T)). When the flow for v reaches w, it computes the

desired information between v and w, possibly using the Monge Multiply Lemma (Lemma

5) and the Bridging Lemma (this information consists of more than the X,,-to-Yw path

lengths-more on this later). Observe that for any pair v,w E T, the flow of one of these

two nodes eventually reaches the other, so that all the Xv-to-Yw path lengths eventually

gets computed. In what follows, X,Y E {U, UI
, W, W'}.

Before descrjbing the detailed computation done when the flow for v reaches w, let us

look at the subset of T visited by the flow for v (call it Region(v)). The flow for v obviously

does not visit the proper subtree of v in T, and it obviously does visit every w on the

v-to-root path in T. For every such w, it may also visit a portion of the subtree of the child
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of w (call it 1£) which is not an ancestor of vi the portion so visited induces a subtree of T

rooted at 1£. If v'is the parent of v then clearly Region(v') ~ Region(v) and, if the flow for

v' reaches w at (say) stage k, then the flow for v will reach that same w at stage k + 1.

When the flow for venters w, w =fi v, we obtain the Xv·to-Yw path lengths. These path

lengths are available from the pre-processing stage if w is an ancestor of v, but otherwise

they must be computed-we compute them using the Bridging Lemma (Lemma 14). The

details of this computation are tricky. When v's flow enters w from w's parent, it can do

so under one of two possible modes of operation (call them mode 1 and mode 2): mode 1

when IRp"rent(v)I ~ IRwl, and mode 2 when IRwI < [Rp",rent(v)l. Note that the concept of

mode is undefined for a flow that has just entered a node from its childi if v's flow enters w

from a child u of w, then v's flow at w has no mode associated with it, and u is an ancestor

of v. Observe that, M a result of the definitions of modes 1 and 2, we have the following:

• If the flow for v is at w, then at the next stage the flows of v's children will enter w

in mode 1.

• If the flow for v is at w in mode 1, then at the next stage it can go to a child of w in

mode 1 or mode 2.

• If the flow for v is at w in mode 2, then at the next stage it can go to a child of w in

mode 2 only.

• If the flow for v is at w in mode 2, then IRwl = O(lRvl) and, furthermore, that flow

will finish visiting w's subtree in 0(1) stages.

Obviously, if at stage k, the flow for v is simultaneously at wand w', then its mode at

w might be different from its mode at w'.

In order to compute the desired Xv-to-Yw path lengths, the flow for v gets help from a

piece of preparatory infonnation that enables it to use the Bridging Lemmaj this preparatory

information consists of either (i) the B(Qv)-to-Yw path lengths (if v's flow enters w in mode

1), or (il) the Xv-to-B(Qw) path lengths (if v's flow enters w in mode 2). In case (i), this

preparatory information is either obtained from parent(v) (if v's flow enters w in mode 1),

or is available from the pre·processing (if v's flow enters w from a child of w). In case (ii),

the preparatory information comes from v itself (it would have obtained that information at

the previous stage). Of course, the assumption that the preparatory information is already

available to v as its flow enters w places an extra burden on v: that of computing the
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Figure 13: Illustrating the computation of (<I.) mode 1, and (b) mode 2.

preparatory information that it will be required to supply at the next slagej it will supply

the information to each of its children '/1,' (because the flow for '/1,' will enter w in mode 1 at

the next stage), or it will supply the information to itself (if its own flow will enter a child

of w in mode 2 at the next stage). Below we give the details of the computations performed

in each of these two modes.

In what follows, suppose the flow for v has just entered w, at stage k = l( v, w). We

must prove that we can compute the XIl-to-YW path lengths and that we cau compute the

preparatory information to help perform the next stage k + 1. The proof is by induction on

k, the basis (k = 1) being straightforward (since w =parent(v) in that case, and hence all

of the needed information is trivially available). The details for the induction step follow.

We distinguish two cases, based on the mode in which v's flow has entered w.

Mode 1. 1R"lIrent(ll)I ~ IRwI: then it must have been the case that, at stage k - I, the

flow for parent(v) had already reached wand (by the induction hypothesis) had computed

(for its children's future benefit) the B(QIl)-to-Yw path lengths information. It should be

clear that this information (available after stage k - 1 at parentev» enables us to use the

Bridging Lemma (Lemma 14) for computing the Xv-to-Yw path lengths (see Figure 13 (a»,

in O(log IR"I) time and O(IR,IIRwI) work.

Now v must compute, for the benefit of each of its own children, say '/1,', the preparatory

information that '/1,' will need at the next stage k + 1, namely, the B(Qu,)-to-Yw path

lengths information (note that the flow for '/1,' will enter w in mode 1). But this information

is readily available, from the knowledge of the B(QIl)-tO-YW and the X I1-to-Yw path lengths

information.

Finally, v checks whether its flow will next enter a child '/1, of w in mode 2 and, jf so, it
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collects the preparatory information that jt will then need at the next stage k+ 1, namely, the

B(Qu)-to-Xv path lengths. We say "collect" rather than compute, because this information

is already available, by the following argument. WLOG, assume Qu = Env(LeftRuJ. The

portion of B(Qu) that is interior to Qw consists of U ~ and a. portion of Uw, and the path

lengths between these and Xv have just been computed. We claim that the path lengths

between Xv and B' = B(Qu) - U~ - Uw had been computed earlier. To see this, first

observe that every point p E B' is either (i) in B(Q/ca(u,v») where Ica(1£,v) is the lowest

common ancestor of 1£ and v in T, or (ii) in Yz for some z on the w-to-lca( 1£, v) path in T.

In case (i) we already know the p-to-Xv path lengths because of the pre-processing. In case

(ii), we also know the Xu-to-Yz path lengths information, because the flow for v has already

reached w, and hence had earlier reached z.

Mode 2. IRwI < l14arent(u)l: this implies that w is not an ancestor of parent(v), and that

v's flow entered w from parent(w) at the previous stage k -1. We claim that v already knows

the Xu·to-B(Qw) path lengths information. To see this, first observe that, if parent(w) is an

ancestor of v, then that information is already available from the pre-processing. Otherwise,

by the induction hypothesis, v's flow must have prepared that information, when it WaB at

parent(w) at stage k - 1, for its own use at stage k. The availability of this information

implies that we can use the Bridging Lemma (Lemma 14) to compute the Xv·to-Yw path

lengths information, where our v (resp., w) plays the role of the lemma's w (resp., v) (see

Figure 13 (b)). Note that as a by·product of this computation, we now know the Xv-to

B(Qu) path lengths information for each child 1£ of w, and this is precisely the preparatory

information that may be needed by v's flow for the next stage, in case v's flow enters u (as

already noted, it would do 50 in mode 2).

We now claim that we can also easily collect, for every child 1£' of v, the B(Qu,)·to-Yw

path lengths, which is precisely the preparatory information that is needed by the .flow of

u' for the next stage, when that flow enters w in mode 1. To prove the claim, assume

WLOG that QUI = Env(LeftRv). The portion of B(Qu') that is interior to Qv consists

of U ~ and a portion of Uu, and the path lengths between these and Yw have just been

computed. We claim that the path lengths between Yw and B' = B(Qu') - U~ - Uu had

been computed earlier. To see this, first observe that every point p E B' is either (i) in

B(Qlca(v,w») where lca(v,w) is the lowest common ancestor of v and w in T, or (ii) in X z

for some z on the parent(v)-to.lca(v, w) path in T. In case (i) we already know the p-to-Yw

path lengths because of the pre-processing. In case (ii), we also know the Yw·to-Xz path
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lengths infonnation, because the flow for w has already reached parent(v) and hence had

earlier reached z.

To analyze the work complexity of the above scheme, observe that the work done, when w

is visited by the flow for v, is O(IR"IIRwI). Hence the total work is 00=.ET L:wET 1R"IIRwI)

= O(L:.ET 1R"I(nlog n)) = O(n' log' n) (where we made use of the fact that L:wET IRwI =
O(nlogn)).

Of course, we can collect the lengths of the paths between the points in VR U B(P),

which we just computed, into a single O(n) x O(n) lengths matrix.

6.4 Path Lengths with Arbitrary Query Points

We point out that, given the lengths matrix computed for the case of the VR-to-VR paths,

we can augment this structure with two planar subdivisions so that we are able to handle

a path length query between two arbitrary endpoints in O(log n) time using one processor.

We begin with the case of queries with only one arbitrary endpoint, the other endpoint

being in VR, and then we later extend it to the case of two arbitrary endpoints.

Recall that one of the by-products of the previous VR-to-VR length matrix computation

is the X(p) paths for all p E VR and all X = NE, NW, ... , etc. Given such an X(p) path

for apE VR, we can use one processor to do a logarithmic time binary search on the path.

However, we shall need to do binary search on such paths originating from an arbitrary

point p (not in VR). For such a p, the (e.g.) NE(p) path is not explicitly available, but it

could easily be obtained if we knew which obstacle is first encountered by an upward ray

shooting from !J. We can easily perform such a ray-shooting query in logarithmic time and

one processor, provided we do the following pre-processing. The horizontal (resp., vertical)

trapezoidal edges of VR, together with the obstacles' boundaries, define an O(n)-vertex

planar subdivision HI (resp., H2). We pre-process HI (resp., H2) as in (4L in O(logn) time

and O(n) processors, so that it can support a point location query in O(logn) time with

one processor. This enables one processor to determine, in O(logn) time, which obstacle

is first encountered by a horizontal (resp., vertical) ray-shooting from an arbitrary query

point p by using HI (resp., H2 ).

Assume the path length query is between points p and q where, WLOG, x(q) :5 x(p)

and y(q) :5 yep). If p is arbitrary and q E VR, then we first check whether p lies above

or below NE(q)j assume it lies below (the other case is symmetrical). We then perform a

leftward ray-shooting query from p. If the ray intersects NE(q) before it hits an obstacle,
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then we are done because the path length from p to q is simply d(p,q) (since there is a

q-to-p staircase). Otherwise let e = qlq2 be the (vertical) obstacle edge encountered by the

ray-shooting. The length of a shortest q-to-p path is the smaller of the following: (i) d(p, qt}

+ the ql-to-q path length, and (ii) d(P,Q2) + the q2-to-q path length (recall that the ql-to-q

and IJ2-to-q path lengths are readily available, since q,QhQ2 E VR). That the length we seek

is the smaller of (i) or (ii) is easy to establish and was in fact proved in [11].

If both p a.nd q are arlJitrary, then we first obtain NE(Q) in O(log n) time using one

processor, by doing an upward ray-shooting from q, etc. We then proceed exactly as in the

previous case, except that we need to use the method of the previous paragraph to compute

the lengths of the shortest qrto-q and Q2-to-q paths.

7 Path Lengths When IFI >> IRI

In this section we consider the case when the polygon P containing the n obstacles has

many more vertices than n, that is, IPI = N » IRI = n. So suppose that IRI = o(IPI).

We can avoid a term quadratic in N in the work complexity by building a data structure

for an implicit representation of the path lengths. The method we show here works for

any of the versions of the problem we considered earlier, and results in O(log N + log2 n)

time and O(N + n2fen)) work complexities where f( n) = 1 in the B(P)-to-B(P) case, and

fen) = logn in the B(P)-to-VR case. Tltis implicit representation allows us to still use one

processor to achieve constant time for a length query whose endpoints are in B(P) U YR.

The idea is to partition Bound(P) into eight chunks, each of which is a contiguous portion

of Bound(P). Each of the eight chunks has associated with it an O(n)-vertex unbounded

staircase which separates that chunk from the interior of Env(R), and that is used to answer

queries relevant to that chunk. Sjnce each such staircase has O(n) vertices, we can use the

algorithms of the previous sections to process it, that is, to compute length information

about paths that have an endpoint on that staircase.

The way we partition Bound(P) is by drawing an infinite horizontal (resp., vertical)

line from each of the ltighest and lowest (resp., leftmost and rightmost) edges of Env(R).

These four lines induce a partition of Bound(P) into at most eight connected components,

each of which is one of the above-mentioned chunks. We call these the top, north-east, ... ,

etc. chunks (in clockwise order), respectively (see Figure 14). It is easy to find, for each

point in B(P), to which chunk it belongs. We explain how to process the top chunk and
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Figure 14: illustrating the partition of Bound(P).

the north-east one, since the others are obviously analogous. We only consider the shortest

paths that are nontrivial in the sense that they link two endpoints that are on segments

that do not llOrizontally or vertically "see each other". The trivial shortest paths are easily

handled M e.,'l:plained earlier in Section 4, specifically, in the Discretization Lemma (Lemma

7).

For the top chunk, we let If be the set of vertical projections of the points of B(Env(R))

on the horizontal line H defining that chunk. It is obvious that for any vertex p of P in

the top chunk, a nontrivial shortest path from p to anywhere below H can be "deformed" ,

without any increase in its length, 50 that it goes through a point of J(, and hence the

lengths of paths to the points in IC implicitly represent the lengths of all paths to the top

chunk.

For the north-east chunk, we project horizontally as well as vertically on that chunk the

points of B(Env(R)); let I( be the set of these D(n) projection points. Let C be MAXNE(K).

We must prove that any nontrivial path from a vertex p of P on the north-east chunk which

crosses C can be deformed, without any increase in its length, 50 that it goes through a

vertex of C. Let p be any vertex on the north-east chunk, and let q (resp., q') be the point

of J( that is immediately after (resp., before) p in the linear ordering of that chunk's points.

Note that q and q' are not adjacent vertices on C, since there is a vertex q" of C between

them (by definition of the MAXNE(K)). Now, consider any nontrivial path to p. Since there

is no point of B(Env(R)) whose horizontal or vertical projection on the north-east chunk

falls in between q and q' in IC, it follows that any such path must go below one of {q,q1},

in which case we can deform it to go through one of {q,q'} (say, q) or through q'1. Hence

the lengths of paths to the vertices of C implicitly represent the lengths of all paths to the
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north-east chunk.

To achieve constant query time, we must have associated, in a pre-processing stage,

each such p with q and q, something which is easily done by a parallel merging [35J and a

parallel p,.fix [18, 191.

8 Computing the Actual Paths

In this section we present a parallel algorithm for building a data structure that enables us

to report an actual shortest path (rather than just its length) between the query points,

within O(logn) time and O(Iogn + k) work, where k is the number of segments on that

path. Assuming that the structure for querying path lengths is available (computed as in

Section 6), the algorithm constructs the data structure for the actual path queries in an

additional O{logn) time and O(n2
) work. We use the same terminology as in Section 6.

The data structure for the path queries consists of: (i) IVnl shortest path trees, each

of them rooted at one of the vertices in VR, (H) the two planar subdivisions HI and H2 of

Subsection 6.4, and (iii) the X(v) paths for each v E Vn and X = NE, NW, ... , etc.

We already discussed the computation of the X(v) paths (in Subsection 6.1), and that

of the two planar subdivisions HI and H 2 (Subsection 6.4). Hence we need only show how

to compute a shortest path tree for every vertex in VR, and how to use these shortest path

trees to process a path query in parallel.

The shortest path trees are computed using the following information: (1) the VR-to

VR lengths matrix, containing the lengths of paths between the vertices in VR (computed

in Subsection 6.3), (2) the two planar subdivisions HI and H2' (3) the X(v) paths for

each vertex v E VR, (4) two copies of VR, one sorted by x coordinates and the other by y

coordinates, (5) for every w E VR , the obstacle (if there exists one) that is hit by a horjzontal

leftward (reap., rightward) ray-shooting from w, and the obstacle (if there exists one) that

is hit by a vertical upward (resp., downward) ray-shooting from w (note that using HI and

H2' all these obstacles for a vertex w can be found in O(logn) time and one processor),

and (6) for each edge e of the obstacles, the set of the vertices in Vn whose ray-shootings

hit e, denoted as Hit(e), sorted according to where their rays hit e (for example, if e is the

right edge of an obstacle, then Hit(e) is the set of vertices in VR whose horizontal leftward

ray-shootings hit e, and Hit(e) is sorted by y coordinates) (note that all the Hit(e) sets can

be obtained in O(logn) time and O(nlogn) work).
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We now show how to use the above information in (1)-(6) to construct, in an addltional

O(log n) time and linear work, a shortest path tree rooted at a vertex v E YR. For every

wE VR - {v}, we associate a "parent" pointer with w as follows. WLOG, assume that w

E Vn - {v} such that x(v) ~ x(w}, y(v) ~ y(w), and w is below NE(v); note tbat in tbis

case, the shortest path between v and w is monotone with respect to the x-axis (see [11] for

a proof). If the horizontal leftward ray-shooting from w crosses NE(v) before reaching an

obstacle, then a shortest path from w to v is via NE(v); we then let w have an associated

pointer to the segment on NE(v) at which the ray from w crosses NE(v). If the ray from

w does not cross NE(v), then let Ut and U2 be the two vertices of the right edge of the

obstacle hit by the ray; using the Vn-to·VR lengths matrix, we can easily decide whether a

shortest path from w to v is via Ut or via U2 (say it is via ud, and we then let w have an

associated pointer to Ut. Also we let the segments of each X(v) path be directed toward v.

This computation for vertex v results in a directed graph of O(n) edges and vertices,

whose vertices are the union of the vertices in VR and the vertices of the X(v) paths. This

graph is a tree rooted at v because every vertex in the graph except v has exactly one out·

going edge (the pointer to its parent) and no cycle can occur in this directed graph because

of the monotonicity property of the shortest paths [11] (recall that this monotonicity states

that the only shortest paths we need to consider are those that are monotone with respect

to one of the two coordinate axes). Therefore, we have obtained a shortest path tree rooted

at v.

It follows that the computation of all the O(n) shortest path trees whose roots are the

vertices in VR can be done in an additional O(logn) time and O(n2 ) work.

Next we discuss how to pre-process the shortest path trees, so that each tree can support

a shortest path query between the vertex of VR stored in the root of the tree and any vertex

in YR. We restrict our attention to the case where both query points are vertices in VR,

because the case of arbitrary query points can be reduced to it in a way similar to the one

we used for computing path lengths of arbitrary query points (see Subsection 6.4).

We pre·process each shortest path tree so that the following type of queries can be

quickly answered: given a vertex v in the tree and a positive integer i, find the i-th vertex

on the path from v to the root of the tree. Such queries are called level-ancestor queries by

Berkma.n and Vishkin [5J, who gave efficient parallel algorithms for pre-processing rooted

trees 50 that the level-ancestor queries can be answered quickly. The work of Berkman and

Vishkin [5,6] shows (implicitly) that a level-ancestor query can be handled sequentially in
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constant time, after a logarithmic time and linear work pre-processing in the CREW-PRAM

model. The pre-processing of the shortest path trees is done by simply applying the result

of Berkman and Vishkin to each of the O(n) trees, in totally O(logn) time and 0(n2 ) work.

For the sake of processor assignment in reporting paths, we also need to compute the

number of segments on the actual shortest path which is to be reported. Suppose a shortest

path between vertices v and w in VR is to be reported. The number of segments on such a

v-to·w path can be obtained from the depth of w in the shortest path tree rooted at v; it is

known that the depths can be computed within the required complexity bounds by using

the Euler Tour technique [36].

To report an actual shortest path between vertices v and w in VR, we do the following.

First, we go to the shortest path tree rooted at (say) v, and find the number of segments

on the path in the tree f.rom node w to the root v. Let that number be k. The w-to-v

path in the tree corresponds to a geometric shortest path between v and w, which we must

report. We do so by performing, in parallel, rkj log n1- 1 level-ancestor queries, using node

wand integers nogn1, 2nogn1, ... , Ukjlognl-1)nogn1. Each query is handled by one

processor in 0(1) time. These queries cut the w-to-v path into rkj log n1 pieces of O(log n)

segments each. Finally, we report the rk/logn1 pieces of the path in parallel by assigning

one processor to output each piece of the path sequentially.

9 A Note on the Sequential Time Complexity

In this section we make a fairly straightforward observation about the sequential time

complexity of the problem we considered (but one that, to the best of our knowledge, has

not yet been documented). We sketch an 0(n2
) time sequential algorithm for building the

data structure that supports the fast processing of the length and path queries (Le., O(logn)

time for a length query, and O(1og n +k) time for a path query, where k is the number of

segments on the path reported). In this sequential algorithm, we take a topological sort [2]

approach, which is very different from the divide-and-conquer approach used in our parallel

algorithms.

We only discuss how to compute the VR-to-VR matrix of path lengths, because we

have shown (in Sections 6 and 8) that the other components of the data structure can be

computed in 0(n2
) work (hence 0(n2

) sequential time). Recall that these components are

the two planar subdivisions Ift and If2 , the X(v) paths for every v E VR, and the shortest
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path trees rooted at the vertices in VR, where X = NE, NW, ... , etc.

Note that there is a sequential algorithm in [11] that optimally solves the single source

case of the problem for computing rectilinear shortest paths avoiding rectangular obstacles.

The algorithm in [11] uses the plane sweeping technique. This algorithm can be used to

compute, in O(nlog n) time, the lengths of the shortest paths between a chosen vertex v in

VR (designated as the fixed source point) and the vertices in VR - {v}. Hence the VR-to-VR

lengths matrix can be obtained lly simply applying the algorithm [11] O(n) times (each

time a different vertex in VR is designated as the fixed source point), in totally O(n2 10g n)

time.

The O(n2
) time algorithm is based on the geometric observations given in [11]. The only

tlting we do differently is that, when computing the path lengths between a fixed vertex

11 and the vertices in Vn - {v}, we do not use plane sweeping. Rather, we do topological

sorts [2] on O(n) directed acyclic graphs of size O(n) each. Tllese directed graphs will be

built using trapezoidal decomposition [32J and the XCv) paths for all v E YR.

First we show how to build the O(n) directed graphs. For a vertex v E VR, there are

four directed acyclic graphs associated with it. Consider the shortest paths between v and

the vertices in Vn - {v}. The four graphs of v correspond to the following four cases of

the shortest paths: (i) those monotone with respect to the x-axis and with v as their left

endpoints, (ii) those monotone with respect to the x-axis and with v as their right endpoints,

(iii) those monotone with respect to the y-axis and with v as their upper endpoints, and

(iv) those monotone with respect to the y-axis and with v as their lower endpoints. We

only show how to compute for case (i) (the other cases are handled similarly). Let Vn be

given sorted by y coordinates.

Suppose that we already know the following information: for the right edge e of each

obstacle, the vertex set Hit(e) (recall that this is the set of vertices in VR whose horizontal

leftward ray-shootings hit e). (Computing these sets is done during the pre-processing, by

using trapezoidal decomposition [32].) Let Ul and U2 be the two vertices of e. For each

wE Hit(e), the path length between wand Ul (resp., w and U2) is simply d(ullw) (resp.,

d(U2'W» and can be trivially computed in 0(1) time.

It has been shown in [11] that a shortest path between v and a point p is of case (i) if

p is on or is to the right of NE(v) U SE(v). We do the following. (1) Find all the vertices

in VR that are on or to the right of NE(v) U SE(v); this can be easily done in O(n) time

by merging Vn (sorted by y coordinates) and NE(v) U SE(v). Let the set of the vertices
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that are on or to the right of NE(v) U SE(v) be Right(v). Right(v) is the vertex set of the

graph. (2) For every vertex u E Right(v) whose horizontal leftward ray-shooting crosses

NE(v) U SE(v) before reaching an obstacle, compute the length of its path to v, which is

simply d(v,u) (note: there will be no incoming edge for such a vertex U in the graph). (3)

For every vertex w E Right(v) whose horizontal leftward ray-shooting does not cross NE(v)

U SE(v) , let e be the right edge of an obstacle such that w E Hit(e), and let UI and Uz

be the two vertices of e (UI' U2 E Right(v»; associate with UI (resp., uz) a pointer to w

and assign the pointer a weight equal to d( Ul, w) (resp., d(Uz, w» (note: w has exactly two

incoming edges in the graph, one from Ul and the other from U2). The construction of this

graph for vertex v clearly requires D(n) time.

The directed graph for vertex v E VR so constructed is acyclic due to the monotonicity

property of the shortest paths in case (i), and it obviously has D(n) vertices and directed

edges. The undirected version of the graph may have more than one connected component.

A shortest v-to-w path in it, when wE Right(v), corresponds to a shortest geometric path

between v and w. The single-source shortest paths problem in such a graph can easily be

solved in linear time, since it is acyclic. Therefore the VR-to-VR path lengths matrix can be

computed in D(n2
) time.

10 Conclusion

We have obtained efficient parallel algorithms for building a data structure that supports

fast processing of queries about the lengths of the shortest paths between arbitrary points,

and about the actual paths.

The techniques involved in the solution include: (i) efficiently finding a "staircase sepa

rator" and using it to guide the recursion, (ii) reducing the transitive closure computation

in the "conquer" stage to a constant number of (min, +) matrix multiplications (instead of

the usual logarithmic number of matrix multiplications), and (iii) showing that the matrices

being multiplied in the "conquer" stage have a special structure that enables us to avoid

the super-quadratic work bottleneck that is usually the price paid for doing parallel matrix

multiplication. In addition to the above techniques (which are likely to be useful in other

contexts), we used a number of observations that are specific to this particular kind of path

problems. We achieved (ii) and (iii) by partitioning the obstacles' boundaries in a way which

ensures that the resulting path length matrices we use have a monotonicity property that
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is apparently absent before applying our partitioning scheme. The most general version of

our algorithm required a novel pipelining of the computation up and down the recursion

tree, with O(n) computational "flows" that originate from all nodes and proceed only to

the nodes whose associated problem size is larger than that of the flow's origin.
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