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Abstract. We study parallel redrawing graphs: graphs embedded on
moving point sets in such a way that edges maintain their slopes all
throughout the motion.

The configuration space of such a graph is of an oriented-projective
nature, and its combinatorial structure relates to rigidity theoretic pa-
rameters of the graph. For an appropriate parametrization the points
move with constant speeds on linear trajectories. A special type of ki-
netic structure emerges, whose events can be analyzed combinatorially.
They correspond to collisions of subsets of points, and are in one-to-
one correspondence with contractions of the underlying graph on rigid
components. We show how to process them algorithmically via a parallel
redrawing sweep.

Of particular interest are those planar graphs which maintain non-
crossing edges throughout the motion. Our main result is that they
are (essentially) pseudo-triangulation mechanisms: pointed pseudo-trian-
gulations with a convex hull edge removed. These kinetic graph struc-
tures have potential applications in morphing of more complex shapes
than just simple polygons.

1 Introduction

Consider a straight-line drawing of a graph G = (V, E) in the plane. A parallel
redrawing of G is another drawing so that for every edge ij ∈ E, the correspond-
ing line segments in the two drawings are parallel (Fig. 1). A parallel redrawing
is trivial if it is similar to the original drawing (via a rescaling or translation of).
See Fig. 1(A-B). Classical results in Rigidity Theory, see [16], establish combi-
natorial criteria for a graph to admit non-trivial parallel redrawings, generically.
In particular, such a graph has a certain number of degrees of freedom (for the
example in Fig. 1(C-D) this number is one).

A kinetic point set is (for the purpose of this paper) a set of points in the plane
moving with constant velocities, and a kinetic graph is a graph drawn on a kinetic
point set. An illustraton is found in the rightmost example of Fig. 2. As the points
move, the shape of the embedding changes: edges may shrink to zero-length, points
may collide and edges may cross for certain time intervals, and be non-crossing
for others. A natural graph drawing problem is whether these phenomena may be
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(A) (B) (C) (D)

Fig. 1. A direction network (A) with only similar (trivial) parallel redrawings (B), and
another one (C) with a non-similar parallel redrawing (D)
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Fig. 2. The kinetic point set underlying a Laman mechanism: a parallel redrawing, the
point velocities and the linear trajectories of the vertices

predicted from the law of motion of the points (given by their initial positions and
velocities). In this paper, we give a complete answer to this problem under the ad-
ditional constraint that throughout the motion, the graphs are parallel redrawings
of each other. To keep the presentation short, we’ll discuss here only the case when
the graphs have exactly one degree of freedom. Our main algorithmic result is
an efficient technique for predicting the relevant events via a new process called
the parallel redrawing sweep, of which Figure 3 is a preview.

Of particular interest is the planar case. Given a plane embedding of a planar
graph, start moving the points (kinetically): are there graphs which remain non-
crossing throughout the whole duration of the motion?

The answer to this question is intrinsically related to a special class of planar
graphs, the pointed pseudo-triangulation mechanisms. A pseudo-triangulation is
a plane graph with a convex outer face and with all inner faces embedded as
pseudo-triangles: simple polygons with exactly three inner convex vertices (called
the corners of the pseudo-triangle). In a pointed pseudo-triangulation, each vertex
is incident to an angle larger than π. Removing a convex hull edge from such a
graph produces a pointed pseudo-triangulation mechanism (ppt-mechanism), see
Fig. 3. Our main theorem is that these are (essentially) the only one-degree-of-
freedom graphs which maintain planarity throughout a parallel redrawing motion.
Figure 3 gives a preview.

Historical background. Points moving with constant velocities appear in a pop-
ular morphing technique for planar polygonal shapes. It is known that the sim-
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plicity of the shape may be violated during the morph. While there are morphing
techniques which achieve simplicity, e.g. via compatible planar triangulations as
in [5], or by maintaining the slopes of the polygon edges, as in [7], nobody seems
to have analyzed theoretically what this simple paradigm for motion has to say
about edge crossings.
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Fig. 3. A parallel redrawing pointed pseudo-triangulation mechanism: snapshots from
its motion. The second and third snapshot have the same combinatorial structure, but
all the others differ in the convex/reflex angles per face. Note the flips in rigid bodies
between consecutive snapshots with different combinatorial structure.

Pseudo-triangulations are relatively new objects, applied in Computational
Geometry for problems such as visibility [10] and kinetic data structures [1].
The pointed or minimal pseudo-triangulations [14, 15], have interesting rigidity-
theoretical properties and applications in designing efficient motion planning
algorithms for planar robot arms. Recently many papers have investigated their
rich combinatorial, rigidity theoretic and polyhedral properties, e.g. [8, 11, 2, 3]
and applications [12].

The main result of this paper, as stated above, is in fact a new rigidity-
theoretic property of pointed pseudo-triangulation mechanisms. Whereas in the
fixed-edge-length model of rigidity, these graphs are 1-dof expansive mechanisms,
the new result of this paper is that in the fixed-edge-direction model, they capture
the essence of kinetic parallel-redrawing planar graphs. The property is surpris-
ingly simple, has an elementary proof and is entirely new: I am not aware of
anybody even asking such a question before. I am presenting it to the Graph
Drawing community with the expectation that it may find applications beyond
those that originally motivated my investigation.

How to read this extended abstract. To formally state the results (the-
orems and algorithms), I have no choice but to plunge into a fair amount of
definitions: it will take a few pages, since there is no standard reference where
I can send the reader to gather them all (but please skip directly to page 426
if this is familiar material). To help the reader less fluent with all these con-
cepts get faster to the ideas, and especially since many of them have a kinetic
nature which can hardly be conveyed only with static printed images, I have
assembled a web site with animations and interactive applets illustrating them:
http://cs.smith.edu/~streinu/Research/KineticPT/
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2 Preliminaries

A (planar) kinetic point set p(t) = {p1(t), · · · , pn(t)} is a finite collection of time-
dependent points pi(t) ∈ R2 in the Euclidean plane, each one moving on a linear
trajectory at constant speed. The continuous time parameter t runs over the real
line R, but it will become apparent during our proofs and analysis that it is very
useful to think of it sometimes as running over the projective line: R extended
with a point at infinity.

A graph drawing or embedding G(p) is a mapping of the vertices V of a graph
G = (V, E) to a set p = {p1, · · · , pn} of points in the plane, i �→ pi. A planar
graph embedding (or a plane graph) has no crossing edges. A topological plane
graph is the (planar) graph with the additional information regarding its faces
and their incidences, given for instance by the rotations of edges around vertices
(but not necessarily by a concrete embedding).

A kinetic graph G(p(t))t∈I is a graph G embedded on a kinetic point set p(t).
Of particular interest are the kinetic graphs which remain planar throughout the
entire motion t ∈ R. To formally state our results on planar kinetic graphs, we
give now the necessary definitions regarding Parallel Drawings, Rigidity Theory
and Pseudo-triangulations.

A direction network (G, D) is a graph together with a set of directions (slopes)
dij associated to its edges ij ∈ E. A drawing 1 or realization G(p) of (G, D) is
an embedding G(p) of G on a set of points p such that for each edge ij ∈ E, the
direction of the line through pi and pj is dij .

If we denote the coordinates of the unknown points as pi = {xi, yi} and the
known directions as dij = [aij : bij ] (as projective points, expressed with homoge-
neous coordinates), we obtain each realization as a solution of the homogeneous
linear system:

〈pi − pj, d
⊥
ij〉 = 0, ∀ij ∈ E (1)

where d⊥ij = [bij : −aij ] is the vector orthogonal to dij . Since every translation of
a realization yields another realization, we can factor them out by pinning down
a vertex at the origin, e.g. as x1 = y1 = 0. This shows that the set of all the
realizations (modulo translations) is a linear space (of some dimension k), and
contains the trivial realization, where all the points coincide (with the origin).

A parallel redrawing of a graph embedding G(p) is another embedding G(p′)
of the same graph, such that the corresponding edges have parallel directions in
the two drawings. A parallel redrawing is trivial if it is a translation G(p+p0) or
a rescaling G(αp) of G(p). In this case the two figures are similar. See Fig. 1. The
configuration space of a direction network is the space of all possible realizations,
modulo the trivial parallel redrawings.

A direction network is consistent if it has a realization with not all the points
coinciding (i.e. its configuration space is not trivial). It is generic if small per-
1 It is worth alerting the reader at this point that although our graph drawings are

taking place in the Euclidean plane, the resulting space of all possible drawings will
turn out to be a real projective space.
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Fig. 4. (A) An inconsistent direction network: only the trivial realization matches for
the edge ij the direction of the thick segment. (B) Changing the direction of the
inconsistent edge to a well defined value turns it into a consistent network.

turbations of the directions do not change the dimension of the configuration
space. It is (generically) tight if it is generic and the configuration space contains
exactly one non-trivial embedding (modulo parallel redrawings). Otherwise, it is
called a (generically) loose graph. A graph is tight if for some choice of directions,
it becomes a generic tight network, and it is minimally tight if it is tight, but
the removal of any edge makes it loose. See Fig. 4 for some examples.

A point set is trivial if all the points coincide, pi = pj , ∀i, j ∈ [n], otherwise it
is non-trivial. A point set is degenerate if some of its points coincide. Otherwise,
if all the points are distinct, it is called non-degenerate or sharp.

What is the point of all these definitions? The realizations of direction net-
works are solutions to linear systems, which may or may not have solutions, or
have too many (if they are under-determined). The interesting thing is that the
nature of the linear solution space is controlled by the combinatorial structure
of the graph, generically. For almost all possible choices of slopes, we can read
off whether a network is consistent, tight, etc. using a simple counting criterion
(this is well known from rigidity theory). And where I am trying to get to, even-
tually (and this is one of the results of the paper), is that even questions such
as whether there are realizations where some points coincide, or whether all the
realizations of a direction network are non-crossing (planar) can be answered
combinatorially. To get there, we need two more concepts: Laman graphs and
pseudo-triangulations.

(A) (B) (C) (D)

Fig. 5. A generically minimally tight graph (Laman graph) in a generic (A) and non-
generic (B) embedding. A parallel redrawing is shown for (B), which is loose in this
non-generic embedding. (C) A generically tight graph which is not minimally tight
(Laman-plus-one), and (D) a generically loose graph (a 1dof Laman mechanism).
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In a graph G, a subset of some k vertices satisfies the Laman count if it spans
at most 2k−3 edges. G is a Laman graph if m = 2n−3 and every subset satisfies
the Laman count. See Figure 5(A).

Laman graphs are known in the Rigidity Theory literature as generic min-
imal infinitesimally rigid graphs, due to their rigidity theoretic properties (on
which we won’t elaborate here, since they will not be used in this paper). It
is a well known fact in Rigidity Theory (see [16]) that minimally tight graphs
coincide with the class of Laman graphs. Their configuration space is zero-
dimensional, for generic choices of directions. Removing any subset of k edges
creates a (redrawing) mechanism: a direction network with a k-dimensional con-
figuration space.

In a Laman graph, a subset for which the Laman count is satisfied with equal-
ity is called a block. An independent set of edges2 is a Laman graph with some
edges (possibly none) removed. If at least one edge is missing, it is called a Laman
mechanism. Of special interest is the one-degree-of-freedom (1dof) Laman mech-
anism, with only one missing edge. It has 2n−4 edges and every subset satisfies
the Laman count. See Fig. 5 (D). A maximal block of a Laman mechanism is
called a rigid component (shortly, an r-component).

A pointed planar graph is a non-crossing (planar) graph embedding where
each vertex is incident to an angle larger than π. A pointed pseudo-triangulation
is a pointed planar graph where each face is a pseudo-triangle. In [14] it was
shown that pointed pseudo-triangulations are maximal pointed plane graph em-
beddings (maximal with respect to edge set inclusion), and that they are pla-
nar Laman graphs (and hence generically minimally rigid). When a convex hull
edge is removed, the resulting pseudo-triangulation mechanism has several rigid
components, which are themselves pointed pseudo-triangulations if they contain
more than two vertices.

3 Overview of the Results

We show that generic parallel redrawings of 1-dof Laman mechanisms induce
kinetic point sets and kinetic graphs with a rich inner structure. Although the
definition of configuration space is static and seems to be purely algebraic, it
inherently - and naturally - has motion in it! Our results include a complete
characterization of all the collision situations in such kinetic point sets by relating
them to the rigid components in the associated kinetic graph. In particular, we
prove that, generically, at most 2n − 4 collision events may occur and that this
bound is attained. We also describe how to efficiently predict combinatorially
which clusters of points will collide, and when.

For this purpose, we introduce an algorithmic tool, the parallel redrawing
sweep, which follows the time parameter of the kinetic point set and predicts
combinatorially all the collision events in its configuration space.

2 This terminology relates to the matroidal point of view of rigidity in dimension two,
see [6].
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Finally, we give a characterization of the kinetic parallel redrawing planar
1-dof Laman mechanism graphs which distort linearly 3 for any interval of time
without the occurrence of crossings, except at collision events, which take place
in clusters corresponding to rigid components. Surprisingly, they turn out to be
exactly 4 the pointed pseudo-triangulation mechanisms.

Let us emphasize that the results described in this paper hold generically. One
can always find non-generic situations, resulting in more collisions and other
special types of behavior not addressed in this paper. The set of non-generic
direction networks is described as an algebraic condition (technically, the rank of
the parallel redrawing matrix is not maximum). The complement of this algebraic
set, consisting in all the generic cases, is an open set characterizing most of the
situations one would encounter in a random parallel redrawing kinetic point set.

The following theorems relate the configuration spaces of arbitrary generic
and pseudo-triangulation direction networks of Laman mechanisms to certain
types of kinetic point sets. The inner structure of the configuration space, viewed
as an oriented-projective (defined in the spirit of [13]), rather than as an affine
or projective real space) is captured in Theorem 1. A (collision) cluster is a
maximal set of colliding points.

Theorem 1. Parallel-Redrawing Laman Mechanisms. The oriented-pro-
jective configuration space of a 1-dof Laman mechanism is a (topological) cir-
cle. It contains exactly r antipodal pairs of isolated points (configurations), each
pair corresponding to a colliding cluster of points induced by one of the r rigid
components of the mechanism. The regions obtained by removing the isolated
points are one-dimensional segments, corresponding to classes of collision free
configurations.

Figure 6 illustrates this theorem (and also Theorems 3 and 4) projectively
(rather than oriented-projectively, which would just wrap around the sequence
of events once more and show them rotated around by π). The reader is advised
to use the interactive applet from my web page to get a better sense of what it
actually means for moving points.

The theorem can be extended to k-dof parallel redrawing Laman mechanisms.
We focus now on the 1-dof case. An affine part of the configuration space, ob-
tained by removing one point at infinity, can be described as follows. Pin down
to the origin an arbitrary vertex (called the grounded vertex) of the direction
network. This eliminates translations. Then pin down a whole incident edge.
This eliminates rescalings. By varying the length of another edge incident to the
grounded vertex (i.e. choosing one of its coordinates to act as time-parameter),
we sweep an affine part of the configuration space. The point at infinity corre-
sponds to the scale edge shrinking to zero-length. We show that the underlying

3 A technical detail, not addressed in this extended abstract, is that the kinetic point
set may obey other absolute laws of motion (not necessarily linear). It is their relative
motion that must be linear.

4 Modulo a technical detail. The precise concept is that of a collapsed pseudo-
triangulation mechanism, as in [11].
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Fig. 6. The (projective) configuration space of a 4-bar parallel redrawing Laman mech-
anism. The sweep events and sweep segments are illustrated by a representative em-
bedding. The first image represents the event at infinity: the collapse of the scale
edge 14.

point set of a grounded 1-dof parallel redrawing Laman mechanism, parametrized
by time, behaves like a kinetic point set, and call it the parallel redrawing kinetic
point set. Alternate linear parametrizations, or circular versions sweeping the
entire oriented projective trajectory may also be considered.

Theorem 2. Kinetic Parallel Redrawing Point Sets. The points of a gro-
unded parallel redrawing Laman mechanism with 1-dof move with constant veloc-
ities. As the time parameter changes, all the configurations (modulo translations
and scalings) are encountered, except the one corresponding to the scale edge
being reduced to zero length.

See Fig. 2. The next Theorem 3 refines the previous result for pseudo-triangu-
lation mechanisms.

Theorem 3. Parallel Redrawing Pseudo-Triangulation Mechanisms.
All the realizations with fixed directions of a pseudo-triangulation mechanism
maintain the pseudo-triangulation mechanism property.

All these pseudo-triangulations have the same plane graph structure, but the
combinatorial pseudo-triangulation structure (defined in [8]) varies.

From the algorithmic point of view, we investigated a continuous process,
called the parallel redrawing sweep, which generates (sweeps) the configuration
space of such a one-degree-of-freedom mechanism. This can be seen as an ani-
mation of the kinetic graph in time, with particular attention being paid to the
events, when the combinatorial structure of the graph embedding changes. See
Fig. 3 for an illustration.

Theorem 4. Parallel Redrawing Sweep. As the time parameter sweeps the
real line, the events encountered correspond each to the collapse of a rigid com-
ponent to a single point (and thus capture a collision of an entire cluster in the
kinetic point set).

Each event is characterized combinatorially by a Laman graph, obtained as
the contraction of the Laman mechanism on a rigid component.
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The events and their sequence can be predicted algorithmically as follows:
1. Prediction of all the events. The events can be computed a priori in

O(n2) time using an algorithm for computing rigid components in a Laman
mechanism (see [9] and the references given there).

2. Prediction of the next event. Given a time t and the direction of the
sweep, the time of the next collision event can be computed in linear time.

3. Computing the combinatorial event. Given a collision time t, the collid-
ing cluster can be computed combinatorially in O(n2) time, or algebraically
in the time needed to solve a linear system.

Next section defines the concepts needed to understand the concept of shape
similarity used during the parallel redrawing sweep. The rest of the abstract is
a high level sketch of the proofs.

4 Shape Similarity of Embedded Graphs

Let G(p) be a graph embeddeding. We define and collect several types of combi-
natorial information from the embedding, depending on both p and G. See the
example in Fig. 7.

Signed circular hyperlines. for each vertex index i, the ith hyperline (1 ≤
i ≤ n) is the signed sequence of indices j �= i, in the circular order in which a
line rotating through the point pi encounters all the other points pj . See [4].
Unsigned circular hyperlines. same as before, but we ignore the signs.
Signed linear hyperlines. same as the circular ones, but recorded starting
from the vertical direction.
Unsigned linear hyperlines. the unsigned version of the previous ones.
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Fig. 7. (a) The signed linear hyperline is 3 : 2415. (b) A graph embedding, with the
set of signed linear hyperlines 1 : 23, 2 : 314, 3 : 2415, 4 : 532, 5 : 43.

Let G be a graph and let G(p), G(p′) be two non-degenerate embeddings.
We say that the two embeddings are combinatorially equivalent if they have the
same set of signed circular hyperlines. For a fixed graph G, a combinatorial class
of embeddings [G(p)] contains all the embeddings which are combinatorially
equivalent to G(p), and is identified by their common set of signed circular
hyperlines.

This concept suggests the use of the partial signed hyperlines as a combina-
torial criterion for discerning shape similarity of two embeddings of the same
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graph. This measure is invariant under translations, rotations and scalings. For
pseudo-triangulations, roughly the same information is contained in the combi-
natorial pseudo-triangulations defined in [8].

5 The Parallel Redrawing Sweep

Let G be a Laman graph with some edges (possibly none) added or removed.
Let m = 2n − 3 − k be the number of edges, k < 0, = 0 or k > 0. Let (G, D) be
a generic direction network on G.

Lemma 1. (The Dimension Lemma). The projective configuration space of
(G, D) is trivial for extra added edges (k ≤ 0). Otherwise, it is a projective
subspace of dimension equal to the number 0 < k ≤ 2n − 3 of removed edges,
embedded in the projective (2n − 3)-dimensional space P 2n−3.

We can visualize, via a continuous linear motion, an affine part of the projec-
tive configuration space of a 1dof Laman direction network. This is the Parallel
redrawing sweep.

A parallel redrawing mechanism G(p(t))t∈R is a continuously deforming family
of embeddings of a 1dof Laman mechanism direction network (G, D). Out of the
many possible parametrizations, here’s one. An edge gs ∈ E is pinned down,
to eliminate translations and rescalings. This eliminates the point at infinity of
the projective configuration space. The affine part can now be swept through
by the continuous motion of a free vertex f on a linear trajectory by varying
one of its coordinates, the time parameter. All the vertices of the mechanism
(except those that were pinned down) move with constant speed along linear
trajectories. If we lift the arrangement to the third dimension as time, it becomes
a line arrangement in space, which is swept by a plane orthogonal to the time
dimension. Combinatorially, we prove that the sweep events (the vertices of the
arrangement) correspond to a reorientation of the local hyperline sequences at
certain vertices and are in one-to-one correspondence with the rigid components
of the mechanism.

The following lemmas clarify the occurrence of degenerate embeddings in
Laman networks and contribute to the proof of Theorem 1. The proofs are
elementary and make use of basic combinatorial properties of Laman graphs.

Lemma 2. Let (G, D) be a generic Laman direction network. Then all its non-
trivial realizations are non-degenerate.

Lemma 3. Let (G, D) be a generic Laman direction network.

1. For every non-zero scaling factor s �= 0 there exists a unique embedding G(p).
For opposite scale factors s and −s, the two embeddings are one the rotation
by π of the other.

2. All the non-trivial realizations of a Laman direction network have the same
signed circular hyperlines. The realizations fall into two classes of signed
linear hyperlines: one for positive and one for negative scale factors, which
are reversal equivalent.
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We introduce now the operation of contracting a rigid component and relate
it the different signed linear hyperlines of realizations G(p) and to degenerate
embeddings of (G, D).

Let G be an arbitrary graph, e = ij ∈ G an edge. The contraction G/e of G
on e is a new graph (possibly not simple) obtained by collapsing the endpoints
i and j into a single vertex i′. In the contraction, every vertex incident to i or
j becomes instead incident to i′ and the edge ij is discarded. The contraction
operation is extended naturally to subsets E′ of edges, which are contracted one
by one in an arbitrary order. The contracted graph is denoted by G/E′.

Lemma 4. Let G be a Laman mechanism and R ⊂ V a subset of vertices span-
ning a rigid component (R, ER). Then the contraction G/ER of a 1dof Laman
mechanism on a rigid component is a Laman graph. The contraction G/ER of a
connected k-dof Laman mechanism on a rigid component is a (k −1)-dof Laman
graph.

Let (G, D) be a direction network, E′ ∈ E a subset of edges, V ′ the set of
endpoints of the edges in E′ and G/E′ the contraction of G on E′. As a result
of the contraction on E′, all the vertices in V ′ have been collapsed into one. We
denote this new vertex by [V ′], when we want to remind the set of vertices that
have been collapsed into one, or shortly by i′.

We define the contracted direction network (G/E′, D′) obtained from (G, D)
by keeping the directions of the edges not touched by the contraction operation,
discarding the deleted edges and giving the direction di′j = dij to a new edge i′j
resulting from an old edge ij, i ∈ E′, j �∈ E′. We are interested in characterizing
the configuration space of the contracted network in terms of the configuration
space of the original network, for Laman graphs and mechanisms. We show first
that the contraction can be realized algebraically by the addition of a single
linear equation.

Lemma 5. Let (G, D) be a direction network. Let e = ij ∈ E. If dij is not
vertical, add the constraint xi = xj to its direction network system, otherwise add
the constraint yi = yj. This is equivalent to asking for an embedding where this
edge has length zero, hence its endpoints are collapsed. Then, the resulting system
has the same realization space as the direction network on the contraction G/e.

The proof follows from elementary linear algebra. We apply now this fact to
Laman graphs and mechanisms, under the same assumptions as in Lemma 5.

Lemma 6. Adding the constraint xi = xj to the direction network system of a
Laman graph produces only trivial realizations.

Lemma 7. Adding the constraint xi = xj to the direction network system of
a Laman mechanism produces a unique realization (up to translations and scal-
ings). This realization is non-trivial, and contains a unique trivial part corre-
sponding to the collapsed vertices of the rigid component to which the edge ij
belongs.

Lemma 8. The only degenerate embeddings of a 1dof Laman mechanism are
those obtained by the collapsing of rigid components.
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The Parallel Redrawing Sweep. The inner structure of the configuration space
of a generic 1dof Laman mechanism consists of:

Events. If G has r rigid components, the (oriented projective) configuration
space contains exactly r pairs of special degenerate embeddings. Each pair cor-
responds to the two antipodal realizations of a contraction of (G, D) on one of
the r rigid components.
Sweep segments. The removal of the points corresponding to the collapsed em-
beddings from the circular configuration space leaves r pairs of connected com-
ponents (antipodal circle, or sweep segments, in the oriented projective space),
each one corresponding to a pair of reversal-equivalent combinatorial classes of
embeddings. By Lemma 8, these realizations are non-degenerate.

Theorem 5. All the embeddings within a sweep segment have the same signed
linear hyperlines. Embeddings in antipodal segments differ by a complete reversal
of signs in their signed linear hyperlines.

6 Parallel Redrawing Pseudo-Triangulation Mechanisms

A parallel redrawing pseudo-triangulation mechanism inherits all the properties
proved in Section 5. Theorem 3 is a consequence of the following lemmas.

Lemma 9. Let G(p) be a generic embedding of a Laman mechanism and let
G(p′) be a parallel redrawing of G(p). Viewing now G(p) as a mechanism with
fixed edge lengths, let V be the linear space of all the infinitesimal motions of
G(p). Let v = {v1, · · · , vn} ∈ V be a non-trivial infinitesimal motion and define
σij(p, v) := 〈pi −pj, vi − vj〉, ∀i, j ∈ [n]. Then σij(p, v) = σij(p′, v), ∀i, j, ∀v ∈ V.

Under the same assumptions as in Lemma 9, the following two properties hold:

Corollary 6. When viewed as fixed-edge lengths mechanisms, G(p) and G(p′)
have the same linear space of infinitesimal motions, in particular they have the
same pattern of infinitesimal expansion.

Indeed, the pattern of infinitesimal expansion is given by the signs of σij(p, v).

Corollary 7. If G(p) is a pseudo-triangulation, then G(p′) is a pseudo-triangu-
lation. We pin down an edge and parameterize by the position of a third vertex
k. Then all the resulting parallel redrawings are pseudo-triangulations, and the
plane graph structure doesn’t change.

This completes the high-level sketch of the results and proofs.
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