
Parallel Resolution of the

Satisfiability Problem:
A Survey

Daniel SINGER

Publications du LITA, N◦ 2007-101
Service de reprographie de l’U.F.R. M.I.M.

Université Paul Verlaine - Metz

Parallel Resolution of the

Satisfiability Problem:
A Survey

Daniel SINGER

Publications du LITA, N◦ 2007-101
Service de reprographie de l’U.F.R. M.I.M.

Université Paul Verlaine - Metz

i

Laboratoire d’Informatique Théorique et Appliquée, EA 3097 Université Paul Verlaine - Metz

Directeur de la publication : Maurice Margenstern

ii

Parallel Resolution of the Satisfiability Problem:

A Survey

Daniel SINGER

L.I.T.A. Université Paul Verlaine - Metz

daniel.singer@univ-metz.fr

Abstract

The past few years have seen enormous progress in the performance of proposi-
tional satisfiability (SAT) solvers, and consequently SAT solvers are widely used
in industry for many applications. In spite of this progress, there is strong de-
mand for higher SAT algorithms efficiency to solve harder and larger problems.
Unfortunately, most modern solvers are sequential and fewer are parallel. Our
intention is to review the work of this last decade on parallel resolution of SAT
with DPLL solvers which are the most widely used complete ones.

Keywords

Parallel Resolution, Propositional Satisfiability (SAT).

1 Introduction

The propositional Satisfiability problem (SAT) is one of the most studied in
computer science since it was the first problem proven to be NP-complete by
S. Cook in 1971. Nowadays, the Satisfiability problem evidences great practi-
cal importance in a wide range of disciplines, including hardware verification,
artificial intelligence, computer vision and others. Indeed, one survey of Satisfia-
bility in 1996 [28] contains over 200 references of applications. SAT is especially
important in the area of Electronic Design Automation (EDA) with a variety
of problems such as circuit design, FPGA routing, combinatorial equivalence
checking and automatic test and pattern generation. In spite of its computa-
tional complexity, there is increasing demand for high performance SAT-solving
algorithms in industry. Unfortunately, most modern solvers are sequential and
fewer are parallel. Our intention is to review the work on parallel resolution of
SAT with DPLL solvers for this last decade from the previous survey paper[27].

The remainder of this paper is organized as follows. Section 2 briefly in-
troduces the SAT problem and major concepts of the field. Section 3 gives an

1

overview of the main techniques used in the efficient implementation of state-
of-the-art sequential DPLL solvers. Section 4 describes the different proposed
methods to parallelize the core sequential algorithms. Section 5 presents some
of our experimentations in parallel resolution of SAT and it is followed by a
brief concluding Section.

2 Preliminaries

Let V = {v1, v1, . . . vn} be a set of n boolean variables. A (partial) truth as-
signment τ for V is a (partial) function: V → {True, False}. Corresponding to
each variable v are two literals: v and ¬v called positive and negative literals.
A clause C is a set of literals interpreted as a disjunction, 2 denotes the empty
clause and unit clauses have a single literal. A formula F is a set of clauses
interpreted as a Conjunctive Normal Form (CNF) of a formula of the proposi-
tional calculus. A truth assignment τ satisfies a formula F (τ is a solution) iff it
satisfies every clause in F , and the empty formula ∅ is always satisfied. A truth
assignment τ satisfies a clause C iff it satisfies at least one literal in C and the
empty clause 2 is never satisfied.

Definition 2.1. The Satisfiability Problem (SAT):
-Input: A set of Boolean variables V and a set of clauses C over V.
-Output: Yes (gives a satisfying truth assignment τ for C if it exists) or No.

The restriction of SAT to instances where all clauses have at most k literals is
denoted k-SAT. Of special interest are 2-SAT and 3-SAT; while 2-SAT is linearly
solvable 3-SAT is NP-complete. The Max-SAT problem is the optimization
variant problem of SAT to find a truth assignment τ that maximizes the number
of satisfied clauses of C. Nevertheless, the Max-2-SAT problem is well known to
be NP-hard[66].

2.1 Complete-incomplete algorithms

Current research on propositional satisfiability is focused on two classes of solv-
ing methods: complete algorithms mostly based on Backtrack search and in-
complete ones represented by variations of Local search methods. Complete
algorithms are guaranteed to find a satisfiable truth assignment (a solution)
if the problem is satisfiable, or to terminate with the proof of the problem
unsatisfiability. Incomplete algorithms, on the other hand, cannot prove the
unsatisfiability of instance even though they may be able to find a solution for
certain kinds of satisfiable instances very quickly.

Moreover, SAT (or Max-SAT) can be formulated as a particular Integer
Linear Program such that classical Operation Research methods can be applied
including Linear Programming by relaxing the integrality constraints. For ex-
ample this has been the case with linear or non-linear cutting planes, Lagrangian
or Semidefinite techniques. Incomplete methods are based on efficient heuris-
tics which help to delay the combinatorial explosion when the size of problem

2

increases. This category includes Simulated Annealing, Genetic Algorithms and
Local Search methods. The most popular ones are GSAT[52] or WSAT[51] with
a number of parallel implementations and studies [61, 34]. This survey will not
present the work on the parallel resolution of SAT with incomplete algorithms
and we refer to [27] for this approach.

Most of the more successful complete SAT solvers are instantiations of the
Davis Putnam Logemann Loveland procedure[20] traditionally abbreviated as
DPLL (see Figure. 1). Other complete methods include (general) Resolution
or Davis Putnam (DP) algorithms for theoretical aspects of SAT or Auto-
matic Reasoning, Ordered Binary Decision Diagrams (OBDD) based solvers
and Stälmark’s methods in EDA applications. Nowadays, DPLL variants work
quite well in practice and are the most widely used SAT solvers.

We may also mention a number of works on the hybridation of incomplete
and complete algorithms to solve Boolean Optimization problems, Branch-and-
Bound or Tabou with DPLL or DP for example. This survey will report only
these DPLL based complete methods for SAT resolution.

Figure 1: DPLL procedure
procedure DPLL (F)
Begin

If F = ∅ then return ”satisfiable”;
Else F ← UnitPropagation(F);
If 2 ∈F then return ”unsatisfiable”;
Else /* Branching Rule*/
Choose l a literal according to some heuristic H;
If DPLL(F ∪ {l})= satisfiable then return ”satisfiable” ;
Else DPLL(F ∪ {¬ l})
End

function UnitPropagation (F)
Begin

While 2 /∈ F and ∃ unit clause l ∈ F
Satisfy l and Simplify F
return(F)
End

2.2 SAT-CSP

There is continuing interest in translations betwen CSP (Constraint Satisfaction
Problems) and SAT[3, 24, 71]. For example, [3] proposes to translate a SAT
problem (F) into a binary CSP (P) as follows: to each clause Ci of F is associ-
ated a variable Xi with domain the set of literals of Ci. A constraint is defined
between any pair of variables (Xi, Xj) if the clause Ci contains a literal and the
clause Cj contains its complement. For each constraint (Xi, Xj) a relation Rij is

3

defined as the Cartesian product DixDj minus the tuples (ti, tj) such that ti is
the complement of tj . In this approach SAT is reduced to the Path Consistency
of the CSP. Moreover it suggests to apply the Tree Clustering Decomposition
technique for solving the particular CSP associated to 3-SAT instances but we
do not know the results. Many other translations are possible that consider the
different graph structures of SAT. We mention this aspect because much more
work has been done in the parallel resolution of CSP than SAT (for example
[30, 31]), but surprisingly, to our knowledge no work takes this trail.

2.3 Decomposition techniques

Decomposition methods have been applied in a variety of problems such as CSP,
especially for parallel resolution in[29], but few work exist in this direction for
SAT. [1, 2] propose to solve SAT using a decomposition based on some approx-
imation of the most constrained subproblems (those with the least number of
solutions) by the c/v ratio parameter1. One approach decomposes a formula
into a tree of partitions (ie. subformulas) using an algorithm to find Minimum
Vertex Separators. Then a DPLL algorithm runs with a branching heuristic
based on this decompostion solving first the most constrained subformulas. At
last it performs a compilation procedure for each of the partitions and joins
the results to answer the initial SAT problem. Another approach uses a 0-
1 fractional programming optimization algorithm to find the most constrained
subformula. Then a static or a dynamic use of this algorithm may be applied
by a DPLL solver. Unfortunately, we are not aware of any experimental re-
sults of these two propositions even in the sequential framework. [4] studies the
applicability of Tree Decomposition method to SAT but only in the sequential
framework. Tree decomposition is a graph theoretic concept which captures the
topological structure of the CNF formula represented as a hypergraph. Formu-
las that have bounded Treewidth can be checked for satisfiability in linear time
by translating them into Decomposable Negation Normal Form (DNNF)[16].
[4] considers the integration of this decomposition method to modern DPLL
solvers to achieve better performance in terms of number of decisions (branch-
ing steps). The decomposition procedure not only guides the variable ordering
process, but also the construction of conflict clauses with guaranted bounded
size (see below Section 3.3). The reported results show consistent improve-
ments (in terms of number of decisions) compared to traditional solver (zChaff)
on benchmark problems with varying treewidth, especially with a static variable
ordering approach. It is noticeable that it does not respond as well in terms
of runtime because of an unoptimized implementation and overhead of the tree
decomposer.

2.4 Experimentation: finding hard problems

Empirical evaluation of SAT solvers on benchmark problems has been of par-
ticular interest for both fundamental algorithms and theoretical understanding

1
c = number of clauses and v = number of variables

4

of SAT[11]. Web sites[62, 63] are Satisfiability libraries that collect a number of
benchmark problems, solvers and tools to provide a uniform test-bed for solvers.
SAT seems to have less structure than many other combinatorial problems and,
in spite of impressive engineering successes on many difficult problems, there are
many easy problems with which SAT solvers struggle. These include problems
involving parity, the well known ”pigeonhole problem”, and problems naturally
described by first-order formulas. In all of these cases, the underlying struc-
ture of the problem is lost with the poor SAT encoding (see below Section 3.4).
An anual SAT competition is held as a joint event with the SAT conference to
identify new challenging benchmarks and to promote new SAT solvers. Each
edition meets a great number of solvers on randomly generated or industrial
benchmarks. The 2004 edition[45] pointed out the superiority of incomplete
solvers on satisfiable random benchmarks contrary to industrial ones (satisfi-
able or not). The hardest instances for random benchmarks are generally much
smaller in size than the hard structured industrial ones.

SAT has appeared to possess a property of great interest with respect to
computational complexity. Random k-SAT formulas exhibit a so-called Phase
Transition Phenomenon, that is when c clauses with exactly k literals over a set
of v variables are chosen at random with a fixed ratio r = c/v, the probability
of satisfiability falls abruptly from near 1 to near 0 as r passes some critical
value τk called the threshold. Moreover, at the threshold (for k ≥ 3) a peak
of difficulty is observed and it grows exponentially as a function of v. Thus it
appears that the hard formulas lay in this transition region near the threshold.
In the case of k = 3 the threshold value for τk ≈ 4.25 and the best actual DPLL
solver for random problems (kcnfs) can deal such hard random unsatisfiable
3-SAT instances up to 700 variables in around 25 days, thereby approaching
practical feasibility.

τ

C/V

hard region

time satisfiability

4.25
easy unsatisfiableeasy satisfiable

Figure 2: 3-SAT Phase Transition Phenomenon

The SAT phase transition phenomenon has attracted much attention from
physicists. In particular, the concept of Backbone of a k-SAT formula has turned
out to play an important role in theoretical studies to design new hard bench-

5

mark problems and new branching heuristics[55, 17]. A backbone variable of
a formula is a variable that is assigned always the same truth value in all as-
signments that satisfy the maximum number of clauses or in all solutions if the
problem is satisfiable.

3 Efficiency of Sequential DPLL SAT Solvers

There has been extensive research effort to develop gradually more efficient SAT
solvers (see for example[25, 41, 62]). We will present in this section some of the
main components for efficiency of sequential state-of-the-art DPLL solvers.

3.1 Better Branching Heuristics

The first element for efficiency of sequential solvers is determined by the Branch-
ing Rule heuristic. Two factors have to be considered to define good general
purpose decision strategies. The first one is to find a solution if it exists as fast
as possible and the second one is to detect a contradiction as early as possible.
Moreover, a ”good” heuristic is one that does not require too much time to
compute and provides a fairly accurate cost estimate. All along the two last
decades the branching rule problem has received many attentions and achieved
many progresses.

Moms for Maximum number of Occurrences in Minimum Size clauses is one
of the most widely used general heuristic. It is a pure refutation based strategy
which is simple, easy to implement and problem-independent. It favours the
shortest clauses to obtain unit clauses and contradiction by Unit Propagation as
a First Fail Principle. Many versions of Moms heuristics have been proposed.
Let mt(l) = number of clauses of size t that contains the literal l, g+(x) =∑

t mt(x)2n−t and g−(x) =
∑

t mt(¬x)2n−t for a variable x. Let h(x) = g+(x)+
g−(x), Moms chooses the variable x with Maximum(h(x)) and the literal with
Maximum(g+(x), g−(x)) to be the first explored branch. The 2-sided Jeroslow-
Wang heuristic (2s-JW) for example, combine g+(x) and g−(x) in some fashion
balancing the two branches, with h(x) = g+(x) + g−(x) + g+(x) ∗ g−(x).

The Böehm and Speckenmeyer (BS) heuristic[6] chooses the literal l with
maximal vector (M2(l), M3(l), . . . , Mt(l)) under the lexicographic order where
Mi(l) = αMax(mi(l), mi(¬l) + βMin(mi(l), mi(¬l). Experiments have shown
best results with α = 1 and β = 2 and it calculates two elements of the vector
only, (Ms(l), Ms+1(l)) where s is the size of the shortest clause of the formula
(generally s = 2).

UP heuristic, such the one used in Satz[43] exploits the power of Unit
Propagation by choosing the literal that would produce the maximal num-
ber of unit clauses. Let w(l) = number of new binary clauses obtained by
running UnitPropagation(F ∪ {l}). Satz will branch on the variable with
Maximum(h(x)) with h(x) = w(x) + w(¬x) + 1024 ∗ w(x) ∗ w(¬x).

Recent works on dynamic learning and conflict analysis (see below Sec-
tion 3.3) define new heuristics such as VSIDS for Variable State Independent

6

Decaying Strategy in Chaff[49] that are the best actual ones for very large indus-
trial problems. Note that heuristics may be designed to suit particular classes
of instances, for example kcnfs [17, 18] is one of the best actual DPLL solver
dedicated to solve hard random k-SAT problems. It uses a completely different
heuristic based on backbone variables as branching nodes (see Section 2.4).

3.2 Careful Unit Propagation Implementation

DPLL solvers spend the bulk of their effort (greater than 90% in most cases)
searching for clauses implied in Unit Propagation, sometimes called Boolean
Constraint Propagation. Therefore, an efficient Unit Propagation procedure im-
plementation is the key for efficiency. GRASP[53] and Satz[43] for example, keep
two counters for each clause, one for the number of value true literals and one
for the number of value false literals. Each variable has two lists containing the
clauses where this variable appears positively and negatively. In SATO[76] the
head/tail list structure is introduced defining two pointers for each clause; one
pointing to the first literal and the other to the last literal of the clause stored
in an array. Each variable has four lists containing pointer to clauses that have
their head/tail literal appearing positively and negatively respectively. The
head/tail list method has been argued faster than the counters-based one be-
cause when a variable v is assigned value true, the clauses containing positively
v will not be visited at all and vice-versa. One of the best actual solver us-
ing this structure is BerkMin[26] a closed-source solver. Unfortunately for both
methods undoing a variable’s assignment during backtrack has about the same
complexity as assigning the variable. Chaff[49] proposed the 2-literal watching
structure that is similar to the head/tail list associating two special watched lit-
erals to each clause and two lists of pointers to clauses having their positive and
negative watched literals corresponding to each variable. With this structure
undoing an assignment takes constant time.

[77] gives an interesting deep case study on cache performance of SAT solvers
showing that “cache friendly data structures is one of the key elements for an
efficient implementation”. It gives comparative results of the three different data
structures on various application domains in term of run times, data access and
cache miss rates. The counters-based solvers perform poorly due to the high
cache misses. The best head/tail-based solver (BerkMin) and recent watched
literals-based solver (zChaff) have similar good cache performance. It finds that
there are still a lot of space for improvements because in current and future
generations of microprocessors, the speed difference of main memory, L1 and
L2 caches tends to be larger (see Section 4.3 for parallel efficiency).

Another important but basic remark for implementation efficiency is that a
solver designed to handle a large number of variables should be quite different
than a solver designed to handle fewer variables. Clearly, this explains why
the best solvers for industrial benchmarks are not the best for hard random
problems as mentioned in Section 2.4.

7

3.3 Dynamic learning based on conflict analysis and non-

chronological backtracking

In 1996, these CSP look-back techniques were simultaneously introduced in
DPLL algorithms by Marques-Silva, Sakallah[54] and by Bayardo, Schrag [7].
It has now become a standard and is implemented in most of recent SAT
solvers[78]. At each decison step for a branching variable choice is associated a
decision level. All variables assigned as a consequence of implications of a certain
decision will have the same decision level as the decision variable. If a conflict
is encountered the DPLL algorithm analyses it for backtracking to a level so
as to resolve this conflict and a 0-level backtracking means that the problem is
unsatisfiable. A clause is called conflicting clause if it has all its literals assigned
to False. Advanced conflict analysis relies on an implication graph to determine
the actual reasons for the conflict. This permits to backtrack up more than one
level of the decision stack and, at the same time, to add some clauses called
conflict clauses to a database. This last operation is the base for the learning
process which plays a very important role in pruning the search space of SAT
problems and this will be of particular interest in the parallel resolution frame-
work. Clause learning and variable branching strategies have traditionally been
studied separately but there is great promise in developing branching strategies
that explicitely take into account the order in which clauses are learned. This
is the case of Chaff[49] which developed domain specific strategies using such a
learning preprocessing step.

3.4 Specific SAT problems processing

DPLL solvers typically suppose CNF encoded problems but this is seldom the
natural formulation of “real world” applications. Indeed, the CNF representa-
tion provides conceptual simplicity and implementational efficiency, it also en-
tails considerable loss of information about the problem’s structure that could
be exploited in the search. There is a new interest in studying the CNF conver-
sion for DPLL solving in different domains such as Planning, Bounded Model
Checking (BMC) or Automatic Reasoning to improve search efficiency.

One approach[70] argues that this conversion is both unnecessary and un-
desirable. It presents a non-CNF DPLL like solver able to process any propo-
sitional formula represented as DAGs (Directed Acyclic Graphs) such as in
OBDD-based solvers. Experimental results show performance better or close
to that of the highly optimized CNF solver zChaff. It seems to be promising
because many other potential ways of exploiting the structure have not been
experimented. One opposit approach is to “optimize” the CNF conversion with
respect to the number of generated clauses such as in[37], to the number of
variables or both such as in SATPLAN04[38], which takes first place for op-
timal deterministic planning at the 2004 International Planning Competition.
Another important feature to be mentioned is that for a number of real appli-
cations such as BMC, solving time may be largely dominated by encoding time
thus “optimizing” may also refer to the conversion time.

8

Other different approaches[72, 5, 47, 32] tackle the general problem of equiv-
alency reasoning. A lot of SAT applications contain a large number of equiv-
alences (or Xor) and this results in poor efficiency of DPLL solvers because
they produce very few unit clauses. For example, the notorious parity-32 bits
DIMACS benchmark remained unsolved by general purpose SAT solvers for a
considerable time and first solved by these approaches.

4 Parallel Resolution of SAT

Sequential computer performance improvements are the most significant factor
in explaining the few existing works on Parallel Algorithms for Satisfiability
compared to sequential ones. Indeed, the challenge to parallel processing is
substantial in this area because there are still many problems considered out of
reach for the best currently available solvers. There have been several parallel
computation models implemented on modern parallel or distributed computers
reflecting advances in new computational devices and environments. The two
computational models used in this study are Shared Memory and Message Pass-
ing. In the shared memory model, each processor has access to a single, shared
address space. In practice it is difficult to build true shared memory machines
with more than a few tens of processors. A variation of the pure shared mem-
ory model is to let the processors have local memory and share only a part of
the main memory such as in SMP clusters. In the message passing model, the
processors have only local memory but are able to communicate with each other
by sending and receiving messages. There are different network topologies for
the connections between the processors. The message passing model is highly
portable since it matches the hardware of most modern supercomputers as well
as network of workstations. It is not unheard of for both models to be applied
simultaneously -threads on shared memory for “node computations” and mes-
sage passing among them. Such an hybrid approach could become standard and
will be used in future works on Parallel Resolution of SAT for further progress.

Incomplete methods based on local search such as GSat, WalkSat or TSat are
much more easily implemented on parallel machines because of their inherent
parallel nature[27, 59]. There have been also some parallel implementations of
the Davis Putnam (DP) complete algorithm[10, 56]. In the following, we will
restrict our review to the complete but DPLL based parallel versions.

4.1 Randomized parallel Backtrack search

In 1992, [73] proposed a Monte Carlo type randomized algorithm for SAT which
always gives an answer but not necessarily right. A number k of instantiations
are randomly generated, where k is related to the probability ε of expected fail-
ure. It concludes the input formula to be satisfiable if any instantiation makes it
true but perhaps concludes wrongly unsatisfiable otherwise. The random gener-
ation step may be parallelize but only the theoretical analysis of the polynomial
average time is presented. [42] introduces a generic parallel Backtrack search

9

algorithm with a deterministic and a randomized method for the message pass-
ing model. Most of this work is dedicated to the Branch and Bound algorithm
to prove its efficiency with a multinode-donation strategy and [79] analyses a
single-node donation strategy. In 1994, [33] studies the behavior of parallel
search for a complete backtrack based algorithm for graph coloring which is a
particular CSP. Independent parallel searches are easily obtained with different
heuristics. It concludes saying that such concurrent parallelization gives fairly
limited improvement on hard problem instances.

More recently, Nagging[23] is a distributed search paradigm that exploits the
speedup anomaly (see below Section 4.2) by playing multiple reformulations of
the same problem – or portions of the problem – against each other. Origi-
nally developed within the relatively narrow context of distributed automated
reasoning, it has been generalized and used to parallelize DPLL algorithm. Par-
tial results on hard random 3-SAT instances empirically show in this case the
possible performance advantage of nagging over partitioning. Moreoever and
aside from performance considerations, Nagging holds several additional prac-
tical advantages over partitioning; it is intrinsically fault tolerant, naturally
load-balancing, requires relatively brief and infrequent interprocessor commu-
nication, and is robust in the presence of reasonably large message latencies.
These properties may contribute directly to Nagging’s demonstrated scalability,
making it particularly well suited for use on the Grid. Unfortunately, we are
not aware of any new results in this direction.

4.2 Search space partitioning

An important characteristic of the SAT search space is that it is hard to predict
the time needed to complete a specific branch. Consequently, it is difficult (or
impossible) to statically partition the search space at the beginning of the algo-
rithm. To cope with this problem, most of the parallel algorithms dynamically
partition the search space assigning work to the available threads during run-
time. The most difficult part consists of balancing the workload in such a way
that on the one side idle time should be limited, and on the other side the work-
load balancing process should consume as few computing and communication
time as possible.

In 1985, the seminal works of Speckenmeyer et al.[50, 67] introduce the
important notion of autarky to prove the worst case complexity of 3-SAT to
be O(1.6181n), and it shows the fact that in average the solutions of k-SAT
problems are non-uniformly distributed. This was the first explanation of the
experimental superlinear speedup obtained by a parallel backtrack search with
a fixed number of processors. Nowadays, this is a well known phenomenon
sometimes called anomaly, corresponding to the non-deterministic treatment of
the search tree by a parallel execution. Moreover, this is the reason to dissociate
satisfiable from unsatisfiable problems for parallel resolution evaluation. The
other one reason is that for satisfiable instances only a portion of the tree is
explored, thus parallel execution highly depends on the order of the parts to be
searched.

10

Let F be a formula as a set of clauses and Lit(F) be the set of literals defined
by the variables of F . An autarky A is a subset of Lit(F) such that it defines
a partition of F = autsat(A) ⊕ autrem(A) with autsat(A) = {C ∈ F/∃l ∈ A
: l ∈ C} and autrem(A) = {C ∈ F/∀l ∈ A: l 6∈ C and ¬l 6∈ C}. Its main
property is that, after assigning true the literals of an autarky A if it exists, the
satisfiability of F is reduced to that of autrem(A) for which all the variables
associated to A are eliminated. There are a number of works investigating this
major concept (eg.[39]), but to our best knowledge only [56] used it for parallel
resolution in a Model Elimination algorithm which is not DPLL based.

In 1994, Böehm and Speckenmeyer[6] gives the first real parallel implemen-
tation of the DPLL procedure on a message based MIMD (Multiple Instructions
Multiple Data) machine, and it is the reference work of the domain. Excellent
efficiencies have been obtained on a Transputer system with up to 256 T800
processors and with two different connexion topologies, the linear array and the
2-dimensional grid. The authors suggest the grid topology for much more than
256 processors! The sequential version of the solver was the fastest program at
the first SAT competition in 1993. Its quality heavily depends on the branching
heuristic (see 3.1) and the associated optimized dynamic data structures. Dou-
bly chained lists with ascending order are used to assign and unassign variables.
The sophisticated dynamic workload balancing strategy is the key for parallel
efficiency. Even if no reliable measure of workload for a subformula is known,
a simple estimation function αn for a partial truth assignment with n unset
variables and α varying between 1.04 and 1.42 is used (remember the previous
upper bound of 1.6181). If the estimated workload for some processor goes down
some limit then the workload redistribution phase is activated. Each processor
runs two processes, the worker and the balancer. In the initialization phase the
input formula F is sent to all processors p and a list Lp of partial assignments
representing subformulas. The worker process tries to solve or split subformulas
of its list by assigning true resp. false to a literal x chosen according to the
branching heuristic. If its list is empty the worker process waits for either new
work or a termination message of the balancer process. The balancer process of
each processor p estimates its workload λ(p) and a precomputation phase cal-
culates the amount of workload to be sent or received by each processor. The
balancing phase is performed only if at least one processor holds less than s
problems (actually 3) in its list to reduce communication overhead. Sampling
method to adjust the α value is presented for hard random k-SAT formulas and
for hard unsatisfiable Tseitin’s graph formulas. To our best knowledge, there is
no recent work on modern parallel machines which report so good results with
hundreds of processors.

In 1994, Zhang et al.[74, 75] present PSATO the first DPLL solver for dis-
tributed architectures. It is based on the sequential DPLL solver SATO [76]
which was at that time one of the most efficient. The constant need of more
computing power and the networked workstations underused justified this ap-
proach. The other major motivation of this work was to attack open problems
in the quasi-groups algebraic domain. The next important concept of guiding
path was for the first time introduced to define non-overlapping portions of the

11

search space to be examined. It does so by recording the list of variables to
which the algorithm assigned a value up until the given point of execution (the
current state of the process). For each variable of the guiding path is associated
its currently assigned truth value, as well as a boolean flag saying that whether
the variable is closed (value 0): both truth values have been tested or open
(value 1): one truth value remains to be tested (see Figure 3 for an example).

This notion provides a simple and effective way to define “cumulating search”
allowing to suspend and continue the run without repeating the work already
done. It is also the mean to deal with the fault-tolerance problem and splitting
guiding path is the workload balancing method. Surprisingly, PSATO is orga-
nized according to the centralized master-slave model for workload balancing,
opposite to the completely distributed preceding proposition. All communica-
tions take place between the master and the slaves, but implementation was
done in an obsolete language called P4. The reported experimental results show
good speedup with 20 workstations but are not significant for a number of rea-
sons. However, PSATO made new discoveries in the quasi-group theory.

X

X

X

?

1

3

4

1

1

1

1

0

0

0

0

+

guiding path

{(X1,0,0),(X3,1,0),(X4,1,1),(X5,0,0)}

*** : explored branch

+ : current node

? : remaining subtree

X5

Figure 3: guiding path example

More recently, Jurkowiak et al. present //Satz[35], a parallel-distributed
DPLL solver based on the master-slave communication model and work stealing
for workload balancing. The guiding path concept is used to define the tasks
associated to parts of the search tree. The sequential solver Satz which is based
on, is equipped with a sophisticated experimental Unit-Propagation branching
heuristic (see Section 3.1). The master evaluates the workload of a slave pro-
cessor by the depth of the first remaining subtree to be explored in its guiding
path: the smallest corresponds to the most loaded one. If two slaves have the
same value then the second remaining subtrees are compared. When a slave
becomes idle it sends a work request to the master which sends back the first
remaining subtree of the most loaded slave. Every process has two threads:

12

the working thread and the communicating one. Moreover, the communication
strategy used a semaphore mechanism implemented in standard RPC (Remote
Procedure Call) to be easily portable on all Unix-like networks and on the Grid.
This work emphasizes the ping-pong phenomenon which may occur in workload
balancing. A process A sends its right subtree to the idle process B but quickly
finds a contradiction in its left subtree and becomes idle. The process B then
sends its right subtree to process A but quickly becomes idle for the same rea-
son. It is argued that experimental UP branching rule prevents //Satz from this
phenomenon. [36] presents experimantal results on a cluster of 216 PIII PCs
interconnected by a Fast-Ethernet network. Significant speedup is obtained for
hard random unsatisfiable 3-SAT instances with more than 500 variables up to
128 processors. For easier problems the communication overhead and the Satz
preprocessing done by all slaves penalize the overall parallel performance. For
structured real world SAT problems the results are less convincing.

4.3 Intelligent backtracking and lemma exchange

In 2001, Blochinger et al.[8, 9] propose PaSAT the first parallel DPLL solver
with intelligent backtracking and lemma exchange for learning. As mentioned in
Section 3.3, learning has now become a standard and is implemented in most of
recent sequential SAT solvers. The guiding path approach for dynamic problem
decomposition is used as well and the lemmas to be exchanged between the
nodes of the distributed environment are the conflict clauses. Since at every
leaf in the search tree a conflict analysis is carried out, a vast number of lemmas
are generated at each node thus a selection rule has to be applied at the source.
The clause size defines this criterion which is consistent with the sequential al-
gorithm. Experiments to determine an appropriate value for this parameter are
reported. Moreover, when inserting “foreign lemmas” into a task’s clause set,
these are filtered by the receiver node. Only those lemmas that are not sub-
sumed by the task’s initial guiding path are incorporated, to prevent insertion
of superfluous lemmas for the receiver. A randomized work stealing strategy
for workload balancing is applied in a master-slave communication model. The
algorithm is implemented on top of the DOTS (Distributed Object-Oriented
Threads System) platform. This system is designed for the prototyping and
the parallelization of highly irregular symbolic applications such as SAT. It is
natively object-oriented (C++) and it has been deployed on a number of (het-
erogeneous) clusters. It gives a strict multithreading programming tool in a
fork-join style, located at a medium level of abstraction (compared to MPI),
providing transparent synchronization and communication. A detailed experi-
mental study discuss the different parameters involved by the algorithm on a
cluster of 24 SUN workstations. It used the quasi-group and BMC longmult
for unsatisfiable instances, and DES (3 rounds) logical cryptanalysis for satis-
fiable ones. This includes the split-threshold parameter which defines when a
search space split is performed to produce an additional thread, steal-threshold
parameter which defines when to steal a thread from a randomly chosen “victim
node” and other timing parameters. It is not a trivial work to understand the

13

lemma exchange effect and benefit of learning on the overall performance of the
program, but it is argued in conclusion that distributed learning can result in
considerable speedup. Definitively in our opinion, thorough theoretical investi-
gations and additional experimentations have to be managed in this direction.

In 2004, Feldman et al.[22] present a parallel multithreaded SAT solver on
a single multiprocessor workstation with a shared memory architecture. It pro-
vides experimental results for the execution of the parallel algorithm on a vari-
ety of single multiprocessor machines with a shared memory. The emphasis has
been on providing an efficient portable implementation that improves runtime
by distributing the workload over several processors on the single machine. To
understand low-level implementation details the solver was designed and coded
from scratch contrary to other implementations based on zChaff[13] or other
existing publicly available source code of solvers such as Satz[35]. The perfor-
mance of the solver in a single-threaded configuration on a benchmark suite
of about 500 industrial tests is comparable to the zChaff one[49]. The main
contribution of this paper is that it shows the general disadvantageousness of
parallel execution of a backtrack-search algorithm on a single multiprocessor
workstation, due to increased cache misses. More precisely, it observes the neg-
ative effect on otherwise highly optimized cache performance of the sequential
algorithm (see Section 3.2). It incorporates most of the precedent technolo-
gies for parallel execution as well as state-of-the-art sequential ones presented
in Section 3. Guiding path for search space partitioning and a fork-join style
for multithreading programming are used. The search algorithm is parallelized
by letting threads explore the search space defined by the open variables on
the guiding path of the current thread. The execution of the parallel algorithm
starts with one thread that is assigned the whole problem instance, thus defining
a number of open variables on its guiding path. If all threads are in suspension
while waiting for an available task, this indicates that the search space has been
fully explored and the formula is unsatisfiable. For dynamic workload balanc-
ing, to minimize the thread waiting times and the time to find a new task, a list
of available tasks is maintained. When a thread introduces a new open variable
it adds its description to the list. The number of open variables is usually much
larger than the number of working threads so that they add new tasks to the list
only until a ceratin threshold on the list size is reached. To reduce the overhead
of task switches, the tasks are chosen as candidates for entering into the list the
ones with open variable closest to the beginning of the guiding paths such that
its expected running time is higher. Moreover the tasks list is similarly sorted
according to the length of the guiding path to its open variables. As in the
previous work, the parallel algorithm performs special treatment of the conflict
clause lemmas produced by each thread for distributed learning. This is done
by maintaining a list of conflict clauses that is accessible from all threads. These
two lists of available tasks and conflict clauses together with the initial clauses
formula are the only shared data structures. Their synchronization overhead
is claimed insignificant compared to the overall performance but experimental
results show the contrary. This becomes worse when the number of working
threads is increased. Specially severe performance degradation are reported for

14

(physical or logical) multiprocessors systems. In the worst case, with only four
threads 10% of the total running time is spent in waiting on synchronization
locks for shared data structures and the authors argue that this could not explain
the observed degradation. With the help of the Intel V TuneTM Performance
Analyser they present a deep investigation on the reasons of this degradation
mainly the amount of cache misses. Their interesting conclusion is that op-
timized cache performance for modern sequential SAT solvers contadicts the
parallel execution efficiency on a single multiprocessor workstation!

It is worthly to notice that in 1996, [64] already studied a multithreaded
SAT solver with a dynamic load balancing strategy similar to the one described
in[6] (see Section 4.2). It reports good performance on randomly generated 3-
SAT formulas up to 32 threads but, and this perhaps makes the difference, the
threads were simulated on a single processor SUN workstation with a simple
round robin schedule.

4.4 Grid Computing

In 2003, Chrabakh et al.[12, 13] present GridSAT the first DPLL SAT solver
designed to solve real “hard” and previously unsolved satisfiability problems on
a large number of widely distributed and heterogeneous resources (the Grid).
Its philosophy is to keep the execution as sequential as possible and to use paral-
lelism only when it is needed. It is based on zChaff[49] as sequential core solver
but it implements a distributed learning clause database system (as discribed
in precedent Section 4.3) that can acquire and release memory from a Grid re-
source pool on demand. It is developed from “first-principles” for the Grid and
not a legacy parallel application with modifications for Grid execution. Two
different types of resources are managed by this system: the time-shared and
the batch controlled ones making an important difference with all the previous
parallel or distributed propositions. This initial GridSAT implementation uses
the Every-Ware development toolkit in a master-slave style communication sys-
tem, to prove its feasibility. The baseline Grid infrastructure is provided by
the Globus MDS and NWS (Network Weather Service) systems. The GridSAT
scheduler located in the master node, is the focal point and is responsible for
coordinating the execution and launching the clients (slaves). It uses a progres-
sive scheme for acquiring resources and adding them to the pool because of the
variability and unpredictability of resource need for a particular SAT instance.
Typically, the master requests the resource list available from deployed Grid
services or simply from a configuration file. The scheduler submits any batch
jobs to their respective queues. When a remote client starts running, it contacts
the client manager also located in the master node and registers with it. The
scheduler ranks the set of available clients based on their processing power and
available memory. It uses the first available client to start solving the problem.
A client notifies the master that it wants to split its assigned subproblem when
its memory usage exceeds a certain limit or after running for a certain period
of time. The splitting process is performed by the cooperation of the splitting
client, the master and the idle client and it uses a sender-initiated strategy for

15

load balancing with five messages in a peer-to-peer fashion to communicate one
splitting. In addition, the master can direct a client to migrate its current prob-
lem instead of splitting it. GridSAT implements a limited form of resilience in
the presence of failures based on check-pointing, except for machine crash or
“out-of-memory killer” process termination.

The experimental results are obtained on different but non-dedicated nation-
ally distributed Grids, and all the resources were in continuous use by various
other applications. A number of various challenge problems of the SAT’2002
conference is presented as test applications, including industrial, hand-made and
randomly generated instances already solved by a sequential solver or open ones.
One experimentation used a few dozen of machines distributed among three or
four sites in California including small clusters. For the hardest problems, 100
nodes of the Blue Horizon batch system with each node having 8 CPUs and 4
gigabytes of memory were requested moreover! Because GridSAT is not a tradi-
tional parallel application the results are not very good in terms of speedup for
a number of reasons, but the authors conclusion is that “parallel solver is more
efficient than a sequential one”. Their argument is that it solved open problems
such as one parity-32 bits instance with 8 hours of 800 CPUs of Blue Horizon
plus 33 hours of other resources. But this is not true, as noticed in Section 3.4
it was first solved in 1998, and also in 2000 with 20 minutes of one processor
running time! In [14] improvements over the previous implementation and new
experimental results are presented. In particular, it defines a new method for
lemma exchange which is too complex to detail here, and new problems first
solved. But as mentionned by the authors themselves, it remains an open ques-
tion to decide when using more resources increases the solver’s performance,
especially in this case of Grid computing.

4.5 Miscellaneous

In 1998 Kokotov at MIT, proposes PSolver[40] the first brick of an ambitious
distributed SAT solving framework. In the spirit of Grid computing, it consid-
ers a large network of workstations which are underused or idle for significant
periods of time. It allows these resources to run a client that solves portions
of SAT instances in a master-slave fashion as well. A server maintains a list
of subproblems to be solved (by their guiding paths), doles out these tasks to
clients which connect and disconnect asynchronously, then aggregates their re-
sults. The main features of the project were the following: solver-independence,
any sequential SAT solver can be used at the client end; high scalability, a net-
work (a cluster) can run a bunch of clients and a server which in turn acts as a
client to a higher-level network; volontary computing environment, similar to the
SETI@home project, support for asynchronously connecting and disconnecting
clients; fault tolerance, crashing clients do not affect the server; hardware/OS
independence, PSolver is written in C++ with Solaris, Linux and Windows
distributions, and it relies on the basic TCP/IP stack for its communication.
Unfortunately, this ambitious but precursory work has not been carried on, and
we are not aware of any experimental results.

16

To our best knowledge, Cope et al.[15] is the unique published work to inves-
tigate the parallel functional programming for DPLL implementation, inspite
of its natural recursive expression. This proposition relies on the parallel eval-
uation of both left and right branches (see Figure 1) when the splitting rule is
applied and it is implemented in a parallel dialect of Haskell. It incorporates the
conflict-directed backjumping (CBJ) technique but only for non-chronological
backtracking. A poor experimentation is reported and the early results obtained
by simulation show “modest speedup”. Unfortunately, and perhaps because of
the impressive progress of the iterative implementation of DPLL, there is no
new proposition in this direction.

Unlike all the presented works that may be qualified as Macro Parallelism, a
completely different approach relies on specific hardware circuitry conception to
parallelize SAT solving, and it may be qualified as Micro Parallelism. Among
others, the FPGA (Field Programmable Gates Array) technology gives another
way of using the inherent parallelism inside the circuitry (pipelines eg.). Its first
main characteristic is that it permits to adapt (by reconfigurating) the hardware
to a specific problem instance, taking into account the inherent structure of
computed functions and data structures. Ultimately, this allows one to find a
solution heeding the specific instance complexity rather than the general worst
case one. A great deal of research effort has been done in this area from the
initial works of Suyama et al.[69] and Platzner et al.[58] in 1998 (see [65] for
a recent review). FPGAs are composed of programmable gates embedded in
a programmable interconnection routing network and the programmable gates
are implemented using LookUp Tables (LUTs). While significant speedup has
been reported over software implementations for a number of applications, a
few fundamental hurdles remain before it can be widely applied.

5 Our Experimentation

We will present in the following our experimentation in parallel SAT solving. It
is a complementary approach of all the recent propositions for dynamic workload
balancing, in the sense that it only explores an initial decomposition for work-
load repartition. The two computational models of Shared Memory and Message
Passing are compared, using OpenMP for Shared Memory and MPI for Message
Passing implementations. OpenMP[57] is a complete API for directive-driven
parallel programming of shared memory computers. Fortran, C and C++ com-
pilers supporting OpenMP are available for Unix and Windows workstations.
OpenMP becomes the de facto standard for writing portable, shared memory,
parallel programs. MPI[68] is a portable standard for message passing appli-
cations and can be used on distributed-memory or shared-memory multipro-
cessors, as well as on homogeneous or heterogeneous workstations networks or
clusters. It provides a large library of functions including point-to-point and
collective communications. While message passing reigns as the practical choice
for large-scale parallel computing, threads are the medium of choice for SMP
multiprocessors.

17

5.1 Sequential SAT solver choice

Our approach is to be as possible independent of the sequential solver running
on all the processors for parallel execution. We only put a parallel layer upon the
sequential solver that is viewed as a blackbox. Among all the recent freeware
DPLL implementations we have experimented versions of zChaff, Sato, kcnfs
and Satz. Here, for lack of place we will only present partial results obtained
with Satz to illustrate this simple approach, however actually the best absolute
execution times have been obtained with zChaff. The target sequential solver
Satz developped by Chu Min Li [43, 46] is written in C which enables the use of
OpenMP and MPI as well without any extra processing. One important feature
of Satz compared to other DPLL implementations is that it explores indepen-
dently left and right subtrees making easier parallel implementation. It has
no intelligent backtracking and sophisticated conflict analysis for learning, thus
reducing the posible communications for lemma exchange between processors.
As previously presented in Section 3 it uses experimental Unit Propagation has
branching rule heuristic to prune as much as possible the search tree. One
may notice that for the other solvers intelligent backtracking and learning are
reduced to one processor.

5.2 Initial decomposition strategy

The first step of our parallel proposition aims to obtain at most 2k independent
subproblems assigning both possible values true and false to some k “ well
chosen” variables. At each variable choice, the simplifications obtained by Unit
Propagation are achieved. All the subproblems are placed in a stack that can
be then dynamically allocated to processors all along the parallel execution.
In OpenMP implementation this is obtained by a simple parallel forloop with
a dynamic allocation strategy directive. In MPI implementation, a classical
master-slaves communication protocol has to be writen. The value for the k
parameter may be adapted to the available processors number such that 2k >>
Nbproc. This k parameter reflects the parallel granularity of our application and
is studied in subsequel Section 5.4 giving the effective number of subproblems to
be proceed. In practice, it never goes beyond 10 giving at most 1024 potential
tasks, sufficient for the maximum of 32 processors architecture we used for this
reported experience. The strategy for the choice of these k variables used to
initially partition the problem is of particular importance. We will consider the
three following strategies.

1. Satz : the branching heuristic of Satz to give comparative results with the
sequential resolution.

2. Rand : the random choice of variables.

3. Moms : the classical Maximum number of Occurrences in Minimum Size
clauses heuristic (see Section 3.1).

18

5.3 SAT applications

The first SAT application we used for this experimentation is called the longmult
family, and it comes from the BMC (Bounded Model Checking) domain. Each
of the 16 instances of the family is associated with one output bit of a 16x16
shift and add multiplier. They are reputed difficult for the OBDD (Ordered
Binary Decision Diagrams) approach and are classical benchmark for DPLL SAT
solvers. They can be found at Armin Biere web page2, and all the instances are
unsatisfiable. We will present only the hardest ones longmult14 and longmult15.
The second SAT application we used is called the DES family, and it comes from
the logical cryptanalysis domain initiated by Fabio Massacci et al. [48] in 1999.
It is a new way to generate hard and structured SAT problems by light encoding
a few numbers of tours of DES encrypton system. It can be found at SATLIB
site [62], and all these instances are satisfiable. We will present only the hardest
ones b1-k1.1 and b1-k1.2 for three tours corresponding to the presentation of
one block of the plaintext and one or two blocks of the cyphertext.

5.4 Experimental results

We conducted the experimentation on a SGI Origin 3800 machine thanks to
the CINES (Centre Informatique National de l’Enseignement Supérieur). The
machine configuration is 768 R14000/500MHz processors, and 384Go of memory.
Its architecture is of ccNUMA type, made of a number of interconnected blocks
of processors giving 1.6GB/s data transfer rate and latency lower than 1.4µs.
The computing environment is LSF for batch jobs submission, moreover the
system guarantees the exclusive use of the requested processors number for all
the job predefined duration.

The following tables present for each problem instance: its reference, the
number of variables v, the number of clauses c, the sequential CPU time (in secs)
of Satz, the respective parallel time obtained with 4, 8, 16 and 32 processorrs,
and their respective efficiency. Parallel efficiency is computed by :

Efnb of proc =
(Satz sequential time)

(parallel time) × (nb of proc)

Table 1 gives comparative results of OpenMP and MPI implementations
on the longmult family with the same Satz initial decomposition strategy and
the same granularity giving about 120 subproblems for longmult14 and 200
subproblems for longmult15. Actually, there was a contradiction between the
use of OpenMP for this application and our basic choice not to go inside the
solver code. State-of-the-art DPLL solvers such as Satz make intensive use of
dynamic data structures, but unfortunately OpenMP does not yet permit the
dynamic private (not shared) memory allocation, thus leading to mandatory
memory management overhead (see [31]). It is specially the case for more than
8 processors, and when OpenMP encounters an out-of-memory to give up the
task for this reason a “?” is put in the table.

2http://www.cs.cmu.edu/ modelcheck/bmc.html

19

In all the cases the MPI implementation overcomes the OpenMP one, but
both provide noticeable linear speedup until 8 processors, then a regular decreas-
ing efficiency for MPI and out-of-memory for OpenMP with more processors.

Table 1: OpenMP-MPI comparison with Satz decoposition strategy

Pb. Strat. Seq 4 Pr. Ef4 8 Pr. Ef8 16 Pr. Ef16 32 Pr. Ef32

Lm14 Satz 4053 t4 e4 t8 e8 t16 e16 t32 e32
7.176v OMP 1060 0.95 540 0.93 384 0.66 ? ?
22.389c MPI 971 1.04 503 1.00 327 0.77 284 0.44
Lm15 Satz 4865 t4 e4 t8 e8 t16 e16 t32 e32
7.807v OMP 1251 0.97 665 0.91 ? ? ? ?
24.351c MPI 1211 1.00 622 0.97 361 0.84 274 0.55

Table 2 gives the comparative results of the three decomposition strategies Satz,
Rand and Moms with MPI implementation on both longmult unsatisfiable fam-
ily and DES satisfiable one. We may notice the Satz strategy to be always near
the best one in this experiment. It shows superlinear speedup for the satisfi-
able instances. A non surprisingly random behaviour of the Rand strategy is
observed too. It is wortwhile to notice that both Rand and Moms strategies are
much more easily implemented compared to the Satz one which runs the solver
up to a depth bound. Moreover we have not reported the CPU time needed for
the decomposition step which is not insignificant especially in the Satz case.

Table 2: Decomposition heuristics comparison with MPI

Pb. Strat. Seq 4 Pr. Ef4 8 Pr. Ef8 16 Pr. Ef16 32 Pr. Ef32

Lm14 Satz 4053 971 1.04 503 1.00 327 0.77 284 0.44
7.176v Moms 1750 0.58 891 0.57 552 0.46 291 0.43

22.389c Rand 2050 0.49 1286 0.39 748 0.34 410 0.31
Lm15 Satz 4865 1211 1.00 622 0.97 361 0.84 274 0.55
7.807v Moms 2027 0.60 1102 0.55 568 0.53 350 0.43
24.351c Rand 2448 0.50 1505 0.33 1108 0.27 554 0.27

b1-k1.1 Satz 6352 1319 1.20 660 1.20 336 1.18 173 1.15
307v Moms 1562 1.01 797 0.99 423 0.94 150 1.32
1731c Rand 1823 0.87 702 1.13 428 1.08 187 1.06

b1-k1.2 Satz 7709 1595 1.20 839 1.14 430 1.12 220 1.10
398v Moms 1994 0.96 921 1.04 401 1.20 154 1.56
2124c Rand 65 29 114 8.45 105 4.58 1461 0.16

The last Table 3 presents the comparative results obtained with different gran-
ularity values for the longmult unsatisfiable family. It gives for each number
of generated subproblems, its efficiency obtained with the Satz decomposition
strategy in MPI implementation. It shows the important effect of this parameter
on the overall efficiency especially for scalability.

20

Table 3: Granularity study

Pb. NB-Pbs. Seq 4 Pr. Ef4 8 Pr. Ef8 16 Pr. Ef16 32 Pr. Ef32

Lm14 32 4053 1308 0.77 1182 0.43 1070 0.23 1079 0.12
7.176v 60 1099 0.92 721 0.70 610 0.41 605 0.20

22.389c 112 990 1.02 513 0.99 344 0.73 292 0.43
Lm15 46 4865 1384 0.88 1009 0.60 832 0.36 786 0.19
7.807v 92 1273 0.95 728 0.83 568 0.53 456 0.33
24.351c 184 1247 0.97 628 0.97 364 0.83 277 0.55

6 Conclusion

We have mainly review the work on parallel resolution of the Satisfiability prob-
lem by a DPLL solver. After briefly introduce the different components for se-
quential efficiency of the state-of-the-art solvers, we give an almost chronological
presentation of the essential steps towards the parallel framework progress of
this last decade. However significant parallel efficiencies are still obtained by a
number of recent propositions, more detailed research in all the directions are
needed to improve the parallel performance. Specific works on decomposition
techniques, hybridation of complete-incomplete algorithms, learning ability for
example have to be started up, as well as general study for parallel application
to Satisfiability problem. Indeed new improvements can be done in the sequen-
tial resolution, the next step for a widespread use of Satisfiabiliy technique in
real world applications remains the parallel efficiency challenge.

References

[1] E. Amir, S. McIlraith, Solving Satisfiability using Decomposition and the
Most Constrained Subproblem, In Proc. of SAT’2001[41], 2001.

[2] E. Amir, S. McIlraith, Partition-Based Logical Reasoning for First Order
and Propositional Theories, Artificial Intelligence Journal, 2004.

[3] H. Bennaceur, The satisfiability problem regarded as a constraint satis-
faction problem, In Proc. of ECAI’96, pp.155-159, 1996.

[4] P. Bjesse, J. Kukula, R. Damiano, T. Stanion, Y. Zhu, Guiding SAT
Diagnosis with Tree Decompositions, In Proc. of SAT’2003, 2003.

[5] P. Baumgartner, F. Massacci, The Taming of the (X)OR, In Computa-
tional Logic - CL 2000, LNAI Vol.1861, pp.508-522, 2000.

[6] M. Böehm, E. Speckenmeyer, A fast Parallel Sat Solver - efficient work
load balancing, In Third Int. Symp. on AI and Maths. AIMSA, Fort Laud-
erdale, Florida USA, 1994.

21

[7] R. Bayardo Jr., R. Schrag, Using CSP look-back techniques to solve real-
world SAT instances, In Proc. of CP’96, LNCS 1118, pp.46-60, 1996.

[8] W. Blochinger, C. Sinz, W. Küchlin, PaSAT-Parallel SAT-Checking
with Lemma Exchange: Implementation and Applications, In Proc. of
SAT’2001[41], 2001.

[9] W. Blochinger, C. Sinz, W. Küchlin, Parallel propositional satisfia-
bility checking with distributed dynamic learning. Parallel Computing,
29(7):969-994, 2003.

[10] W.T. Chen, L.L. Liu, A Parallel Approach for Theorem Proving in Propo-
sitional Logic, Information Sciences, Vol.41, pp.61-76, 1987.

[11] S. A. Cook, D. G. Mitchell, Finding Hard Instance of the Satisfiability
Problem: a survey, In DIMACS Series in Dicrete Maths. and TCS., AMS,
Vol.35, pp.1-17, 1997.

[12] W. Chrabakh, R. Wolski, GrADSAT: a Parallel SAT Solver for the Grid,
TR.2003-05, CS. University of California, Santa Barbara, 2003.
(http: www.cs.ucsb.edu/research/trcs/docs/2003-05.pdf)

[13] W. Chrabakh, R. Wolski, GridSAT: a Chaff-based Distributed SAT Solver
for the Grid, Super Computing Conference, SC’2003, Phoenix Arizona,
USA 2003.

[14] W. Chrabakh, R. Wolski, Solving ”hard” stisfiability problems using Grid-
SAT, 2004. (http:: www.cs.ucsb.edu/∼chrabakh/papers/gridsat-hp.pdf)

[15] M. Cope, I. Gent, K. Hammond, Parallel Heuristic Search in Haskell,
InTrends in Functional Programming, Vol.2, pp.65-73, S. Gilmore ed.,
Intellect Books, Bristol, UK, 2000.

[16] A. Darwiche, Compiling knowledge into decomposable negation normal
form, InProc. 15th.IJCAI, pp.284-289, 1999.

[17] G. Dequen, O. Dubois, A backbone-search heuristic for efficient solving of
hard random 3-SAT formulae, InProc.17th. IJCAI, pp.248-253, 2001.

[18] G. Dequen, O. Dubois, kcnfs: an efficient solver for random k-SAT for-
mulae, InProc. SAT’2003, LNCS series. 2919, pp. 486-501, 2003.

[19] E. Dantsin, A. Goerdt, E. A. Hirsch, et al. , A Deterministic (2−2/(k+1))n

algorithm for k-SAT based on local search, TCS, Vol.289, pp.69-83, 2002.

[20] M. Davis, G. Logeman, D. Loveland, A machine program for Theorem
Proving, CACM, Vol.5 (7), 1962.

[21] R. Finkel, U. Manber, DIB, A Distributed Implementation of Backtrack-
ing, (ACM) Transactions on Programming Languages and Systems, Vol.9-
2, pp.235-256, 1987.

22

[22] Y. Feldman, N. Derschowitz, Z. Hanna, Parallel Multithreaded Satisfia-
bility Solver: Design and Implementation. PDMC 2004, 2004.

[23] S. Forman, A. Segre, NAGSAT: a randomized complet, parallel solver for
3-SAT, InProc. SAT’2002, pp.236-243, 2002.

[24] R. Génisson, P. Jégou, Davis-Putnam were already checking forward, In
Proc. of ECAI’96, pp.180-184, 1996.

[25] I. Gent, H, van Maaren, T. Walsh eds., SAT 2000, Highlights of Satisfi-
ability Research in the Year 2000, Frontiers in AI and Applications, Vol.
63, Kluwer AC. Publ. ,2000.

[26] E. Goldberg, Y. Novikov, BerkMin: a fast and robust SAT-solver, In
Design, Automation and Test in Europe (DATE’02), pp.142-149, 2002

[27] J. Gu, Parallel Algorithms for Satisfiability problem, In DIMACS Series
in Dicrete Maths. and TCS., AMS, Vol.22, pp.105-161, 1995.

[28] J. Gu, P.W. Purdom, J. Franco, B.W. Wah, Algorithms for Satisfiability
(SAT) problem: a Survey, In DIMACS Series in Dicrete Maths. and TCS.,
AMS, Vol.35, pp. 19-152 1996.

[29] Z. Habbas, M. Krajecki, D. Singer, Decomposition Techniques for Par-
allel Resolution of Constraint Satisfaction Problems in Shared Memory:
a Comparative Study. Special issue of ICPP-HPSECA01, Int. Jour. of
Computational Science and Engineering (IJCSE), to be published, 2001.

[30] Z. Habbas, M. Krajecki, D. Singer, Parallel resolution of CSP with
OpenMP. In Proc. of the second European Workshop on OpenMP,
EWOMP’00, Edinburgh, Scotland, pp.1-8, 2000.

[31] Z. Habbas, M. Krajecki, D. Singer, Shared memory implementation of
CSP resolution. In Proc. of HLPP’2001, Orléans, France, 2001.

[32] M. Heule, H. van Maaren, Aligning CNF and equivalence reasoning, In
Proc. of SAT’2004, LNCS series, to appear 2005.

[33] T. Hogg, C.P. Williams, Expected gains from parallelizing constraint solv-
ing for hard problems, In Proc. of AAAI’94, pp.331-336, 1994.

[34] K. Iwama, D. Kawai, S. Miyazaki, Y. Okabe, J. Umemoto, Parallelizing lo-
cal search for cnf satisfiability using vectorization and pvm, ACM Journal
of Experimental Algorithms, 7 (2), 2002.

[35] B. Jurkowiak, C.M. Li, G. Utard, Parallelizing Satz Using Dynamic Work-
load Balancing. In Proc. of SAT’2001[41], 2001.

[36] B. Jurkowiak, Programmation Haute Performance pour la Résolution des
problèmes SAT et CSP, Thèse de l’Université de Picardie, Amiens, 2004.

23

[37] P. Jackson, D. Sheridan, The optimality of a fast CNF conversion and its
use with SAT, In Proc. of SAT’2004, LNCS series,to appear, 2005.

[38] H. Kautz, SATPLAN04: Planning as Satisfiability,
http: //www.cs.washington.edu/homes/kautz/satplan/.

[39] O. Kullmann, Investigations on autark assignments, Discrete Applied
Mathematics, 107:99-137, 2000.

[40] D. Kokotov, PSolver: Distributed SAT Solver Framework,
http: //sdg.lcs.mit.edu/satsolvers/PSolver/index.html.

[41] H. Kautz, B. Selman: Proc. of the Workshop on Theory and Applications
of Satisfiability Testing, (SAT’2001), Elsevier Science Publishers, Elec-
tronic Notes in Discrete Mathematics Vol.9. 2001.
http://www.elsevier.nl/gej-ng/31/29/24/42/show/Products/notes/cover.htt

[42] R.M. Karp, Y. Zhang, Randomized Parallel Algorithms for Backtrack
Search and Branch-and-Bound Computation, Journal of the ACM.,
Vol.40, No.3, pp.765-789, 1993.

[43] C. M. Li, Anbulagan, Heuristics based on unit propagation for satisfia-
bility problems. In 15th Int. Joint Conference on AI, IJCAI’97, Morgan
Kaufmann Pub., Nagoya Japon, pp.366-371, 1997.

[44] D. Leberre, Exploiting the real power of unit propagation lookahed, In
Proc. of SAT’2001[41], 2001.

[45] D. Leberre, L. Simon, Fifty-five solvers in Vancouver: the SAT’2004 com-
petition, In Proc. of SAT’2004, LNCS series, to appear 2005.

[46] C. M. Li, S. Gérard, On the Limit of Branching Rules for Hard Random
Unsatisfiable 3-SAT. In 14th. European Conf. on AI, ECAI 2000, Berlin,
2000.

[47] C. M. Li, Integrating Equivalency reasoning into Davis-Putnam proce-
dure. In the proceedings of AAAI-2000, Austin Texas USA, pp.291-296,
2000.

[48] F. Massacci, L. Marraro, Logical cryptanalysis as a SAT-problem:
Encoding and analysis of the U.S. Data Encryption Standard,
Journal of Automated Reasoning, Vol.24(1-2), pp.165-203, 2000,
(http://www.dis.uniroma1.it/ massacci/papers/).

[49] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engi-
neering an Efficient SAT Solver, Proc. of the 39th. DAC, Las Vegas USA,
2001.

[50] B. Monien, E. Speckenmeyer, Solving Satisfiability in less than 2n steps,
Discrete Applied Maths., Vol.10, pp.287-295, 1985.

24

[51] D. McAllester, B. Selman, A. Kautz, Evidence for invariant in local search,
In Proc. of 14th. Nat. Conf. on AI, AAAI 1997, pp.321-326, MIT Press,
1997.

[52] D. Mitchell, B. Selman, H. Leveque, A new method for solving hard satis-
fiability problems, In Proc. of 10th. Nat. Conf. on AI, AAAI 1992, pp.440-
446, MIT Press, 1992.

[53] J.P. Marques-Silva, K.A. Sakallah, GRASP- A New Search Algorithm for
Satisfiability, Proc. of ICCAD’96, pp.220-227, 1996.

[54] J.P. Marques-Silva, K.A. Sakallah, Conflict Analysis in Search Algorithms
for Propositional Satisfiability, Proc. of the IEEE. ICTAI , 1996.

[55] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Deter-
mining computational complexity from characteristic “phase transitions”,
Nature, 400, pp.133-137, 1999.

[56] F. Okushi, Parallel Cooperative Propositional Theorem Proving, In 5th.
Int. Symp. on AI and Maths. AIMSA, Fort Lauderdale, USA, 1998.

[57] OpenMP Architecture Review Board, OpenMP C and C++ Application
Program Interface, http://www.openmp.org.

[58] M.Platzner, G. De Micheli, Acceleration of Satifiability Algorithms by
Reconfigurable Hardware, In Proc. of the 8th. Int. Workshop FPL’98,
LNCS-1482, pp.69–78, 1998.

[59] P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP for
MAX-SAT problems, In Proc.PARA’96, LNCS 1180, pp.575-585, 1996.

[60] V.N. Rao, V. Kumar,, On the Efficiency of Parallel Backtracking, In IEEE
Trans.on Parallel and Distributed Systems,Vol.4, No.4, 1993.

[61] A. Roli, Criticality and Parallelism in GSAT, In Proc. of SAT’2001,[41],
2001.

[62] SATLIB - The Satisfiability Library,
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/.

[63] SATLive: http://www.satlive.org.

[64] E. Speckenmeyer, M. Böhm, P. Heusch, On the imbalance of distributions
of solutions of CNF-formulas and its impact on satisfiability solvers, In
DIMACS Series in Dicrete Maths. and TCS., AMS, Vol.35, pp.669-676,
1996.

[65] I. Skliarova, A.B. Ferrari, Reconfigurable hardware SAT solvers: a survey
of systems, In Field-Programmable Logic and Applications, P. Cheung, G.
Constantinides, J. de Sousa eds., LNCS 2778, pp. 468-477, 2003.

25

[66] T. Stützle, H. Hoos, A. Roli, A review of the literature on local search al-
gorithms for MAX-SAT, TR. AIDA.01.02, Darmstadt University of Tech-
nology, 2001.

[67] E. Speckenmeyer, B. Monien, O. Vornberger, Superlinear speedup for Par-
allel Backtracking, Proc. SUPERCOMPUTING 87, LNCS 297, pp. 985-
995, Springer, 1987.

[68] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, MPI:
the complete reference, the MIT Press, 1996.

[69] T. Suyama, M. Yokoo, H. Sawada, Solving Satifiability Problems Using
Logic Synthesis and Reconfigurable Hardware, Proc.of the 31th. Hawaian
Internationnal Conference on System Sciences HICSS-31, 1998.

[70] C. Thiffault, F. Bacchus, T. Walsh, Solving non-clausal formulas with
DPLL search, Proc. SAT’2004, LNCS series, to appear, 2005.

[71] T. Walsh, SAT versus CSP, Proc. CP’2000, LNCS 1894, pp. 441-456,
Springer, 2000.

[72] J.P. Warners, H. van Maaren, A two phase algorithm for solving a class of
hard satisfiability problems, Operation Research Letter, 23 (3-5), pp.81-88,
1998.

[73] L.C. Wu, C.Y. Tang,, Solving the satisfiability problem by using random-
ized approach, Information Processing Letters, 41, 187-190, 1992.

[74] H. Zang, M.P. Bonacina, Cumulating search in a distributed computing
environment: a case study in parallel satisfiability, In Proc. PASCO’94,
1994.

[75] H. Zang, M.P. Bonacina, J. Hsiang, PSATO: a distributed propositional
prover and its applications to Quasigroup problems, Journal of Symbolic
Computation, Vol.21, pp.543-560, 1996.

[76] H. Zang, SATO: An Efficient Propositional Prover, Proc. of Int. Conf. on
Automated Deduction, CADE-97, 1997.

[77] L. Zang, S. Malik Cache Performance of SAT Solvers: a Case Study for
Efficient Implementation of Algorithms, Proc. of SAT’2003, 2003.

[78] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver, Proc. of ICCAD 2001, San
Jose USA, 2001.

[79] Y. Zhang, A.Ortynski, Efficiency of Randomized Parrallel Backtrack
Search, Algorithmica,Vol. 24, pp.14-28, 1999.

26

