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Abstract. New explicit group S.O.R. methods suitable for use on an asynchronous MIMD computer are 
presented for the numerical solution of the sparse linear systems derived from the discretization of two-dimen- 
sional, second-order, elliptic boundary value problems. A comparison with existing implicit line S.O.R. schemes 
for the Dirichlet model problem shows the new schemes to be superior (Barlow and Evans, 1982). 
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1. Introduction 

In this pape r  i terat ive techniques are considered for  solving the l inear  sys tem of equat ions ,  

,4+ = b, (1) 

where  A is a given N × N non-s ingular  matr ix ,  b is a given N × 1 vector  and  ~ is the N × 1 
solut ion vector  on a paral le l  computer .  W e  shall  be  concerned  with  those l inear  systems which 
arise in the solut ion of two-d imens iona l  second-order ,  el l ipt ic b o u n d a r y  value problems.  The  
p rob l em of  interest  is as follows: let R be a bounde d  region in the (x ,  y )  p lane  and S its 
bounda ry .  Def ine  the second-order  l inear  ope ra to r  L as, 

£[q,] =A4xx + C%y + D+x + e %  + e ,  = G, (2) 

where  A, C, D, E ,  F and  G are con t inuous  and real  valued in R, and  

A > 0, C >  0 and F ~ < 0 i n R .  (3) 

G iven  a con t inuous  funct ion epo(x,y) def ined on  S, f ind a rea l -va lued  funct ion  ~ which is 
con t inuous  in R + S, twice d i f ferent iab le  in R,  satisfies (2), and  also satisfies cer ta in  b o u n d a r y  
condi t ions  on S. This  is summar ized  by:  

f ind ~ ( x ,  y )  which is cont inuous  on R + S and  

is twice cont inuous ly  d i f ferent iable  on  R ,  (4) 

where ~ ( x ,  y )  = ~ 0 ( x ,  y )  on S and  L [ ~ ]  = G(x ,  y )  on R.  

F o r  s impl i f ica t ion we let R be the unit  square,  0 ~< x ~< 1 and  0 ~<y ~< 1, and  S be  the 
boundary ,  and  we consider  Lap lace ' s  di f ferent ia l  equat ion  (i.e. the M o d e l  Problem) ,  

a2~ _ a2~ 
L[+] =~.--=0, (5) ay 2 

and the boundary conditions, 

rb(x,y) f f iepo(x,y ) o n S .  (6) 

The  p rob l em def ined is a special  case of  the Dir ichle t  p rob lem.  

0167-8191/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland) 



4 D.J. Evans / Parallel S.O.R. iteratiue methods 

Usually, analytic solutions of (2) are not known and when they are known; it is often very 
difficult to satisfy prescribed boundary conditions. In the application of finite difference 
methods the region R is replaced by a finite set of point Rh, and likewise, the boundary S is 
replaced by a finite set of points S h. In this discussion, only a square mesh is considered. For 
each point P ~ R h a linear relation is established between the value of ¢b at P and certain other 
points of R h and S h. The value of q~ at all points of S h is determined by the prescribed boundary 
conditions given by (6). If there are m 2 points in Rh, the resulting linear system (1) is made up 
of m 2 equations in m 2 unknowns. The values of q) at points of R h obtained by solving (1) are 
accepted as approximate solutions of (2), and interpolation techniques can be used to obtain 
approximate solutions of the differential equation (2), for all points of R. 

The procedure considered for expressing a linear relationship between points of R h and S h is 
to replace the partial derivatives in (2) by their equivalent three-point central difference 
formulae, given by 

~x(x, y )  -- [~ (x  + h , y )  - e p ( x  - h , y ) ] / 2 h ,  

~y(x, y )  -- [oh (x, y + h) - ep(x, y - h ) ] / 2 h ,  

~xx (x, y) -- [ ~ ( x  + h, y )  + ~ ( x  - h, y )  - 2~(x, y)]/h 2, (7) 

epyy(x,y) ~-. [ ep(x,y + h ) +ep(x, y -  h ) - 2ep(x ,y ) ] /h  2, 

where h is the size of the mesh (Fig. 1). Substituting (7) into (2) gives the difference equation (8) 
for the general case 

Lh [~1 = A(x,  y ) [ ~ ( x  + h, y)  + ~ ( x  - h, y )  - 2~(x ,  y ) ] / h 2  

+ C(x ,  y ) [ ~ ( x ,  y + h) + ~(x ,  y - h) - 2~(x ,  y ) ] / h  2 

+ D ( x ,  y ) [ ~ ( x  + h, y )  - ¢b(x - h, y ) ] / 2 h  

+ E ( x ,  y ) [ ~ ( x ,  y + h) - ep(x, y - h ) ] / 2 h  + F ( x ,  y)cb (x, y )  

= G ( ~ ,  y) (s) 

which reduces to 

where 

L[~,] = ao , (X , y )  + alq~(x + h, y )  + a : ¢ ( x  - h, y )  

+ ~3,  (x ,  y + h) + , , , ¢  (x ,  y - h) 

=G(~,y) (9) 

A D C E 

=' = h--/+~ ' ~=~;+iZ' 
A D C E 

~3=h2 2h' = 4 = ~ - ~  ' 

% =  - ( a  1 + c=2 + aa + =4) +F .  

For the model problem (9) simplifies to (see also Fig. 1) 

Lh [~] = ~ ( x  + h, y )  + ~ ( x  - h, y )  + ~b(x, y + h) + ~ (x ,  y - h) - 4~b(x, y )  
h 2 

(1o) 

= 0 ,  

(11) 
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o r  

<hi+l,j' + ~ - l . j  + ~i,j+l + eOl..i-I --  4rhi , j  = 0, (12) 

where ¢i,j = e p ( i h , j h ) ,  and is represented conveniently by the 'molecule' of Fig. 2. 
Now consider the following numbering of the internal mesh points of a (6 x 6) mesh with 

Dirichlet boundary conditions: 

t(~=l 

(~=0 

4 8 

3 7 

2 6 

1 5 

12 16 

11 15 

10 14 

9 13 

'4>=0 

,--4~=0 

(13) 

Then, by applying equation (12) to each of the internal mesh points, we produce the 
foUowing system of linear equations, 

4 --1 
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--1 
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-1 
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(14) 
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~)(x-h,v 

~(x,v+h', 

~(x,y) ~(x+h,v 

Fig, I, 

CY-( 
,) 

Fig, 2. 

Thus, a system of linear equations has been created by replacing the partial differential equation 
by a finite-difference equation at each of the internal mesh points. 

2. The solution of a large sparse system of linear equations 

In this section we shall define some basic iterative formulae that may be used to solve the 
system of equations (14). 

2.1 The Point Jacobi Method 

Since, at each internal mesh point we have 

q',.; = ¼ (*,+, .J + * , -  ~.~ + * ,4+ ,  + * , . . , - , ) ,  (15) 

a simple iterative formula would be 

~(,.+l)=¼(a,(,o +a,(,o +a~(") .a-a,(") ~ (16) i , j  ~,vi+ l , j  "t ' i - - l , j  "r'i,j+l - -  "t"i,j--1]" 

where q,}.~) represents the nth iterate or approximation to ~ at point ( ih, jh) .  This is called the 
Point Jacobi method. Clearly the (n + 1)st iterates are expressed exclusively in terms of nth 
iterates and so the order in which they are evaluated with respect to the mesh points does not 
effect their values or the rate of convergence to the solution. Hence this method is called the 
Simultaneous Displacement Method. Unfortunately, the rate of convergence of this method is 
slow and hence it is rarely used. 

An improvement in the con)ergence rate can be obtained by applying the formula, 

,("+'- (1 - 0o) ,~.; '+ l ,o~ , . ,+ , . ;  , . ,_ , . j  , . , . j+,  + , )  (17)  i,j -- ( ~(n) + ~(n) + ~(n) ¢b(n} 
ra,j- 

at each point (i,j) of the grid where to > 1. This method is called the J.O.R. and the basic 
principle involved in the acceleration process is described in the next section. 

2.2 The Gauss-Seidel Method 

The Point Jacobi formula (16) may be improved by using the latest values of ~.j. as soon as 
they are available. If  we assume that the (n + 1)st iterative values have been calculated along 
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columns 1, 2 . . . . .  ( j -  1) and as far as point ( i -  1 , j )  along column j ,  and that the (n + 1)st 
value at point ( i , j )  is the next to be calculated, then the Gauss-Seidel formula gives 

q,!,,.÷~) = ! t ~o,~ ~_ ~.<,,+ ~ ± ~(,,~ ~ ( , , + ~  (18) s . j  4 ~ ' t ' i+ l . j  - -  " t ' i - - l . j  T ~ i . j +  l "~ " t ' i . j - - I  ]"  

With this method, we have the added advantage of only needing to store the latest value of 
each q>~i" This method is a Successive Displacement Method. 

2.3 The Successive Over-Relaxation Method (S,O.R.) 

If ~(") is added and subtracted to the right-hand side of equation (16), we have r t .  j 

~.j ~ ,  . j  \ "t'i + I . j  Y i - -  1 . j  - -  " t ' i . j  + I "r i . j - -  I - - r i d  

= tb(n)  + r i . j  - -  ri,j" (19) 

Obviously, r~,j is the change in value of <Px.i for one Gauss-Seidel  iteration. The rate of 
convergence of the Gauss-Seidel method can be 'accelerated' by making a larger change to cb~. i 
thus, 

~ , t÷  ~ = ~t,,? + ¢~r~,i ' (20) 

where ¢o is positive constant called the acceleration factor which in practice lies between I and 2. 
This equation is called the Successive Over-Relaxation formula and may be rewritten in the 
form 

_ ,.~(,~ + I )  ¢ ~ ( n + 1 ) _ _  ( 1  " ~ '4"("I )"L l " " / ' 4 ~ ( t t )  -'L & ( " t + l ) " ~  - "~'(n) ° J ~ ' Y i , j - - I  7 
r i , j  - -  w ] W i , j  - -  4 w ~ W i + | , j  - -  W i - - l . j  ~ i , j + l  (21) 

from which it is clear that it is a linear combination of the Gauss-Seidel  iterate (18) and the nth 
iterate. (Note that when t~ = 1, the S.O.R. method becomes the Gauss-Seidel  method.) In this 
method it is also only necessary to store the latest values of ~.~ and it is a Successive 
Displacement Method. 

3. The  solution of the Dirichlet problem by S .O.R.  methods on a parallel computer 

It is obviously a trivial problem to perform the Point Jacobi method on a parallel computer, 
since each iteration comprises of m 2 independent evaluations defined by (15). The use of 
Successive Displacement methods on a parallel computer is not so simple since the order in 
which the (n + 1)th iterates are evaluated, particularly with S.O.R., is important.  We have seen, 
in the previous section, that with the S.O.R. method it is desirable for matrix A to possess 
property A (Young, [8]) and be consistently ordered, and so, when S.O.R. is performed on a 
parallel computer, it is useful but not vital to preserve these properties. 

If  the order in which the (n + 1)st iterates are evaluated is called an ordering, then an 
ordering that produces a coefficient matrix A which is consistently ordered is a consistent 
ordering. The row-wise or column-wise ordering of the mesh points in (13) is a consistent 
ordering. This ordering, however, is of little use for a parallel computer  because it is essentially 
sequential. A much more useful ordering is the red-black ordering 
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lo ,,.\..)1,,. 8 

j 2 ( 3 1 2  6"'116 
('~ (22) 

9 3(313 7 ̀-.`/ 

1~" ")11 5 ~ )15 

i 

Clearly, the red-black ordering consists of two passes over the meshes. During the first pass we 
evaluate the (n + 1)st iterates at alternate mesh points (circled in (22)) beginning at 1, and in the 
second pass the remaining points (uncircled in (22)), are dealt with. If the finite difference 
equation (12) is applied in this order, then using S.O.R. we have for the first pass, 

4/."+1)=(1-¢o)~,~.)+±,-,( '~(") "~(") +~-(") +,~(") ~ for all i + j  odd (23) t,j 4 w k ' f ' i + l , j  q- " f f i - - l , j  " l " i , j  + 1 "t ' i , j -- l]  

and during the second pass, 

q/,,+1)_(1 (.) (,~(-+l)~,~(,+l)j_,~(.+l)a.a,(-+l)~ for all i + j  even. (24) i , j  - -  - - ¢ O ) ~ i , j " ~  l o J \ ' ~ i + l , j  - - ' t ' i - l , j  - - ' f f i , j + l  - -  ~" io j-1 ] 

Thus, the first pass consists of independent evaluations which may be carried out simulta- 
neously and similarly so does the second pass. It is unimportant how the evaluations in each 
pass are shared between the processors provided it is done evenly and the first pass is completed 
before the second pass is commenced (this is to ensure that during the second pass, the (n + 1)st 
iterates are available when required). 

An alternative application of the red-black ordering for a two processor parallel computer 
system can be produced by applying the technique of folding, which we shall call the parallel 
R.B. ordering. In this ordering, the two passes of the red-black ordering are executed simulta- 
neously, in the following manner: 

T 

,(.,..~ (,..~ ,[ 

7 -A 3 J8 
/'% f'~ 

2 5 ~' "/6 1~ J 
/'% r'~ 

8 k' J3 4~ 'J7 

1 6~")5 ,2 \ J  

(25) 

Processor 1 evaluates the (n + 1)st iterates at the uncircled mesh points while processor 2 
evaluates the (n + 1)st iterates at the circled mesh points in the order 1 and (~), 2 and (~) etc. 
The (n + 1)st iterates are defined by equation (23) before the processors cross, and by (24) after 
they have crossed, for both processors. 

For both the red-black and parallel R.B. orderings the number of parallel operations per 
iteration is 

3 [ - ~  J multiplications + 5 [ 2-2-1 additions, (26) 

where m 2 is the number of internal mesh points. 
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In order to compare the two mesh-point orderings, they are both used to solve the Dirichlet 
problem for different mesh sizes. In each case, p(G) the spectral radius of the Gauss-Seidel 
method is estimated using the power method and, by using this value the optimum value of tob 
is obtained. An experimental optimum value of to is also found by solving the problem using 
different values of to. The value of to is initially set to 1 and incremented by Ato until the number 
of iterations required to satisfy the conditions of convergence begins to increase. Then, in the 
vicinity of the value of to that requires the least number of iterations, a smaller value of Ato is 
used. The process is repeated until the region, in which the least number of iterations are 
required for convergence, is found to the required degree of accuracy. The experimental best 
value of to, say toe, is the average value of to for which the least number of iterations is required. 

The condition for the convergence of the S.O.R. method is 

~ ( , + l )  d/-".)l < e for all i , j ,  (27) i , j  - -  r l , J  ! 

where t = 5 × 10 -5, and also for the power method, the difference between successive estimates 
of the spectral radius p(G) is chosen to be less than the value of e. Four different mesh sizes are 
used which produce (10 × 10), (20 × 20), (40 × 40) and (60 × 60) networks. The results obtained 
from these experiments are recorded in Table 1, where n A is the minimum number of iterations 
required for convergence, n E is the estimated number of iterations, and toe and co b are as 
previously defined. Obviously, there is, as might be expected, little difference between the 
results achieved by the two orderings. 

One fact that is not so obvious, however, is that the parallel R.B. ordering is not consistent. 
This is the result of the simultaneous evaluation of adjacent mesh values, since the (n + 1)st 
iterates at the two points are evaluated using the n th iterative values of each other, whereas 
when evaluated sequentially, the second point to be evaluated would use the (n + 1)st iterative 
value of the first point. Hence, the sequential ordering is not preserved. Clearly, in this case, the 
fact that the ordering is inconsistent, has no serious effect on the performance of the algorithm. 
One question that cannot be answered however until the algorithm is actually implemented, is, 
"will the 2 asynchronous processors cross over at different points during each iteration?" and if 
so "will it have a more serious effect on the algorithm's performance?" 

The necessity of consistent ordering is an important question and from some of the following 
orderings it will be seen that the lack of consistency can be a serious problem. The main 
advantage is that the S.O.R. theory does not hold, which makes it impossible to estimate co b 
accurately. 

4. Explicit block iterative schemes 

The number of iterations required for the convergence of the iterative process may be 
reduced by evaluating iterates at groups of mesh points by a direct method. This technique leads 
to new block iterative methods which we shall now discuss. 

Tabi6 1 

Method Mesh size n ̂  n ~ ~o c ~ b 

Red-black 10 15 14 1.495 1.490 
point S.O.R. 20 29 30 1.717 1.717 

40 57 58 1.846 1.842 
60 82 76 1.890 1.877 

Parallel 10 15 14 1.503 1.490 
R.B. 20 32 30 1.732 1.718 
point S.O.R. 40 58 58 1.848 1.842 

60 83 76 1.894 1.877 



D.J. Evans / Parallel S.O.R. iterative methods 

Consider, for instance, the following group of mesh points, 

(28) 

If equation (12) is applied to points 1 and 2 we obtain the formulae 

4+, =(p,,++b++2++t and 4&=& +~c+~~++c 

which may be rearranged to give 

~,=~(4(~,,++~+~I)+~~++~+~~u) 

and 

~z=~(4(~=+~~++=)+~~,++~+~~‘/) 

or in terms of i and j, 

~i.j=~(4(9i-l.j+~i.j+l ++i.j-l)++i+l.j+l ++i+2.jf+i41.j-I) 

and 

(29) 

(30) 

+i+l.j =ik(4(+i+l,j+l ++i+2.j++i+l.j-l)++i-I,j++i.j+l++i,j-1)' (31) 

Clearly, these two equations are independent of each other and so may be evaluated 
simultaneously. Thus, by partitioning the system of meshes into (2 X 1) blocks we can evaluate 
the iterates at the points within each block simultaneously using two processors. The order in 
which the blocks are considered is important and so, remembering that the processors of an 
MIMD computer are not synchronous, we shall use the red-black ordering as in (22) except that 
each point represents a (2 x 1) block. Any consistent ordering of the blocks may, of course, be 
used but with the ordering defined in (13) for instance, we cannot be sure that all of the latest 
iterative values will be available when required. 

So, using a red-black ordering of the.blocks, the (n + 1)st iterates of the S.O.R. iterative 
scheme will be defined by 

and 

where 
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during the first pass and 

~(.,,.+ ,)= ~:~ + ~ (  4r(;+ 1, + r(.+ 1) 

and (33) 

~ b ( n + ' ) - -  d , ( n )  4-  1 , . , ( A r ( n + l )  Jr- r ( ' + 1 ) -  l q A ( " )  "~ 
i + l . j  - -  "f"i+l.j - -  "l"SW~'i+loj i,j ~Wi+l, j , I  

d u r i n g  the  second  pass. 
In  o r d e r  to use m o r e  than  two  processors ,  we can  e i the r  solve  for  m o r e  than  o n e  b lock  at a 

time, or, alternatively, partition the system of meshes into larger blocks; so consider the 
following (2 × 2) block of mesh points, as in Evans and Biggins [6]. 

i+l,j-1 

i , j -1 

i+2,j 

i+l,j 

i,j 

i - l , j  

i+2,j+1 

i+l , j+ l  

i , j÷l 

i - l , j  +1 

i+1, +2 

i,j+ 

(34) 

Applying the same technique as was applied to the (2 × 1) block, we obtain the formulae, 

and 

\ 
'/'i.j = #, ~ 2 ( , , _ , . j + ,  + *,.j+~ + *,+~.j + *,+ l j -  1) 

+ 7(•,-1.j + d#i,j-,) + ¢~i+1,j+2 + * i + 2 . j + 1 )  

- - 1  r 
- -  24 i , j ~  

= ½(2(,t , ,_l .j  + ¢,÷1.,÷2 + ~',+~.~÷~ + ,t , , j_,)  ¢i.j+l 

+ 7 ( q b i _ l , j +  1 + ~bi,j+2) + dPi+2, j + qbi+l . j - i  ) 

! r = 24 i , j+l '  

= ~, (2(+,_ , . j+1 + +,.j+= + ¢,+~.j + ,t,,+~.j-~) '/'i+l.j+l 

+ 7( , ,+ , j+~  + *,+2.j+1) +*,-1j + *,.,-,) 
-- 1-- r 
- -  24 i + l , j + l ~  

*,+l.j = h ( 2 ( , , _ l . j  + *,+,.j+2 + *,+2.j+, + * , , j - l )  

+ 7(¢,+2,j + ¢,+i,j-1) + ¢,-L~+~ + ¢,o+2) 

J - r  
= 24 i+l,j" (35) 
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Again, using a red-black ordering of the blocks, the (n + 1)st iterates during the first pass are 
defined by 

and 

(364 

~I::,‘i’=d::.,+ifi~(T;!:~l)-224~1:)l,~). (36b) 

Obviously, with this scheme, we may use 4 processors simultaneously. 
Considering now the number of parallel operations per iteration, we have for the (2 X 1) 

block scheme, 
I 

(2m2 multiplications + $m2 additions), 

when using 2 processors and for the (2 X 2) block scheme, 

( $m2 multiplications + zrn2 additions), 

when using 4 processors. 

(37) 

(38) 

The next size of block to be considered is the (3 X 3) block, 

9 8 7 

10 C f k 6 

11 b e h 5 

12 a d 9 4 

1 2 3 
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Applying the same technique as before, we obtain the formulae, 

toa -- 2-'~4 (67(tol + qh2) + 22(to2 + toll) 

+ 7(to3 + to4 + to9 + tolO) q" 6(to5 q" to8) "+" 3(to6 + toT)), 

tob = n-~ (37ton + 11(tol + to9 -}" tol0 "{- tot2) "~ 7(to2 + tog) + 5to5 + 3(to3 + to4 + to6 + toY)), 

toc = 2@~(67(to9 + to10) + 22(tos + ton) 

+ 7(to1 + % + toy + to12) + 6(to2 + tos) + 3(to3 + % ) ) ,  

% = & (37to2 + 11(to~ + to3 + to, + to~2) + 7(to5 + ton)  + 5to8 + 3(to6 + to7 + to9 + to10)), 

too = ~(2( to2  + to5 + tos + t o n ) +  to~ + to3 + to4 + to6 + to7 + to9 + to~0 + to12) 

tof = &(37tos  + 11(to6 + to7 + to9 + to~0) + 7(to5 + ton)  + 5to2 + 3(toi + *3 + to, + tol2)), 

tos = 2-~4 (67(to3 + to4) + 22(to2 + tos) 

+ 7 ( t o l + t o 6 + t o 7 + t o 1 2 ) + 6 ( t o s + t o l l ) + 3 ( t o 9 + t o l o ) ) ,  

toh = &(37to~ + 11(to3 + to4 + to6 + to~) + 7(to2 + toS) + 5ton + 3(to~ + to9 + to,o + to~2)), 

and 

tok = 2-~4 (67(% + toT) + 22(toS + to8) 

+ 7(to3 + to4 + to9 + to10) + 6(to2 + ton) + 3(to1 + to12)), (40) 

f rom which it is not  difficult to produce the corresponding S.O.R. formulae. Thus, by evaluating 
the iterative values at all of  the mesh points within a block simultaneously, we can use 9 
processors. Again, it is preferable to employ a red-black ordering of the blocks, and for this 
scheme m must  be divisible by 3. 

An unfor tunate  proper ty  of  this block size is that the equations (40) are not  all of  the same 
form and so the rates at which each of  the processors traverse the system of meshes will n o t  be 
the same. However,  by considering the processor that has the most  work to do, the number  of 
parallel operations will be 

(~m 2 multiplications + 19-~m2 additions) per iteration. (41) 

If we compare  the number  of parallel operations per i teration of the three block S.O.R. 
schemes considered so far, it can be seen that, as might be expected, this quant i ty  decreases as 

Table 2 

Method Mesh size n^ n E toe to b 

(2 x 1) Block 10 13 13 1.449 1.439 
S.O.R. 20 26 26 1.681 1.681 

40 50 52 1.822 1.824 
60 73 70 1.874 1.867 

(2 x 2) Block 10 11 10 1.371 1.365 
S.O.R. 20 22 22 1.617 1.625 

40 42 43 1.784 1.793 
60 61 61 1.846 1.850 

(3 x 3) Block 11 10 10 1.345 1.333 
S.O.R. 20 18 18 1.561 1.563 

41 36 37 1.749 1.760 
62 52 54 1.826 1.830 
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the block size (and therefore the number of processors) is increased. However, going from the 
(2 × 1) block to the (2 x 2) block, for instance, does not halve the number of operations and so 
it is important to compare the respective rates of convergence. For this purpose the experiments 
performed using the point iterative schemes were repeated using the block schemes, the results 
of which are contained in Table 2. The headings of Table 2 are the same as those of Table 1. 
The differences in the mesh sizes for the (3 × 3) block scheme are to allow for the fact that m 
(the square root of the total number of internal mesh points) must be divisible by 3. 

As expected, by increasing the block size, the number of iterations required for convergence 
of the iterative schemes is decreased. The results contained in Table 2 can be combined with the 
number of operations per iteration required by each method given in (37), (38) and (41), to give 
the total number of parallel operations required by each of the block S.O.R. methods, and are 
recorded in Table 3. 

Clearly, by increasing the block size from (2 × 1) to (2 × 2), we see that the number of 
parallel operations is approximately halved and so would be justified if sufficient processors are 
available. The effect of increasing the block size to (3 × 3) is not quite so successful but still 
impressive. However, it must be remembered that the equations generated by the (3 × 3) block 
are not identical in form and also the parallel system overheads will be considerably more for 9 
processors than for 2 or 4 processors. 

Finally, attention will now be concentrated on the 4-point block method as a suitable parallel 
strategy to recommend for the iterative solution of this class of problems, on an MIMD 
asynchronous multiprocessor, since it satisfies the following desirable properties, i.e. it is 
explicit, possesses an improved convergence rate over the point method (Evans and Biggins [6]) 
and requires only a moderately small number of processors for its implementation. 

5. The performance analysis of parallel algorithms 

It is well-known tha t  different algorithmic designs produce different timing results and 
speed-up ratios on parallel computers depending on whether the implementation is done 
synchronously or asynchronously. In both cases the overhead measurements should be borne in 
mind when more than one processor is cooperating. 

In fact, parallel computing requires three resources: multiple processors, communication for 
shared data, and synchronisation to ensure any necessary time ordering. Thus, parallel pro- 
grams always require more than one processor, and there has to be some communication 
between the processors even if it is only as much as that required to start processing in the first 
instant. 

The main feature in the analysis of the demand and supply of resources is that several 

Table 3 

'Mesh size 10 20 40 60 

M e ~ o d  P M ,4 M A M ,4 M ,4 

(2×1) Block 2 26m 2 ~m 2 52m 2 91m 2 100m 2 175m 2 146m 2 sH 2 --~-- m 
S.O.R.  

S5 2 T55m2 99 2 (2×2) Block 4 ~-m .~m 2 Tm "T- mlos 2 --ym189 2 -'~-m3°S 2 --~-mS49 2 

S.O.R.  
(3×3) Block a 9 "~m 2 13o '~ 416 2 676 2 --~-m 16m2  2 6 m 2  3 2 m 2  5 2 m  2 - c m  --'¢- m 

S .O.R .  

P - no.  o f  p rocessors ,  M ffi mu l t ip l i ca t ions  a n d  ,4 - additions 
a mesh  sizes a r e  11, 20, 41 a n d  62 as in T a b l e  2. 
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demands may compete for the supply of a shared resource: i.e., processors, shared data 
structure or a memory block. This competition or contention has three consequences: 

(1) Since the shared resource has a limited availability it can satisfy only a finite number of 
demands in a finite time and this can limit the maximum performance of the program. 

(2) A mechanism is required to arbitrate between requests and keep all but one waiting, and 
this mechanism itself then imposes an overhead on the resource access even if there is no 
competition. 

(3) When requests contend, then all but one request will have to wait. 
The second and the third factors degrade the performance and these factors will be called 
respectively the static and dynamic costs of a shared resource access (Baudet [4]). 

Barlow et al. [2] have discussed the performance analysis of the algorithm on an asynchronous 
type machine and classified the sources of overheads as two types: 

(1) The static overhead which corresponds to the design of software and hardware. This 
includes the subdivision of the tasks, the allocation of these tasks to the available processors, 
and the checking by hardware and software for contention on accesses to the data base. 

(2) The dynamic overhead which corresponds to the interference between two or more 
subtasks running on different processors causing one or more of the processors to wait. 

The performance of a multiprocessor can be expressed either in the form of a speed-up factor 
Sp = T ( 1 ) / T ( P ) ,  or in terms of the time wasted. However, the wasted time must be equal to the 
sum of the static and dynamic overheads. Let W = P * T ( P )  - T(1), be the wasted time which 
is the sum of times taken by the P processors to complete their subtasks minus the time taken on 
a uniprocessor. It  is clear from this that either all processors complete processing together or 
some processors take longer than others. Thus, 

T(1) + W 
T(P)>~ 

P 

It follows that, 

PT(1)  

T(1) + W" 

Therefore, the maximum possible speed-up factor for a given algorithm can be determined by 
assuming that the dynamic overheads are zero. The dynamic overheads are zero only if every 
request for a resource occurs when that resource is not being used. This is true only if the 
demands for a resource are less than the supply of that resource. 

We discuss now the three factors i.e., the processors, shared data, and the critical sections 
and their effect on a parallel system. 

For the processors, the software measures the number  of subtasks allocated to the processors 
and it counts the cycles that a processor is idle because there are no ready sub-tasks which are 
available to run. 

For the shared data, this can be measured by counting the number of accesses to a shared 
data by going through the user's program. 

Whilst for the critical regions, the software can measure the number  of accesses made by a 
processor to a critical region and the number of cycles a processor remains idle because this 
resource is accessed by other processors (Evans [5]). 

For the performance analysis of the algorithms discussed in this paper  we present results 
based on measurements obtained from actual experiments carried out on the N E P T U N E  
system, a 4 processor partial M I M D  system at Loughborough University which indicates the 
total computational complexity performed by each path and the calculation of how many 
parallel paths and critical sections a single processor had made. For our measurements the 
resource times of the N E P T U N E  system are required and these are obtained from Barlow et al. 
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Table 6 
The asynchronous 4-point block method (asynchronous list of blocks) 

17 

Mesh size P ~ Time Number of Speed-up 
(N x N) (seconds) iterations 

(16 × 16) 1 1.0 271.830 146 1 
2 138.980 147 1.96 
3 93.100 148 2.92 
4 70.820 150 3.84 

1 1.61 52.120 28 1 
2 27.720 29 1.95 
3 17.880 30 2.92 
4 13.620 31 3.83 

[3]. Thus, Table 4 illustrates the resource demands of the standard point method and the 4-point 
block method both implemented asynchronously as well as the mean rate of accesses to the 
shared data, parallel path scheduling and critical sections. Finally, estimates of the potential 
speed-up from using P processors are given, where m represents the number of rows in the mesh 
to be solved and a flop represents a floating-point operation. In addition Table 5 illustrates the 
experimental results obtained when both algorithms were run on the NEPTUNE system. The 
parallel paths and critical sections measurements are taken for the case of 4 processors and the 
parallel control access overheads and the shared data access overheads are taken for the case 
P = 1, while m was 16 in all experiments (Evans and Yousif [7]). 

From the basic concepts of the 4-point block iterative method, we implement the method 
asynchronously in parallel to solve the model problem, i.e. the two-dimensional Dirichlet 
problem using the strategy of distributing the blocks of 4 points onto the processors as given in 
Barlow and Evans [1]. 

The row and column indices of the blocks of 4-points are stored in a shared list of two 
dimensions. The arrangement of the blocks in the list is represented by the red-black ordering. 
A shared index to the column of the list is used. Since the number of the rows are stored in the 
first row of the list and the columns in the second row, therefore, updating the shared index by 
a critical section will allow only one processor to evaluate the block which corresponds to that 
index. For the convergence test, a list of the number of flags that is equal to the number of 
blocks in the linear system of equations is used so that the flag for the block under 
consideration is set to 1 if any single component of the block has not converged, otherwise the 
flag is set to 0. In order to iterate again, each processor tests all of the flags of all blocks and if it 
finds any of them set to I then it iterates again choosing any available block. Otherwise, 'a 
global flag is set indicating that the convergence has been achieved for all components in the 
mesh. Since setting the global flag is performed by one processor which terminates its path 
afterwards, the other processors will only terminate when they attempt to uptake another block. 

The algorithms were run for ~o = 1.0, i.e., similar to the Gauss-Seidel method and ¢o -- ~0opt, 
i.e. similar to the S.O.R. method and the timing results listed in Table 6. 

Finally, from the results presented here and those reported in Yousif [9] concerning a large 
number of different implementations it can be confirmed that the asynchronous implementation 
of the 4-point explicit block method when the blocks of 4 points are arranged in a red-black 
ordering in a list achieves the best speed-up factor which is almost linear with the number of 
processors available. This is because the processors were fully occupied and busy doing useful 
work most of the time. 
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