
Parallel Computing I (1984) 3-18 3
North-Holland

Parallel S.O.R. iterative methods

D.J. E V A N S

Department of Computer Studies, Loughborough University of Technology, Loughborough, Leicestershi~'e, U.K.

Received March 1984

Abstract. New explicit group S.O.R. methods suitable for use on an asynchronous MIMD computer are
presented for the numerical solution of the sparse linear systems derived from the discretization of two-dimen-
sional, second-order, elliptic boundary value problems. A comparison with existing implicit line S.O.R. schemes
for the Dirichlet model problem shows the new schemes to be superior (Barlow and Evans, 1982).

Keywords. Explicit group S.O.R. methods, red-black ordering, asynchronous MIMD computer system, perfor-
mance analysis.

1. Introduction

In this pape r i terat ive techniques are considered for solving the l inear sys tem of equat ions ,

,4+ = b, (1)

where A is a given N × N non-s ingular matr ix , b is a given N × 1 vector and ~ is the N × 1
solut ion vector on a paral le l computer . W e shall be concerned with those l inear systems which
arise in the solut ion of two-d imens iona l second-order , el l ipt ic b o u n d a r y value problems. The
p rob l em of interest is as follows: let R be a bounde d region in the (x , y) p lane and S its
bounda ry . Def ine the second-order l inear ope ra to r L as,

£[q,] =A4xx + C%y + D+x + e % + e , = G, (2)

where A, C, D, E , F and G are con t inuous and real valued in R, and

A > 0, C > 0 and F ~ < 0 i n R . (3)

G iven a con t inuous funct ion epo(x,y) def ined on S, f ind a rea l -va lued funct ion ~ which is
con t inuous in R + S, twice d i f ferent iab le in R, satisfies (2), and also satisfies cer ta in b o u n d a r y
condi t ions on S. This is summar ized by:

f ind ~ (x , y) which is cont inuous on R + S and

is twice cont inuous ly d i f ferent iable on R , (4)

where ~ (x , y) = ~ 0 (x , y) on S and L [~] = G(x , y) on R.

F o r s impl i f ica t ion we let R be the unit square, 0 ~< x ~< 1 and 0 ~<y ~< 1, and S be the
boundary , and we consider Lap lace ' s di f ferent ia l equat ion (i.e. the M o d e l Problem) ,

a2~ _ a2~
L[+] =~.--=0, (5) ay 2

and the boundary conditions,

rb(x,y) f f iepo(x,y) o n S . (6)

The p rob l em def ined is a special case of the Dir ichle t p rob lem.

0167-8191/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

4 D.J. Evans / Parallel S.O.R. iteratiue methods

Usually, analytic solutions of (2) are not known and when they are known; it is often very
difficult to satisfy prescribed boundary conditions. In the application of finite difference
methods the region R is replaced by a finite set of point Rh, and likewise, the boundary S is
replaced by a finite set of points S h. In this discussion, only a square mesh is considered. For
each point P ~ R h a linear relation is established between the value of ¢b at P and certain other
points of R h and S h. The value of q~ at all points of S h is determined by the prescribed boundary
conditions given by (6). If there are m 2 points in Rh, the resulting linear system (1) is made up
of m 2 equations in m 2 unknowns. The values of q) at points of R h obtained by solving (1) are
accepted as approximate solutions of (2), and interpolation techniques can be used to obtain
approximate solutions of the differential equation (2), for all points of R.

The procedure considered for expressing a linear relationship between points of R h and S h is
to replace the partial derivatives in (2) by their equivalent three-point central difference
formulae, given by

~x(x, y) -- [~ (x + h , y) - e p (x - h , y)] / 2 h ,

~y(x, y) -- [oh (x, y + h) - ep(x, y - h)] / 2 h ,

~xx (x, y) -- [~ (x + h, y) + ~ (x - h, y) - 2~(x, y)]/h 2, (7)

epyy(x,y) ~-. [ep(x,y + h) +ep(x, y - h) - 2ep(x ,y)] /h 2,

where h is the size of the mesh (Fig. 1). Substituting (7) into (2) gives the difference equation (8)
for the general case

Lh [~1 = A(x, y) [~ (x + h, y) + ~ (x - h, y) - 2~(x , y)] / h 2

+ C(x , y) [~ (x , y + h) + ~(x , y - h) - 2~(x , y)] / h 2

+ D (x , y) [~ (x + h, y) - ¢b(x - h, y)] / 2 h

+ E (x , y) [~ (x , y + h) - ep(x, y - h)] / 2 h + F (x , y)cb (x, y)

= G (~ , y) (s)

which reduces to

where

L[~,] = ao , (X , y) + alq~(x + h, y) + a : ¢ (x - h, y)

+ ~3, (x , y + h) + , , , ¢ (x , y - h)

=G(~,y) (9)

A D C E

=' = h--/+~ ' ~=~;+iZ'
A D C E

~3=h2 2h' = 4 = ~ - ~ '

% = - (a 1 + c=2 + aa + =4) +F .

For the model problem (9) simplifies to (see also Fig. 1)

Lh [~] = ~ (x + h, y) + ~ (x - h, y) + ~b(x, y + h) + ~ (x , y - h) - 4~b(x, y)
h 2

(1o)

= 0 ,

(11)

D.J. Evans / Parallel S.O.R. iterative methods 5

o r

<hi+l,j' + ~ - l . j + ~i,j+l + eOl..i-I -- 4rhi , j = 0, (12)

where ¢i,j = e p (i h , j h) , and is represented conveniently by the 'molecule' of Fig. 2.
Now consider the following numbering of the internal mesh points of a (6 x 6) mesh with

Dirichlet boundary conditions:

t(~=l

(~=0

4 8

3 7

2 6

1 5

12 16

11 15

10 14

9 13

'4>=0

,--4~=0

(13)

Then, by applying equation (12) to each of the internal mesh points, we produce the
foUowing system of linear equations,

4 --1

--1 4 --1

--1 4

--1

--1
--1

--1

--1

--1

--1

--1

4 - -1
- -1 4

--1

--1
--1

--1

--1

4

--1

--1

--1

--1

--1

4

4
--1

--1

--1

--1

--1

--1
4 --1

--1 4

--1

--1

--1

--1

- 1

--1

4

4
--1

--1

- 1

--1
4

- 1

-1

-I

4

-I

--1

--1

4

¢3

¢4
¢5

¢-i

m

~bto

~b n

~bl2

~bt3

~b14

~t5
~bte

0

o

o

1

o

o

o

1

o

o

o

1

o

o

o

1

(14)

6 D,J, Eoans / Parallel S.O.R. iteratioe methods

~)(x-h,v

~(x,v+h',

~(x,y) ~(x+h,v

Fig, I,

CY-(
,)

Fig, 2.

Thus, a system of linear equations has been created by replacing the partial differential equation
by a finite-difference equation at each of the internal mesh points.

2. The solution of a large sparse system of linear equations

In this section we shall define some basic iterative formulae that may be used to solve the
system of equations (14).

2.1 The Point Jacobi Method

Since, at each internal mesh point we have

q',.; = ¼ (*,+, .J + * , - ~.~ + * ,4+ , + * , . . , - ,) , (15)

a simple iterative formula would be

~(,.+l)=¼(a,(,o +a,(,o +a~(") .a-a,(") ~ (16) i , j ~,vi+ l , j "t ' i - - l , j "r'i,j+l - - "t"i,j--1]"

where q,}.~) represents the nth iterate or approximation to ~ at point (ih, jh) . This is called the
Point Jacobi method. Clearly the (n + 1)st iterates are expressed exclusively in terms of nth
iterates and so the order in which they are evaluated with respect to the mesh points does not
effect their values or the rate of convergence to the solution. Hence this method is called the
Simultaneous Displacement Method. Unfortunately, the rate of convergence of this method is
slow and hence it is rarely used.

An improvement in the con)ergence rate can be obtained by applying the formula,

,("+'- (1 - 0o) ,~.; '+ l ,o~ , . ,+ , . ; , . ,_ , . j , . , . j+, + ,) (17) i,j -- (~(n) + ~(n) + ~(n) ¢b(n}
ra,j-

at each point (i,j) of the grid where to > 1. This method is called the J.O.R. and the basic
principle involved in the acceleration process is described in the next section.

2.2 The Gauss-Seidel Method

The Point Jacobi formula (16) may be improved by using the latest values of ~.j. as soon as
they are available. If we assume that the (n + 1)st iterative values have been calculated along

D,J , E v a n s / Paral le l S . O . R . i terat ive m e t h o d s 7

columns 1, 2 (j - 1) and as far as point (i - 1 , j) along column j , and that the (n + 1)st
value at point (i , j) is the next to be calculated, then the Gauss-Seidel formula gives

q,!,,.÷~) = ! t ~o,~ ~_ ~.<,,+ ~ ± ~(,,~ ~ (, , + ~ (18) s . j 4 ~ ' t ' i+ l . j - - " t ' i - - l . j T ~ i . j + l "~ " t ' i . j - - I]"

With this method, we have the added advantage of only needing to store the latest value of
each q>~i" This method is a Successive Displacement Method.

2.3 The Successive Over-Relaxation Method (S,O.R.)

If ~(") is added and subtracted to the right-hand side of equation (16), we have r t . j

~.j ~ , . j \ "t'i + I . j Y i - - 1 . j - - " t ' i . j + I "r i . j - - I - - r i d

= tb(n) + r i . j - - ri,j" (19)

Obviously, r~,j is the change in value of <Px.i for one Gauss-Seidel iteration. The rate of
convergence of the Gauss-Seidel method can be 'accelerated' by making a larger change to cb~. i
thus,

~ , t÷ ~ = ~t,,? + ¢~r~,i ' (20)

where ¢o is positive constant called the acceleration factor which in practice lies between I and 2.
This equation is called the Successive Over-Relaxation formula and may be rewritten in the
form

_ ,.~(,~ + I) ¢ ~ (n + 1) _ _ (1 " ~ '4"("I)"L l " " / ' 4 ~ (t t) -'L & (" t + l) " ~ - "~'(n) ° J ~ ' Y i , j - - I 7
r i , j - - w] W i , j - - 4 w ~ W i + | , j - - W i - - l . j ~ i , j + l (21)

from which it is clear that it is a linear combination of the Gauss-Seidel iterate (18) and the nth
iterate. (Note that when t~ = 1, the S.O.R. method becomes the Gauss-Seidel method.) In this
method it is also only necessary to store the latest values of ~.~ and it is a Successive
Displacement Method.

3. The solution of the Dirichlet problem by S .O.R. methods on a parallel computer

It is obviously a trivial problem to perform the Point Jacobi method on a parallel computer,
since each iteration comprises of m 2 independent evaluations defined by (15). The use of
Successive Displacement methods on a parallel computer is not so simple since the order in
which the (n + 1)th iterates are evaluated, particularly with S.O.R., is important. We have seen,
in the previous section, that with the S.O.R. method it is desirable for matrix A to possess
property A (Young, [8]) and be consistently ordered, and so, when S.O.R. is performed on a
parallel computer, it is useful but not vital to preserve these properties.

If the order in which the (n + 1)st iterates are evaluated is called an ordering, then an
ordering that produces a coefficient matrix A which is consistently ordered is a consistent
ordering. The row-wise or column-wise ordering of the mesh points in (13) is a consistent
ordering. This ordering, however, is of little use for a parallel computer because it is essentially
sequential. A much more useful ordering is the red-black ordering

8 D.J. Evans / Parallel S.O.R. iteratiue methods

lo ,,.\..)1,,. 8

j 2 (3 1 2 6"'116
('~ (22)

9 3(313 7 ̀-.`/

1~" ")11 5 ~)15

i

Clearly, the red-black ordering consists of two passes over the meshes. During the first pass we
evaluate the (n + 1)st iterates at alternate mesh points (circled in (22)) beginning at 1, and in the
second pass the remaining points (uncircled in (22)), are dealt with. If the finite difference
equation (12) is applied in this order, then using S.O.R. we have for the first pass,

4/."+1)=(1-¢o)~,~.)+±,-,('~(") "~(") +~-(") +,~(") ~ for all i + j odd (23) t,j 4 w k ' f ' i + l , j q- " f f i - - l , j " l " i , j + 1 "t ' i , j -- l]

and during the second pass,

q/,,+1)_(1 (.) (,~(-+l)~,~(,+l)j_,~(.+l)a.a,(-+l)~ for all i + j even. (24) i , j - - - - ¢ O) ~ i , j " ~ l o J \ ' ~ i + l , j - - ' t ' i - l , j - - ' f f i , j + l - - ~" io j-1]

Thus, the first pass consists of independent evaluations which may be carried out simulta-
neously and similarly so does the second pass. It is unimportant how the evaluations in each
pass are shared between the processors provided it is done evenly and the first pass is completed
before the second pass is commenced (this is to ensure that during the second pass, the (n + 1)st
iterates are available when required).

An alternative application of the red-black ordering for a two processor parallel computer
system can be produced by applying the technique of folding, which we shall call the parallel
R.B. ordering. In this ordering, the two passes of the red-black ordering are executed simulta-
neously, in the following manner:

T

,(.,..~ (,..~ ,[

7 -A 3 J8
/'% f'~

2 5 ~' "/6 1~ J
/'% r'~

8 k' J3 4~ 'J7

1 6~")5 ,2 \ J

(25)

Processor 1 evaluates the (n + 1)st iterates at the uncircled mesh points while processor 2
evaluates the (n + 1)st iterates at the circled mesh points in the order 1 and (~), 2 and (~) etc.
The (n + 1)st iterates are defined by equation (23) before the processors cross, and by (24) after
they have crossed, for both processors.

For both the red-black and parallel R.B. orderings the number of parallel operations per
iteration is

3 [- ~ J multiplications + 5 [2-2-1 additions, (26)

where m 2 is the number of internal mesh points.

D.J. Evans / Parallel S.O.R. iterative methods 9

In order to compare the two mesh-point orderings, they are both used to solve the Dirichlet
problem for different mesh sizes. In each case, p(G) the spectral radius of the Gauss-Seidel
method is estimated using the power method and, by using this value the optimum value of tob
is obtained. An experimental optimum value of to is also found by solving the problem using
different values of to. The value of to is initially set to 1 and incremented by Ato until the number
of iterations required to satisfy the conditions of convergence begins to increase. Then, in the
vicinity of the value of to that requires the least number of iterations, a smaller value of Ato is
used. The process is repeated until the region, in which the least number of iterations are
required for convergence, is found to the required degree of accuracy. The experimental best
value of to, say toe, is the average value of to for which the least number of iterations is required.

The condition for the convergence of the S.O.R. method is

~ (, + l) d/-".)l < e for all i , j , (27) i , j - - r l , J !

where t = 5 × 10 -5, and also for the power method, the difference between successive estimates
of the spectral radius p(G) is chosen to be less than the value of e. Four different mesh sizes are
used which produce (10 × 10), (20 × 20), (40 × 40) and (60 × 60) networks. The results obtained
from these experiments are recorded in Table 1, where n A is the minimum number of iterations
required for convergence, n E is the estimated number of iterations, and toe and co b are as
previously defined. Obviously, there is, as might be expected, little difference between the
results achieved by the two orderings.

One fact that is not so obvious, however, is that the parallel R.B. ordering is not consistent.
This is the result of the simultaneous evaluation of adjacent mesh values, since the (n + 1)st
iterates at the two points are evaluated using the n th iterative values of each other, whereas
when evaluated sequentially, the second point to be evaluated would use the (n + 1)st iterative
value of the first point. Hence, the sequential ordering is not preserved. Clearly, in this case, the
fact that the ordering is inconsistent, has no serious effect on the performance of the algorithm.
One question that cannot be answered however until the algorithm is actually implemented, is,
"will the 2 asynchronous processors cross over at different points during each iteration?" and if
so "will it have a more serious effect on the algorithm's performance?"

The necessity of consistent ordering is an important question and from some of the following
orderings it will be seen that the lack of consistency can be a serious problem. The main
advantage is that the S.O.R. theory does not hold, which makes it impossible to estimate co b
accurately.

4. Explicit block iterative schemes

The number of iterations required for the convergence of the iterative process may be
reduced by evaluating iterates at groups of mesh points by a direct method. This technique leads
to new block iterative methods which we shall now discuss.

Tabi6 1

Method Mesh size n ̂ n ~ ~o c ~ b

Red-black 10 15 14 1.495 1.490
point S.O.R. 20 29 30 1.717 1.717

40 57 58 1.846 1.842
60 82 76 1.890 1.877

Parallel 10 15 14 1.503 1.490
R.B. 20 32 30 1.732 1.718
point S.O.R. 40 58 58 1.848 1.842

60 83 76 1.894 1.877

D.J. Evans / Parallel S.O.R. iterative methods

Consider, for instance, the following group of mesh points,

(28)

If equation (12) is applied to points 1 and 2 we obtain the formulae

4+, =(p,,++b++2++t and 4&=& +~c+~~++c

which may be rearranged to give

~,=~(4(~,,++~+~I)+~~++~+~~u)

and

~z=~(4(~=+~~++=)+~~,++~+~~‘/)

or in terms of i and j,

~i.j=~(4(9i-l.j+~i.j+l ++i.j-l)++i+l.j+l ++i+2.jf+i41.j-I)

and

(29)

(30)

+i+l.j =ik(4(+i+l,j+l ++i+2.j++i+l.j-l)++i-I,j++i.j+l++i,j-1)' (31)

Clearly, these two equations are independent of each other and so may be evaluated
simultaneously. Thus, by partitioning the system of meshes into (2 X 1) blocks we can evaluate
the iterates at the points within each block simultaneously using two processors. The order in
which the blocks are considered is important and so, remembering that the processors of an
MIMD computer are not synchronous, we shall use the red-black ordering as in (22) except that
each point represents a (2 x 1) block. Any consistent ordering of the blocks may, of course, be
used but with the ordering defined in (13) for instance, we cannot be sure that all of the latest
iterative values will be available when required.

So, using a red-black ordering of the.blocks, the (n + 1)st iterates of the S.O.R. iterative
scheme will be defined by

and

where

D.J. Evans / Parallel S.O.R. iterative methods 11

during the first pass and

~(.,,.+ ,)= ~:~ + ~ (4r(;+ 1, + r(.+ 1)

and (33)

~ b (n + ') - - d , (n) 4- 1 , . , (A r (n + l) Jr- r (' + 1) - l q A (") "~
i + l . j - - "f"i+l.j - - "l"SW~'i+loj i,j ~Wi+l, j , I

d u r i n g the second pass.
In o r d e r to use m o r e than two processors , we can e i the r solve for m o r e than o n e b lock at a

time, or, alternatively, partition the system of meshes into larger blocks; so consider the
following (2 × 2) block of mesh points, as in Evans and Biggins [6].

i+l,j-1

i , j -1

i+2,j

i+l,j

i,j

i - l , j

i+2,j+1

i+l , j+ l

i , j÷l

i - l , j +1

i+1, +2

i,j+

(34)

Applying the same technique as was applied to the (2 × 1) block, we obtain the formulae,

and

\
'/'i.j = #, ~ 2 (, , _ , . j + , + *,.j+~ + *,+~.j + *,+ l j - 1)

+ 7(•,-1.j + d#i,j-,) + ¢~i+1,j+2 + * i + 2 . j + 1)

- - 1 r
- - 24 i , j ~

= ½(2(,t , ,_l .j + ¢,÷1.,÷2 + ~',+~.~÷~ + ,t , , j_,) ¢i.j+l

+ 7 (q b i _ l , j + 1 + ~bi,j+2) + dPi+2, j + qbi+l . j - i)

! r = 24 i , j+l '

= ~, (2(+,_ , . j+1 + +,.j+= + ¢,+~.j + ,t,,+~.j-~) '/'i+l.j+l

+ 7(, ,+ , j+~ + *,+2.j+1) +*,-1j + *,.,-,)
-- 1-- r
- - 24 i + l , j + l ~

*,+l.j = h (2 (, , _ l . j + *,+,.j+2 + *,+2.j+, + * , , j - l)

+ 7(¢,+2,j + ¢,+i,j-1) + ¢,-L~+~ + ¢,o+2)

J - r
= 24 i+l,j" (35)

12 D.J. Evans / Parallel S. 0. R. iterative methods

Again, using a red-black ordering of the blocks, the (n + 1)st iterates during the first pass are
defined by

and

(364

~I::,‘i’=d::.,+ifi~(T;!:~l)-224~1:)l,~). (36b)

Obviously, with this scheme, we may use 4 processors simultaneously.
Considering now the number of parallel operations per iteration, we have for the (2 X 1)

block scheme,
I

(2m2 multiplications + $m2 additions),

when using 2 processors and for the (2 X 2) block scheme,

($m2 multiplications + zrn2 additions),

when using 4 processors.

(37)

(38)

The next size of block to be considered is the (3 X 3) block,

9 8 7

10 C f k 6

11 b e h 5

12 a d 9 4

1 2 3

D.J. Evans / Parallel S.O.R. iterative methods 13

Applying the same technique as before, we obtain the formulae,

toa -- 2-'~4 (67(tol + qh2) + 22(to2 + toll)

+ 7(to3 + to4 + to9 + tolO) q" 6(to5 q" to8) "+" 3(to6 + toT)),

tob = n-~ (37ton + 11(tol + to9 -}" tol0 "{- tot2) "~ 7(to2 + tog) + 5to5 + 3(to3 + to4 + to6 + toY)),

toc = 2@~(67(to9 + to10) + 22(tos + ton)

+ 7(to1 + % + toy + to12) + 6(to2 + tos) + 3(to3 + %)) ,

% = & (37to2 + 11(to~ + to3 + to, + to~2) + 7(to5 + ton) + 5to8 + 3(to6 + to7 + to9 + to10)),

too = ~(2(to2 + to5 + tos + t o n) + to~ + to3 + to4 + to6 + to7 + to9 + to~0 + to12)

tof = &(37tos + 11(to6 + to7 + to9 + to~0) + 7(to5 + ton) + 5to2 + 3(toi + *3 + to, + tol2)),

tos = 2-~4 (67(to3 + to4) + 22(to2 + tos)

+ 7 (t o l + t o 6 + t o 7 + t o 1 2) + 6 (t o s + t o l l) + 3 (t o 9 + t o l o)) ,

toh = &(37to~ + 11(to3 + to4 + to6 + to~) + 7(to2 + toS) + 5ton + 3(to~ + to9 + to,o + to~2)),

and

tok = 2-~4 (67(% + toT) + 22(toS + to8)

+ 7(to3 + to4 + to9 + to10) + 6(to2 + ton) + 3(to1 + to12)), (40)

f rom which it is not difficult to produce the corresponding S.O.R. formulae. Thus, by evaluating
the iterative values at all of the mesh points within a block simultaneously, we can use 9
processors. Again, it is preferable to employ a red-black ordering of the blocks, and for this
scheme m must be divisible by 3.

An unfor tunate proper ty of this block size is that the equations (40) are not all of the same
form and so the rates at which each of the processors traverse the system of meshes will n o t be
the same. However, by considering the processor that has the most work to do, the number of
parallel operations will be

(~m 2 multiplications + 19-~m2 additions) per iteration. (41)

If we compare the number of parallel operations per i teration of the three block S.O.R.
schemes considered so far, it can be seen that, as might be expected, this quant i ty decreases as

Table 2

Method Mesh size n^ n E toe to b

(2 x 1) Block 10 13 13 1.449 1.439
S.O.R. 20 26 26 1.681 1.681

40 50 52 1.822 1.824
60 73 70 1.874 1.867

(2 x 2) Block 10 11 10 1.371 1.365
S.O.R. 20 22 22 1.617 1.625

40 42 43 1.784 1.793
60 61 61 1.846 1.850

(3 x 3) Block 11 10 10 1.345 1.333
S.O.R. 20 18 18 1.561 1.563

41 36 37 1.749 1.760
62 52 54 1.826 1.830

14 D.J. Evans / Parallel S.O.R. iterative methods

the block size (and therefore the number of processors) is increased. However, going from the
(2 × 1) block to the (2 x 2) block, for instance, does not halve the number of operations and so
it is important to compare the respective rates of convergence. For this purpose the experiments
performed using the point iterative schemes were repeated using the block schemes, the results
of which are contained in Table 2. The headings of Table 2 are the same as those of Table 1.
The differences in the mesh sizes for the (3 × 3) block scheme are to allow for the fact that m
(the square root of the total number of internal mesh points) must be divisible by 3.

As expected, by increasing the block size, the number of iterations required for convergence
of the iterative schemes is decreased. The results contained in Table 2 can be combined with the
number of operations per iteration required by each method given in (37), (38) and (41), to give
the total number of parallel operations required by each of the block S.O.R. methods, and are
recorded in Table 3.

Clearly, by increasing the block size from (2 × 1) to (2 × 2), we see that the number of
parallel operations is approximately halved and so would be justified if sufficient processors are
available. The effect of increasing the block size to (3 × 3) is not quite so successful but still
impressive. However, it must be remembered that the equations generated by the (3 × 3) block
are not identical in form and also the parallel system overheads will be considerably more for 9
processors than for 2 or 4 processors.

Finally, attention will now be concentrated on the 4-point block method as a suitable parallel
strategy to recommend for the iterative solution of this class of problems, on an MIMD
asynchronous multiprocessor, since it satisfies the following desirable properties, i.e. it is
explicit, possesses an improved convergence rate over the point method (Evans and Biggins [6])
and requires only a moderately small number of processors for its implementation.

5. The performance analysis of parallel algorithms

It is well-known tha t different algorithmic designs produce different timing results and
speed-up ratios on parallel computers depending on whether the implementation is done
synchronously or asynchronously. In both cases the overhead measurements should be borne in
mind when more than one processor is cooperating.

In fact, parallel computing requires three resources: multiple processors, communication for
shared data, and synchronisation to ensure any necessary time ordering. Thus, parallel pro-
grams always require more than one processor, and there has to be some communication
between the processors even if it is only as much as that required to start processing in the first
instant.

The main feature in the analysis of the demand and supply of resources is that several

Table 3

'Mesh size 10 20 40 60

M e ~ o d P M ,4 M A M ,4 M ,4

(2×1) Block 2 26m 2 ~m 2 52m 2 91m 2 100m 2 175m 2 146m 2 sH 2 --~-- m
S.O.R.

S5 2 T55m2 99 2 (2×2) Block 4 ~-m .~m 2 Tm "T- mlos 2 --ym189 2 -'~-m3°S 2 --~-mS49 2

S.O.R.
(3×3) Block a 9 "~m 2 13o '~ 416 2 676 2 --~-m 16m2 2 6 m 2 3 2 m 2 5 2 m 2 - c m --'¢- m

S .O.R .

P - no. o f p rocessors , M ffi mu l t ip l i ca t ions a n d ,4 - additions
a mesh sizes a r e 11, 20, 41 a n d 62 as in T a b l e 2.

D.J. Evans / Parallel S.O.R. iteratioe methods 15

demands may compete for the supply of a shared resource: i.e., processors, shared data
structure or a memory block. This competition or contention has three consequences:

(1) Since the shared resource has a limited availability it can satisfy only a finite number of
demands in a finite time and this can limit the maximum performance of the program.

(2) A mechanism is required to arbitrate between requests and keep all but one waiting, and
this mechanism itself then imposes an overhead on the resource access even if there is no
competition.

(3) When requests contend, then all but one request will have to wait.
The second and the third factors degrade the performance and these factors will be called
respectively the static and dynamic costs of a shared resource access (Baudet [4]).

Barlow et al. [2] have discussed the performance analysis of the algorithm on an asynchronous
type machine and classified the sources of overheads as two types:

(1) The static overhead which corresponds to the design of software and hardware. This
includes the subdivision of the tasks, the allocation of these tasks to the available processors,
and the checking by hardware and software for contention on accesses to the data base.

(2) The dynamic overhead which corresponds to the interference between two or more
subtasks running on different processors causing one or more of the processors to wait.

The performance of a multiprocessor can be expressed either in the form of a speed-up factor
Sp = T (1) / T (P) , or in terms of the time wasted. However, the wasted time must be equal to the
sum of the static and dynamic overheads. Let W = P * T (P) - T(1), be the wasted time which
is the sum of times taken by the P processors to complete their subtasks minus the time taken on
a uniprocessor. It is clear from this that either all processors complete processing together or
some processors take longer than others. Thus,

T(1) + W
T(P)>~

P

It follows that,

PT(1)

T(1) + W"

Therefore, the maximum possible speed-up factor for a given algorithm can be determined by
assuming that the dynamic overheads are zero. The dynamic overheads are zero only if every
request for a resource occurs when that resource is not being used. This is true only if the
demands for a resource are less than the supply of that resource.

We discuss now the three factors i.e., the processors, shared data, and the critical sections
and their effect on a parallel system.

For the processors, the software measures the number of subtasks allocated to the processors
and it counts the cycles that a processor is idle because there are no ready sub-tasks which are
available to run.

For the shared data, this can be measured by counting the number of accesses to a shared
data by going through the user's program.

Whilst for the critical regions, the software can measure the number of accesses made by a
processor to a critical region and the number of cycles a processor remains idle because this
resource is accessed by other processors (Evans [5]).

For the performance analysis of the algorithms discussed in this paper we present results
based on measurements obtained from actual experiments carried out on the N E P T U N E
system, a 4 processor partial M I M D system at Loughborough University which indicates the
total computational complexity performed by each path and the calculation of how many
parallel paths and critical sections a single processor had made. For our measurements the
resource times of the N E P T U N E system are required and these are obtained from Barlow et al.

g

T
ab

le
 4

R
es

o
u

rc
e

d
em

an
d

s
o

f
al

g
o

ri
th

m
s

(t
he

 s
ta

n
d

ar
d

 p
o

in
t

m
et

h
o

d
 a

nd
 t

he
 4

-p
o

in
t

bl
oc

k
m

et
h

o
d

s)

P
ro

g
ra

m

P
ro

ce
ss

or
s

(P
)

S
ha

re
d

d
at

a
P

ar
al

le
l

p
at

h

M
u

tu
al

 e
xc

lu
si

on

N
u

m
b

er
s

S
pe

ed
-u

p
A

cc
es

s
ra

te

O
ve

rh
ea

d
am

o
u

n
t

P
o

in
t

m
et

h
o

d

P
~

m
 2

O

(P
)

7
:1

1
 f

lo
ps

0.

06
%

4
p

o
in

t
bl

oc
k

S
.O

.R
.

P
~

¼
m

 2
O

(P
)

12
 :

27
 f

lo
ps

0.

04
%

A
cc

es
s

ra
te

O

ve
rh

ea
d

a
m

o
u

n
t

A
cc

es
s

ra
te

O

ve
rh

ea
d

am
o

u
n

t
~"

1
: 5

3
fl

op
s

1~

r,

T
ab

le
 5

P

er
fo

rm
an

ce
 m

ea
su

re
m

en
ts

 o
f

al
g

o
ri

th
m

s
o

n
 t

he
 N

E
P

T
U

N
E

 s
ys

te
m

P
ro

g
ra

m

Id
le

S
p
e
e
d
-
u
p

ti
me

2

3
4

Po
in

t
m
e
t
h
o
d

-
1.

9
-

3.
8

1
.
9

-
3.

7

4-
po

in
t
bl

oc
k

-
1.

96

2.
92

3.

84

S
.O

.I
L

1.

96

2.
92

3.

83

P
ar

al
le

l
p

at
h

C

ri
ti

ca
l

re
gi

on
s

S
ta

ti
c

C
o

n
te

n
ti

o
n

S

ta
ti

c
C

o
n

te
n

ti
o

n

1.
0

0.
00

2%

0.
01

%

-
-

1.
70

0.

01
%

0.

03
%

-

-
1.

0
0
.
0
0
2
%

0
.
0
0
2
%

1
%

0
.
0
6
%

1.
61

0.

00
2%

0.

00
2%

1%

0.

05
%

D.J. Evans / Parallel S.O.R. iterative methods

Table 6
The asynchronous 4-point block method (asynchronous list of blocks)

17

Mesh size P ~ Time Number of Speed-up
(N x N) (seconds) iterations

(16 × 16) 1 1.0 271.830 146 1
2 138.980 147 1.96
3 93.100 148 2.92
4 70.820 150 3.84

1 1.61 52.120 28 1
2 27.720 29 1.95
3 17.880 30 2.92
4 13.620 31 3.83

[3]. Thus, Table 4 illustrates the resource demands of the standard point method and the 4-point
block method both implemented asynchronously as well as the mean rate of accesses to the
shared data, parallel path scheduling and critical sections. Finally, estimates of the potential
speed-up from using P processors are given, where m represents the number of rows in the mesh
to be solved and a flop represents a floating-point operation. In addition Table 5 illustrates the
experimental results obtained when both algorithms were run on the NEPTUNE system. The
parallel paths and critical sections measurements are taken for the case of 4 processors and the
parallel control access overheads and the shared data access overheads are taken for the case
P = 1, while m was 16 in all experiments (Evans and Yousif [7]).

From the basic concepts of the 4-point block iterative method, we implement the method
asynchronously in parallel to solve the model problem, i.e. the two-dimensional Dirichlet
problem using the strategy of distributing the blocks of 4 points onto the processors as given in
Barlow and Evans [1].

The row and column indices of the blocks of 4-points are stored in a shared list of two
dimensions. The arrangement of the blocks in the list is represented by the red-black ordering.
A shared index to the column of the list is used. Since the number of the rows are stored in the
first row of the list and the columns in the second row, therefore, updating the shared index by
a critical section will allow only one processor to evaluate the block which corresponds to that
index. For the convergence test, a list of the number of flags that is equal to the number of
blocks in the linear system of equations is used so that the flag for the block under
consideration is set to 1 if any single component of the block has not converged, otherwise the
flag is set to 0. In order to iterate again, each processor tests all of the flags of all blocks and if it
finds any of them set to I then it iterates again choosing any available block. Otherwise, 'a
global flag is set indicating that the convergence has been achieved for all components in the
mesh. Since setting the global flag is performed by one processor which terminates its path
afterwards, the other processors will only terminate when they attempt to uptake another block.

The algorithms were run for ~o = 1.0, i.e., similar to the Gauss-Seidel method and ¢o -- ~0opt,
i.e. similar to the S.O.R. method and the timing results listed in Table 6.

Finally, from the results presented here and those reported in Yousif [9] concerning a large
number of different implementations it can be confirmed that the asynchronous implementation
of the 4-point explicit block method when the blocks of 4 points are arranged in a red-black
ordering in a list achieves the best speed-up factor which is almost linear with the number of
processors available. This is because the processors were fully occupied and busy doing useful
work most of the time.

18 D.J. Evans / Parallel S.O.R. iterative methods

R e f e r e n c e s

[1] R.H. Barlow and D.J. Evans, Parallel algorithms for the iterative solution to linear systems, Comp. J. 25 (1982)
56-60.

[2] R.H. Barlow, D.J. Evans, I.A. Newman, J. Shanehchi and M. Woodward, Performance analysis of parallel
algorithms on asynchronous parallel computers, Comp. Stud. Rep., Loughborough University (1982).

[3] R.H. Barlow, D.J. Evans, I.A. Newman and M.C. Woodward, A guide to using the Neptune parallel processing
system, Comp. Stud. Rep., Loughborough University (1981).

[4] G.M. Baudet, Asynchronous iterative methods for multiprocessors, J. ACM 25 (1978) 226-244.
[5] D.J. Evans, Parallel Processing Systems (Cambridge University Press, London, 1982).
[6] DJ. Evans and M. Biggins, The solution of elliptic partial differential equations by a new block over-relaxation

technique, Int. J. Comp. Math. 10 (1982) 269-282.
[7] D.J. Evans and N.Y. Yousif, Asynchronous and synchronous iterative methods for solving linear equations, to

appear.
[8] D.M. Young, Iterative Solution of Large Linear Systems (Academic Press, New York, 1971).
[9] N.Y. Yousif, Parallel algorithms for asynchronous multiprocessors, Ph.D. Thesis, Loughborough University (1983).

