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Abstract
In this paper we show that parallel search techniques derived from their sequential counterparts can enable

the solution of instances of the robot motion planning problem that are computationally infeasible on sequential
machines. We present a simple parallel version of a robot motion planning algorithm based on "quasi best first"
search with randomized escape from local minima and random backtracking and discuss its performance on
two problem instances, one of which was computationaUy infeasible on a single processor of an nCUBE21
multicomputer. We then discuss the limitations of parallel robot motion planning systems, and suggest a
course for future work.

1 Introduction

Among the many skills autonomous robots require to support their activities is the ability to plan the paths
they must take while conducting those activities. Motion planning enables an object to move safely through
its environment while achieving specific goals. Many algorithms exist for finding a path from a robot’s initial
configuration to a desired goal configuration when the locations of the obstacles in the workspace are known
apriori [Latombe, 1991]. In order to describe how such robot motion planning problems relate to search, a brief
review of terms is necessary.

The workspace of a robot is the world that it is capable of moving through; this workspace usually includes a
variety of objects or obstacles. A configuration of a robot is the specification of the position and orientation of that
robot with respect to a fixed reference frame. The configuration space (C-Space) [Lozano-Perez, 1983] of a robot 
the set of all configurations that can be assigned to it. The reason we concern ourselves with the space of possible
configurations of a robot is that in such a space the robot becomes a point. The free C-Space of a robot is the set
of configurations belonging to the robot’s C-Space in which the robot is not in a state of collision with itself or any
other object in its workspace. The dimensionality of this C-Space is the number of parameters required to fully
specify a configuration of the robot. For example, a fixed base robot arm with six degrees of freedom (i.e. joints)
would operate in a C-Space of six dimensions.

In C-Space then, planning the path of motion for a robot becomes the problem of finding a path for a point
through free C-Space given a start point and a non-empty set of goal points. There may be more than one
goal configuration possible because for some robots more than one configuration will place specific points on the
manipulator (e.g., the grippers) at the desired position in the workspace.

Most robot motion planning algorithms decompose C-Space into discrete components called cells. The motion
planning problem then becomes one of computing a decomposition of C-Space and searching through sequences
of contiguous ceils to find a path through free C-Space (i.e. a sequence of robot configurations that involves
no collisions with obstacles). Search is usually performed using state-space search algorithms such as A* or its
variants.
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As more degrees of freedom are added to the robot, most methods for solving the problem become computation-
ally infeasible on sequential machines. For example, consider a robot arm with k joints (degrees of freedom), where
each degree of freedom is quantized into n discrete levels. Such an arm has a C-Space consisting of nk unique
configurations. Let us assume that our planner quantizes each joint so that it can be in up to 90 unique positions,
so n = 90. Thus an arm with four joints (k = 4) has over sixty five million configurations, while an arm with six
joints (k = 6) has over five hundred billion configurations. Even though free C-Space may be much smaller than
the total C-Space, most algorithms require exhaustive search of C-Space in the worst case.

Thus, for the example above, even if it is possible to compute the C-Space the amount of memory required
to store it in RAM is prohibitive. Moreover, the amount of computation required to find a solution to tough
problem instances renders any approach to solving the problem on sequential machines computationally infeasible
as well. Finally, since motion planning is PSPACE-hard [Reif, 1979] there is strong theoretical evidence that the
best possible algorithms for solving this problem have time complexity that increases exponentially with the size
of the input.

Given the considerations outlined above, it is clear that robot motion planning algorithms are computationally
infeasible on sequential computers for many problem instances involving robots with more than three or four degrees
of freedom. Hence, it is important to investigate the applicability of parallel search algorithms to existing sequential
robot motion planning methods in order to make them computationally feasible for a wider range of problems.
Furthermore, the application of such techniques to robot motion planning schemes that perform adequately on
existing problem instances may increase their performance significantly as well.

2 Previous Work

Research in area of motion planning can be traced back to the late sixties, but most of the work has been carried
out more recently. Over the last few years the theoretical and practical understanding of the issues has increased
rapidly, and a variety of solutions have been proposed. Latombe [1991] provides an extensive survey.

Recently, Lozano-Perez [1991] developed a parallel algorithm which computes the diseretized C-space for the
first three links of a six degree of freedom manipulator. The path for the gripper portion of the manipulator
is found by computing its free C-space in parallel at each arm configuration considered by the sequential search
algorithm. Although this method works well, it is limited to relatively coarse C-space discretizations (it has 
maximum discretization level of 64) because of the lack of memory available in which to store the precomputed
C-space.

Barraquand and Latombe [1991] utilize discrete representations of the robot, the robot’s workspace, and its
C-Space. Space is represented with multiscale pyramids of bitmap arrays. Artificial potential fields are used as the
heuristic to guide the search of C-space. They describe two algorithms. The first algorithm is resolution complete,
but becomes computationally infeasible when the dimension of the configuration space exceeds four - (less with
C-space discretization levels of 128 or more). The second algorithm is probabilistically complete2, but, in general,
runs much faster than the complete approach.

Other than the parallel scheme developed by Lozano-Perez described above, we are aware of no parallel method
capable of solving instances of the robot motion planning problem involving higher dimensional C-space. For-
tunately a great deal of work has been done in developing parallel search algorithms capable of solving similar
problems [Kumar and Rao, 1987, Kumar et al., 1988]. Many of the algorithms developed have yielded linear
speedup with increasing problem and processor size on various problems[Arvindam et al., 1991, Ananth and Ku-
mar, 1991]. If parallel robot motion planning methods that make use of such parallel search schemes can be
developed, they may be able to deliver such performance as well. This is due to the following observation.

Amdahl’s law states that if s is the serial fraction of an algorithm then, no matter how many processors are
used, speedup is bounded by 1/s [Amdahl, 1967]. Thus, if an algorithm spends 98 percent of its time computing a
certain function (say C-Space), and only that component can be computed in parallel, then the maximum speedup
which can be obtained by the parallel algorithm is 50 because it must still spend 2 percent of its time in its serial
component. Hence, parallelizing robot motion planning methods that rely almost entirely on a totally parallelizable
search process may yield better speedup than parallelizing those approaches with even a small serial component.

2Aa algorithm is probabilis~ically complege when the probability of finding a path when one exists converges to 1 aa the search time
increases without bound.



Figure 1: Start and Goal Configurations for Six Degree of Freedom Robot
operating in a 256 x 256 cell workspace. Each C-space axis has 256 possible
discrete positions

We discuss our initial results involving the implementation of such methods in the next section.

3 A Parallel Motion Planning Algorithm for MIMD multicomputers

In this section we describe how to parallelize the probabilistically complete method proposed by Barraquand
and Latombe [1991]. We give a brief outline of the method below in order to clarify what is necessary to make it

run on an multiple instruction multiple data (MIMD) multicomputer such as the nCUBE2.

Step I" Compute the heuristics used to guide the search:

1. Pick a "Control" point (or points) on the robot.

2. Pick the desired goal location in the workspace for the point(s) designated in step 

3. BROADCAST DESIRED GOAL LOCATION OF THE CONTROL POINT(S) TO ALL PROCESSORS.
4. For each "Control Point": Starting from the desired goal location, label each point in the workspace that is not

an obstacle with the L1 (city block distance) from the goal location. For example, in a 2-D discrete workspace,
the goal location gets the value 0, its four neighbors get the value 1, etc.

Step II: Search using heuristics to evaluate which new configuration to expand during iteration in the almost best first
search phase.

Trials = 0
Path = Start Configuration

Repeat
Path Trials = 0
Temp_path = End of Path

Repeat

Quasi best first search until a local minimum is reached.

IF TERMINATION MESSAGE RECEIVED, EXIT.
Bro,nianMotion to escape local minimum.
IF TERMINATION MESSAGE RECEIVED, EXIT.
if Path Trials > Threshold Randomly backtrack to a previous point in Temp_path.

Until Path Trials > Max_better_path_trials or Temp_path .ith he. minimum found.

If new minimum found, append Temp_path to Path.
Until Solution Found or Trials > Trial_Limit
IF SOLUTION FOUND, BROADCAST TERMINATION MESSAGE TO ALL OTHER PROCESSORS.
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No. Processors 1 2 4 8 16 32 64 128 256 512 1024
Avg. Sol. Time 51430 66360 32864 11973 5598 6875 2596 900 380 301 178
Max. Run Time 173040* 183893* 92227 35008 26718 22847 10068 1919 576 634 258
Min. Run Time 5386 655 4006 588 356 1326 194 145 191 53 11o

Max- Min. Time 167654 183238 88221 34420 26362 21521 9874 1774 385 581 148
WSpeedup ( ~--~-p 4 10.98 23.48 19.12 50.63 140.0 6 345.94 436.73 738.52

Efficiency (-~) 1.00 1.37 1.47 0.60 0.79 1.09 1.35 0.85 0.72

Figure 2: Table summarizes the data for ten runs of the Quasi Best First/Random Planner on up
to 1024 processors on an nCUBE2 multicomputer for the problem instance pictured in figure 1. The
table shows the following information: Average time to find solution; Maximum run time (solution

or no solution); Minimum run time to solution; Difference between the maximum and minimum run
times per number of processors; Speedup and Efficiency averaged over runs that ended in a solution.
Note that * indicates no solution was found on that run. All times are in seconds.

The search is "quasi best first" because all possible successors are not generated and evaluated deterministically.
To save space, the successors are randomly generated and evaluated and the best of the randomly generated
successors are kept. If enough successors are generated in each iteration of the quasi best first phase, then the
method approximates best first search.

The capitalized statements in Step I and Step II of the algorithm outlined above highlight the additions
we made to the sequential algorithm in order to enable the method to run on an MIMD multicomputer. Each
processor runs the same basic program. The only interprocessor communication done is a broadcast of the desired
goal location(s) of the Control point(s) in the workspace to all processors in Step I, and checks for a message
indicating that another processor has found a solution in Step II.

Figure 1 shows the start and goal configurations for one of our test cases involving a six degree of freedom planar
robot with one control point operating in a 256 x 256 cell workspace. Each joint has up to 256 discrete positions.
Figure 2 shows the results for ten runs on up to 1024 processors.

3.1 Discussion of Results

At first one might be surprised that such a straight forward parallel algorithm fares as well as it does on such
a difficult problem instance, reducing the average computation time from 51430 seconds (over 14 hours) on one
processor to an average of 178 seconds (about 3 minutes) on 1024 processors. Furthermore, from the average times
calculated in figure 2, it is apparent that the algorithm does not require a large number of processors to make
significant reductions in the time required to solve this problem instance -just 64 processors are required to solve
the problem in an average time of about 43 minutes.

In figure 2, the speedup is not calculated for the results up to and including four processors for the following
reason. The planner failed to find solutions to the problem for four of the runs on one processor and three of the
runs on two processors. If we had let the planner run long enough, it would have arrived at a solution since it is
probabilistically complete. However it might have taken a great deal more time than allowed by the cutoff bound
of about two days that we set (Trial_Limit = 800 in Step II of the algorithm outline on the previous page). Such
cases would make the speedup appear a great deal better than does assuming linear speedup on four processors.
For our speedup calculation then, we used four times the average time taken by four processors as the time on
which speedup is based. Thus, all the speedup figures are conservative and would be much higher if the average
time for one processor was used for computing speedup.

It is interesting to note that speedup oscillates between slightly sublinear and superlinear until it starts to fall
off at about 512 processors. Moreover, the time variance required to solve the problem decreases as the number of
processors used to solve the problem increases. For example, on sixteen processors, the maximum and minimum
time to solve the problem varies by 26362 seconds (or over 7.3 hours), while on 256 processors and up the maximum
time difference is 385 seconds (a little less than 6.5 minutes). Additionally, before we increased the cutoff bound,
the planner was unable to formulate a solution to the problem on sixteen processors in the time it was allocated
(24601 seconds or about 6.5 hours) in two of the runs we attempted. In order to clarify why these fluctuations
occur, it may be helpful to first discuss what happens to parallel search algorithms operating on fixed size problems.
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Figure 3: Start and Goal Configurations for Six Degree of Freedom Robot
operating in a 256 x 256 cell workspace. Each C-space axis has 256 possible
discrete positions

Let the problem size W be the time taken by the optimal (or the best known) sequential algorithm to solve
the given problem on a single processor. We assume W is proportional to the size of the space searched. The
execution time on P processors is defined as Tp. We define speedup S as the ratio w and efficiency as s. In
general, for a fixed problem size W, increasing the number of processors P causes a decrease in efficiency because
parallel processing overhead will increase while the sum of time spent by all processors in meaningful computation
remains the same. Since our parallel search scheme does virtually no communication during the search phase, the
fall off in speedup and efficiency is due to redundant work - different processors exploring the same search states.

In this example then, the speedup and average time taken to solve the problem decreases and levels off as
we increase the number of processors trying to solve the problem because we hit a point where the number of
processors required to insure that one processor will find a solution in the minimum amount of time possible for
the algorithm is near optimal or optimal. This is because the probability that the random component of the
algorithm will ensure that different processors are exploring different parts of the search space decreases as we add
more processors. When we reach that point, then adding more processors to the problem will just result in more
processors doing redundant work (in the average case).

The reason for fluctuations in time taken to solve the problem from run to run on the same number of processors
is as follows. On some runs the random component of the planner running on the processor solving the problem
first helped it jump out of local minima more effectively than it did on other runs. Hence, on some runs the planner
finds a solution very quickly using just a few processors, and on other runs, particularly with few processors, it
does not find a solution at all.

Furthermore, according to our results, the probability that no solution will be found when one exists decreases
as we increase the number of processors. Again, as we increase the number of processors running the planner, there
is a better chance of good search space partitioning. Better search space partitioning ensures a more complete
search of the space. Thus, if a solution exists, more processors are likely to find it.

Finally, in all experiments we have completed to date, our parallel algorithm delivers similar performance. For
example in the problem instance depicted in figure 3, the planner managed to find a solution on each run within
the designated time limit. However, even though this problem instance is not as difficult in terms of solution time
as the problem depicted in figure 1, as the table in "figure 4 shows, it exhibits similar behavior. Both the level off
in speedup and fluctuations from run to run occur, they just occur with fewer processors.

3.1.1 Explaining Superlinear (and Sublinear) Speedup

From the superlinear speedup exhibited by our results it may appear that in some cases a better sequential
algorithm can be obtained by emulating the parallel algorithm on a single processor. Such an algorithm will have
an average runtime of Tp ̄  P on a single processor (where Tp is the parallel runtime on P processors defined
above). In this case, the parallel algorithm will still exhibit at least linear speedups. In practice however, due



No. Processors 1 2 4 8 16 32 64 128 256
Avg. Sol. Time 6957 5447 2399 728 240 69 55 44 47
Max. Run Time 14818 12886 12886 1095 652 211 84 74 61
Min. Run Time 398 119 68 85 55 29 36 29 36

Max- Min. Time 14420 12767 12818 1010 597 182 48 45 25
Speedup (~-) 1.28 2.90 9.56 28.99 100.83 126.49 158.11 144.94

Efficiency (%) 0.64 0.73 1.20 1.81 3.13 1.98 1,24 0.57

Figure 4: Table summarizes the data for ten runs of the Quasi Best First/Random
Planner on up to 256 processors on an nCUBE2 multicomputer for the problem
instance pictured in figure 3. The table shows the following information: Average
time to find solution; Maximum run time to solution; Minimum run time to solution;
Difference between the maximum and minimum run times per number of processors;
Average Speedup, and Average Efficiency. All times are in seconds.

to emulation overhead and limited hardware resources, the parallel algorithm will still deliver better than linear
speedups.

Furthermore, as is the case with time fluctuations discussed above, some of the superlinear and sublinear speedup
exhibited by our results is due to the random nature of the algorithm. Increasing the number of successful runs
included in the average will eliminate the sublinear and superlinear speedup observed.

Some of the superlinear speedup observed may be due to the nature of the problem space and search itself.
Recent work by [Rao and Kumar, 1992] indicates that depth first search with simple backtracking delivers at least
linear speedup on the average when searching a tree in which the distribution of solutions is non-uniform. Since,
for this problem instance, the heuristic that guides the search algorithm we have implemented is misleading at
times, there may be cases in which the search behaves a great deal like depth first search with simple backtracking.
If this is the case, then, since the distribution of solutions is non-uniform for our problem instance, some of the
superlinear speedup observed in our results may be due to the effects described by Rao and Kumar [1992].

3.1.2 Is the Parallel Algorithm Really Necessary?

One might argue that given a short enough time bound, running the serial algorithm or emulating the parallel
algorithm on a single processor multiple times will yield a solution with shortest path length in the shortest time.
There are, however, problems with such an argument. To begin with, one must devise a method of predicting the
minimal time required to devise a solution to a given instance of the problem. In some problem instances this will
be relatively trivial, but for many others it may be extremely difficult.

One possible way around developing such a method is to emulate the parallel algorithm on a sequential machine
and incrementally increase the time bound until the minimum time bound necessary to compute a solution is
reached. As mentioned previously, such an algorithm will have an average runtime of Tp ̄  P on a single processor.
For the example in figure 1, the fastest solution time we obtained with our parallel formulation was 53 seconds on
512 processors. This implies that the average runtime of the best sequential algorithm to find the same solution
would be almost eight hours, if we guessed the time bound correctly on the first try. There will be cases in which
the sequential system fares much better and cases in which it fares much worse. In any case, running the parallel
algorithm on a parallel machine is clearly advantageous if solutions are required in more realistic time frames.

3.1.3 Summary

Assuming our results can be generalized, the performance delivered by this approach is fairly impressive. Only 64
processors are required to virtually guarantee a solution in a reasonable amount of time in both problem instances
- significantly less time on average than a single processor requires to solve the problem (if the single processor can
arrive at a solution before it hits its cutoff bound). If less variance in time to solution and more certainty that the
solution the planner delivers is correct is required by the user, he or she need only to use 256 processors.
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4 Future work

The randomized scheme we have implemented does have its drawbacks. In many cases the paths the planner found
were clearly sub-optimal in terms of length and their ability to be executed by any real robot. As Latombe et. al.
have pointed out, in many cases post processing can help optimizing such paths [Barraquand and Latombe, 1991].
However, such processing can be expensive in terms of computation and may not always yield a meaningfully
improved path.

On the other hand, parallelizing search-based methods that keep track of the C-space they have visited may
yield better results. Such approaches limit the amount of redundant work performed because they generate each
configuration in C-space at most once. As we discussed earlier, existing implementations of such methods run
into difficulty because they cannot store the C-space they require on a single processor. However, consider the
new generation of massively parallel machines such as a 512 processor CM-5 with 32 megabytes of memory per
processor. After allowing space for the operating system, program, and communication buffer, there should be at
least 8 billion bytes which can be utilized by existing restricted and/or distributed memory schemes.

Relatively recent restricted memory schemes such as MA*[Chakrabarti et al., 1989], MREC[Sen and Bagchi,
1989], and PRA*[Evett et al., 1990], as well as distributed memory schemes such as A* with probabilistic state
distribution [Manzini and Somalvico, 1990] appear promising. They seem to be the best methods available for
MIMD multicomputers with hypercube and treelike interconnection networks because they enable the use of much
more memory in which to store the C-space then afforded by other marking search algorithms.

5 Conclusion

In summary, we have devised and implemented a parallel robot motion planning algorithm based on quasi best first
search with randomized escape from local minima and randomized backtracking. The method delivers excellent
speedup on difficult problem instances, including one problem which, for all practical purposes, is computationally
infeasible on a single processor.
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