
Parallel Semantic Trajectory Similarity Join

Item Type Conference Paper

Authors chen, Lisi; Shang, Shuo; Jensen, Christian S.; Yao, Bin; Kalnis,
Panos

Citation Chen, L., Shang, S., Jensen, C. S., Yao, B., & Kalnis, P. (2020).
Parallel Semantic Trajectory Similarity Join. 2020 IEEE
36th International Conference on Data Engineering (ICDE).
doi:10.1109/icde48307.2020.00091

Eprint version Post-print

DOI 10.1109/ICDE48307.2020.00091

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Rights Archived with thanks to IEEE

Download date 09/08/2022 06:57:27

Link to Item http://hdl.handle.net/10754/663809

http://dx.doi.org/10.1109/ICDE48307.2020.00091
http://hdl.handle.net/10754/663809

Parallel Semantic Trajectory Similarity Join

Lisi Chen [1, Shuo Shang [2 ∗, Christian S. Jensen ‡3, Bin Yao]4, Panos Kalnis †5
[UESTC, China {1chenlisi.cs; 2jedi.shang}@gmail.com

‡ Aalborg University, Denmark 3csj@cs.aau.dk
] Shanghai Jiao Tong University, China 4yaobin@cs.sjtu.edu.cn

† KAUST, Saudi Arabia 5panos.kalnis@kaust.edu.sa

Abstract—Matching similar pairs of trajectories, called tra-
jectory similarity join, is a fundamental functionality in spatial
data management. We consider the problem of semantic trajec-
tory similarity join (STS-Join). Each semantic trajectory is a
sequence of Points-of-interest (POIs) with both location and text
information. Thus, given two sets of semantic trajectories and a
threshold θ, the STS-Join returns all pairs of semantic trajectories
from the two sets with spatio-textual similarity no less than
θ. This join targets applications such as term-based trajectory
near-duplicate detection, geo-text data cleaning, personalized
ridesharing recommendation, keyword-aware route planning, and
travel itinerary recommendation.

With these applications in mind, we provide a purposeful
definition of spatio-textual similarity. To enable efficient STS-
Join processing on large sets of semantic trajectories, we develop
trajectory pair filtering techniques and consider the parallel pro-
cessing capabilities of modern processors. Specifically, we present
a two-phase parallel search algorithm. We first group semantic
trajectories based on their text information. The algorithm’s per-
group searches are independent of each other and thus can
be performed in parallel. For each group, the trajectories are
further partitioned based on the spatial domain. We generate
spatial and textual summaries for each trajectory batch, based
on which we develop batch filtering and trajectory-batch filtering
techniques to prune unqualified trajectory pairs in a batch
mode. Additionally, we propose an efficient divide-and-conquer
algorithm to derive bounds of spatial similarity and textual
similarity between two semantic trajectories, which enable us
prune dissimilar trajectory pairs without the need of computing
the exact value of spatio-textual similarity. Experimental study
with large semantic trajectory data confirms that our algorithm
of processing semantic trajectory join is capable of outperforming
our well-designed baseline by a factor of 8–12.

I. INTRODUCTION

Trajectory similarity join is a fundamental functionality in
trajectory data analytics (e.g., TS-Join [31], Strain-Join [38],
DITA [36], DTJ [39]): Given sets T and Q of trajectories
and a similarity threshold θ, finds all pairs of trajectories
from T and Q with a similarity that no less than θ. Based
on existing studies, the similarity between two trajectories
is either measured by the spatial proximity [36], [38] or
measured by spatio-temporal proximity [31], [39] between
them, underlying that the join operation is conducted in spatial
or spatio-temporal domain only.

However, recent years have witnessed the development of
online map-based services (e.g., Bing Maps1, Google Maps2,

∗ Shuo Shang is the corresponding author.
1https://www.bing.com/maps/
2https://maps.google.com/

Foursquare3, and MapQuest4) and location-based social media
(e.g., Twitter5, Facebook6, Instagram7, and Flickr8). These ap-
plications are redefining and enriching the traditional trajectory
data by associating locations with semantic meanings [48]. For
example, Foursquare users can check in the Point-of-Interests
(POI, which contains a spatial location and a semantic descrip-
tion) they are visiting and leave descriptions and comments
for other users. Flickr allows tourists to upload their geo-text
photos taken by smartphones during the travel, so that their
trips can be outlined both by location and by semantic infor-
mation embedded in the photos. Trajectories generated in these
applications are defined as semanic trajectories [27]. They
can be modeled either by a finite sequence of text-embedded
geographical points (i.e., geo-textual objects, POIs) [17] or by
a traditional trajectory enriched by a text document [34]. From
a semantic trajectory, we can know not only where a user has
been, as from the traditional trajectory, but also what he/she
has done by retrieving the text documents associated with the
locations (e.g., reviews, descriptions, text annotations), or by
extracting the text information from the multimedia contents
attached to the locations (e.g., images, videos).

To enable effective analytics of big semantic trajectory
data, it is insufficient to evaluate the similarity between se-
mantic trajectories solely based on spatial proximity. Consider
semantic trajectories τ1–τ4 in Figure 1. The yellow diamonds
represent the POIs covered by these trajectories. We see that
trajectory τ1 covers a couple of tolled road segments, τ2
covers nearby free road segments with lake sightseeing, and τ3
covers some off-road segments. Although these three routes are
spatially close to each other, they are preferred by diverging
groups. In particular, τ1 is likely to be chosen by business
travelers and commuters in a rush, τ2 is favorable to some
budget-sensitive tourists, and τ3 may be taken by adventurous
travelers who have off-road vehicles. Further, we see that τ4
is more similar to τ1 and τ3 than to τ2 in terms of spatial
proximity. However, taking both trajectory spatial information
and semantic (textual) information of POIs into account, we
may find that travelers who choose τ2 are more likely to favor
τ4 over τ1 and τ3. This example underlines that it is important
to consider both spatial proximity and semantic similarity
when determining whether two trajectories are similar with
each other.

3https://foursquare.com
4https://www.mapquest.com
5https://twitter.com
6https://www.facebook.com
7https://instagram.com
8https://flickr.com

campsitetoll

toll

toll

off-road supply

lakeside

lakeside

grab and go

grab
and go

traffic light

traffic light

traffic light

traffic light

τ1

τ2

τ3τ4

Fig. 1. An example of semantic trajectories

In this paper, we focus on a fundamental functionality
in semantic trajectory data analytics, Semantic Trajectory
Similarity Join (STS-Join): Given sets T and Q of semantic
trajectories (or a single set T and its mirror Q in the case
of self-join) and a similarity threshold θ, the STS-Join returns
all pairs of semantic trajectories from T and Q with a spatio-
textual similarity that no less than θ. Specifically, both spatial
and textual domains are considered in measuring the similar-
ity between two semantic trajectories. A linear combination
method (e.g., [34], [47]) is adopted to combine the spatial and
textual similarity into a spatio-textual similarity metric.

To process the STS-Join efficiently, we develop a two-
phase parallel matching framework that consists of the fol-
lowing techniques:

(1) Trajectory grouping and batch filtering: Given sets T
and Q of trajectories, we first group trajectories by a purposeful
inverted index based on their text information. The inverted
index takes into account the parallel processing capabilities of
modern processors. We prove that join processes of trajectories
in different groups (lists) are independent of each other. Next,
trajectories in each group are further partitioned according to
the spatial domain. We generate spatial and textual summaries
for each trajectory batch, based on which we propose batch
filtering and trajectory-batch filtering techniques to prune
unqualified trajectory pairs in a batch mode. (Sections IV-D)

(2) Semantic trajectory pair pruning: It is computation-
ally expensive to calculate the exact spatio-textual similarity
between two semantic trajectories (see Section III-C for
complexity analysis). To address the challenge, we propose
an efficient divide-and-conquer algorithm (see Section IV-C
for detailed complexity analysis) to derive upper bounds of
spatial similarity and textual similarity between two semantic
trajectories, which enable us prune dissimilar trajectory pairs
without the need of computing the exact value of spatio-textual
similarity. (Sections IV-B and IV-C)

To sum up, the contributions of the paper are as follow.

• We present the first study on semantic trajectory simi-
larity join, named STS-Join, that takes into account
both spatial similarity and text similarity between
trajectories.

• The STS-Join uses new metrics to evaluate semantic
trajectory similarity in the spatial and textual domains.

• We develop a two-phase parallel matching framework
consisting of semantic trajectory grouping, batch filter-
ing, and trajectory pair pruning techniques that enable
efficient parallel STS-Join processing.

• We conduct extensive experiments on large semantic
trajectory data sets to study the performance of the
algorithms.

The rest of the paper is organized as follows. Section II
introduces two definitions of semantic trajectories and the
similarity metrics used in the paper, and it defines the STS-
Join problem. Section III presents the baseline algorithm for
processing the STS-Join. Our two-phase parallel matching
algorithm and corresponding filtering and pruning techniques
are presented in Section IV. Next, we present our experimental
study in Section V. Related work is covered in Section VI, and
conclusions are presented in Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Semantic trajectories

We present two popular definitions of semantic trajectories:
POI-based semantic trajectory (e.g., [13], [17], [47], [48]) and
document-based semantic trajectory (e.g., [34]).

Definition 1: (POI-based semantic trajectory) A POI-based
semantic trajectory τ is a directed finite sequence of POIs
〈o1, o2, ..., on〉, where oi = {ρ, ψ} is a geo-textual object that
contains a geographical location ρ and a text description ψ. �

Definition 2: (Document-based semantic trajectory) A
document-based semantic trajectory τ = {p, ψ} is defined by
a directed finite location sequence p = 〈p1, p2, ..., pn〉 and a
text document ψ. �

For document-based semantic trajectory, the spatial in-
formation (location sequence) and text information are inde-
pendent of each other. In contrast, the text information of
POI-based semantic trajectory is associated with a particular
POI, making the trajectory pair matching process be more
challenging. As a result, in the remaining parts of this paper we
focus on the similarity join of POI-based semantic trajectory.
Our proposal can be easily extended to support document-
based semantic trajectory similarity join.

B. Similarity measures

In this section, we first present the definition of relevance
between a geo-textual object and a semantic trajectory, based
on which we present how to measure the similarity between
two semantic trajectories.

1) Object-trajectory relevance: Given a geo-textual object
o and a semantic trajectory τ , the spatio-textual relevance
R(o, τ) between o and τ are defined as follow. 9

R(o, τ) = max
oi∈τ
{Sim(o, oi)} (1)

9 Unless otherwise stated, semantic trajectory denotes POI-based semantic
trajectory.

where Sim(o, oi) denotes the spatio-textual similarity between
o and oi, which is computed by a linear combination of spatial
proximity and text similarity [5], [18], [43], [44]:

Sim(o1, o2) = α ·S(o1.ρ, o2.ρ) + (1−α) ·T(o1.ψ, o2.ψ) (2)

where S(o1.ρ, o2.ρ) denotes the normalized spatial score be-
tween o1.ρ and o2.ρ, which is inversely proportional to the dis-
tance, and T(o1.ψ, o2.ψ) denotes the normalized text similarity
(e.g., cosine similarity, Jaccard similarity) between o1.ψ and
o2.ψ. Without loss of generality, we adopt Jaccard similarity
(cf. Equation 3), which is a widely-used model to measure the
similarity between geo-textual objects [10], [15], [18], [22].
It is important to note that our proposal is not specific to
the Jaccard similarity measurement. It is straightforward to
extend our method to other similarity measure such as cosine
similarity [40], [44]. Parameter α balances the weight between
spatial proximity and text similarity.

T(o1.ψ, o2.ψ) =
|o1.ψ ∩ o2.ψ|
|o1.ψ ∪ o2.ψ|

(3)

2) Trajectory-trajectory similarity: Given semantic tra-
jectories τ1 and τ2, we define the spatio-textual similarity
ST(τ1, τ2) between them based on an existing study [12].

ST(τ1, τ2) =
∑
oi∈τ1 R(oi, τ2)

|τ1|
+

∑
oj∈τ2 R(oj , τ1)

|τ2|
(4)

Here, τ denotes the number of geo-textual objects in a
semantic trajectory. We ensure that the similarity measures are
symmetrical, such that ST(τ1, τ2) = ST(τ2, τ1).

C. Problem Definition

We formally define the STS-Join problem in Definition 3.

Definition 3: (STS-Join) Given sets T and Q of semantic
trajectories and a similarity threshold θ, the semantic trajectory
similarity join (STS-Join) finds a set A of all semantic
trajectory pairs (τi, τj) from the two sets that satisfy the
following conditions:

(1) τi and τj share at least one common term, and

(2) The spatio-textual similarity between τi and τj is no
less than θ. �

Condition (1) in Definition 3 is to guarantee that the
trajectory pairs in each join result have some minimum textual
relevancy to each other. Specifically, if two semantic trajecto-
ries τ1 and τ2 are to be considered as similar, a very natural
necessary condition is that τ1 and τ2 have some minimum
overlap in both the spatial and textual domains. This setting
has been applied widely in existing studies that measure the
similarity between two geo-textual items (e.g., [3], [16], [21]).

Complexity analysis. We assume that the number of
objects in each trajectory is |τavg| and that the number of
terms per object is |ψavg|. According to Equations 1 and 4,
to compute ST(τ, τj) we need to calculate the spatio-textual
similarity between each pair of objects in τ and τj . So the time
complexity of computing ST(τ, τj) is O(|ψavg|·|τavg|2). In the
worst case, we need to evaluate all pairs of trajectories. Thus,
the time complexity of the STS-Join is O(|ψavg|·|τavg|2 ·|T |2).

We initially consider the self-join scenario (i.e., T = Q),
and then cover the case T 6= Q in Section IV-E.

o3

o2

o8
o1

o6

o7

o5

POI text descriptionsSemantic trajectories

o9

o1: w1, w5
 o2: w2, w3

o3: w5

o4: w2, w4

o5: w6

o6: w2

o7: w1, w5

o8: w1, w6, w6

o9: w2

o4

τ1

τ2

τ3τ3

τ4

τ5

Fig. 2. An example of semantic trajectory collection

w1 <τ1, 2> <τ2, 3> <τ3, 1> <τ5, 1>

w2

 <τ3, 1> <τ4, 1>w3

w4

w5

<τ1, 2> <τ3, 2> <τ4, 4> <τ5, 1>

 <τ4, 1> <τ5, 1>

 <τ1, 2> <τ2, 3> <τ5, 1>

 <τ2, 3> <τ3, 3> <τ5, 1>w6

Fig. 3. Trajectory inverted file

III. BASELINE APPROACH

A. Basic idea

Search with Trajectory Inverted File (STIF) is a straight-
forward baseline approach to computing the STS-Join. Based
on Definition 3, trajectory pair τi and τj can be a join result
only if they share at least one common term. In order to
filter out trajectory pairs that do not share any term, we index
the trajectory terms using inverted index. In particular, each
inverted list, denoted by IL(w), corresponds to a term w and it
stores trajectories whose text descriptions contain w. Then we
evaluate each trajectory pair that shares at least one common
term. Specifically, for each trajectory τ we evaluate potential
result pairs (τ, τ ′) by traversing all inverted lists IL(wi) where
wi ∈ W and W = ∪oj∈τoj .ψ. We compute ST(τ, τ ′) and
compare it with θ.

B. Trajectory Inverted File

Figure 2 presents a collection of semantic trajectories. Gray
circles o1–o9 are POIs and τ1–τ5 are semantic trajectories.
Each trajectory is illustrated by a unique color. The text de-
scription of each POI is presented on right-hand side.Figure 3
presents the trajectory inverted file built for indexing the
trajectories in Figure 2. Each posting 〈τi, n〉 in IL(w) consists
of a trajectory id, τi, and the frequency of w in τi, n. Note
that the frequency may be used for computing the spatio-
textual similarity between two trajectories, depending on the
text similarity metric we use.

C. Algorithm

This section presents our STIF algorithm (Algorithm 1).
The inputs are a collection of trajectories T and a similarity
threshold θ. The output is a set of trajectory pairs that are
similar with each other. For each trajectory τ , we first generate
a union of terms in all of its POIs (i.e., W) (Line 2). Next,
for each term wi ∈W we traverse its inverted list IL(wi) and
evaluate each posting 〈τj , n〉 in IL(wi) (Line 3). In particular,
we compute the similarity between τ and τj . If the similarity
is no less than θ, we add pair (τ, τj) to the result set A (Lines
4–7). At the end, we return set A as the final result. In this
algorithm, the evaluation of each trajectory τ can be performed
in parallel.

Algorithm 1: STIF
Data: Semantic trajectory set T , Similarity threshold θ
Result: A set of result trajctory pairs A
for each τ in T do1

W ← ∪o∈τo.ψ;2
for each wi ∈W do3

for each posting 〈τj , n〉 ∈ IL(wi) do4
st← ComputeST(τ ,〈τj , n〉);5
if st ≥ θ then6

A.add(〈τ, τj〉);7

return A;8

IV. TWO-PHASE PARALLEL MATCHING

A. Basic Idea

We aim to address the following limitations exist in STIF
algorithm:

(1) High complexity of computing similarity between two
trajectories: When computing ST(τi, τj) we need to calculate
the similarity between object pair 〈oi, oj〉 s.t. oi ∈ τi and
oj ∈ τj . It is computationally expensive especially when the
average number of objects in a trajectory is large.

(2) Individual evaluation: In STIF, each trajectory pair is
evaluated separately, which is time consuming given a large
number of semantic trajectories.

To address the above two limitations, we develop a Two-
phase Parallel Matching (2-PM) algorithm for processing
STS-Join. Specifically, to address limitation (1) we propose
an trajectory pair pruning strategy to prune “unqualified”
trajectory pairs without the need of calculating the similarity
between each object pair in τi and τj . To address limitation
(2), we propose a parallelized batch processing algorithm that
is able to evaluate a group of trajectory pairs simultaneously.

Figure 4 presents the framework of our 2-PM algorithm.
Given a collection of semantic trajectories T , we generate
summary for each trajectory to represent its spatial and
textual information (cf. Section IV-B). Based on the summary
information we group similar trajectories together and conduct
batch filtering (cf. Section IV-D). Specifically, if a pair of
batches (groups) cannot be pruned, we proceed to evaluate
each trajectory pair in the two batches by using our trajectory
pair filtering technique (cf. Section IV-C). Note that both
batch filtering and trajectory pair filtering can be processed
in parallel.

Semantic
 trajectories

spatial summary

textual
summary

Batch filtering

Trajectory
grouping

pair evaluation

Join results

Fig. 4. Framework of 2-PM

{w1,w2} {w2}

{w3,w4}
{w4}

{w2}
{w2,w3}

{w3}
{w3}

c(0,0) c(1,0) c(2,0) c(3,0) c(4,0) c(5,0) c(6,0)

c(0,3)

c(0,2)

c(0,1)

c(0,0)

w1 w2 w3 w4

1 2 1 2

Textual summary of τ1

w2 w3

2 3

Textual summary of τ2

τ1

τ2

o1 o2

o3 o4

o5
o6 o7 o8

Fig. 5. Summary of trajectories

B. Semantic Trajectory Summarization

This section presents how to generate a summarization of
a semantic trajectory. Recall that the time complexity of com-
puting the spatio-textual similarity between two trajectories is
O(|ψavg| · |τavg|2). With the summarizations of trajectories
τi and τj , we can derive an upper bound of spatio-textual
similarity between τi amd τj with O(|τavg| · log |τavg|+ |τavg| ·
|ψavg|).10

Figure 5 presents an example of summarizing trajectories
τ1 = 〈o1, o2, o3, o4〉 and τ2 = 〈o5, o6, o7, o8〉. We summarize
the spatial information and textual information of trajectories
separately. For summarizing spatial information, we partition
the underlying space into m × n (i.e., 7 × 4 in Figure 5)
cells. Each object is associated with a cell c(x, y). As a result,
trajectory τ1 is associated with c(0, 2), c(1, 2), c(3, 3), and
c(5, 3), and trajectory τ2 is associated with c(3, 0), c(4, 0), and
c(6, 0). As for summarizing textual information, we aggregate
the term frequencies of all objects in each trajectory (see
textual summaries of τ1 and τ2 in Figure 5).

C. Trajectory Pair Pruning

We proceed to introduce how to derive upper bounds of
spatial similarity and textual similarity between two trajecto-
ries, respectively, which enable us prune “dissimilar” trajectory
pairs without the need of computing the exact value of spatio-
textual similarity.

1) Spatial similarity upper bound: Computing the spatial
similarity upper bound between trajectories τi and τj , denoted
by STS(τi, τj).ub, is equivalent to computing the lower bound

10Assume that the trajectory is not summarized by grid cells.

c(0,4)

τ1

τ2

0 3

3

6 9 15

0

6

12

x

y

c(2,4)

c(3,5)

c(5,6)

c(6,5)

c(8,4)

c(10,5)

c(12,6)

c(3,1)

c(4,2)

c(6,1)

c(8,0)

c(10,1)

c(11,1)

c(15,5)

c(12,2)

dl
min

dmin = min {dlmin , drmin , dcmin}

2 x dlmin

dr
min

dc
min

Fig. 6. Computation of spatial similarity upper bound

of minimum distance between τi and τj , which is denoted by
dmin.

Figure 6 illustrates the high-level idea of our divide-and-
conquer based algorithm of computing dmin. We first index
τ1 and τ2 by grid cells. Next, we recursively calculate the
local minimum distances between cells of τ1 and τ2 in both
subareas divided by the vertical line (i.e., both left and right
subareas contain the same number of cells). Specifically, in
the first recursion, the red boundary line parallel to y-axis in
Figure 6 partitions the underlying space into two subspaces.
dlmin and drmin, represented by double-headed red arrow
lines, denotes the local minimum distances regarding the left
subspace and right subspace, respectively. After calculating
the local minimum distances regarding both subspaces, we
compute dcmin, the local minimum distance between cells of τ1
and τ2 in the area located at most min{dlmin, drmin} distance
away from the middle line dividing the two subspaces (i.e.,
the red area in Figure 6).

Algorithm 2 presents our divide-and-conquer algorithm
of computing the lower bound of minimum distance given
trajectories τ1 and τ2. At first, we index τ1 and τ2 by grid
cells (Lines 1–2). In particular, C1 and C2 to denote the sets of
grid cells associated with τ1 and τ2, respectively, and array A
(Line 3) is a list of cells that merges C1 and C2. Next, we sort
A based on x-coordinate and y-coordinate and generate arrays
Ax and Ay , respectively. Finally, we call recursive function
MinDistUtil by taking C1, C2, Ax, Ay , and |A| as input.

Algorithm 2: MinDist
Data: Semantic trajectories τ1 and τ2
Result: Upper bound of minimum distance between τ1 and τ2
C1 ← grid cells associated with τ1;1
C2 ← grid cells associated with τ2;2
A← C1 + C2;3
Ax ← C sorted by x axis; Ay ← C sorted by y axis;4
return MinDistUtil(C1, C2, Ax, Ay, |A|);5

We proceed to present the pseudo code of MinDistUtil in
Algorithm 3. Here, integer m represents the total number of
cells associated with τ1 and τ2 (i.e., |C1| + |C2|). At first,
we check if m is large enough to use divide-and-conquer
framework. If m ≤ 3, we directly compute dmin in a brute
force manner by enumerating all pairs of cells (Lines 31–32).
If m > 3, we go with our divide-and-conquer method. Let
Alx and Arx be the first and second half of Ax, respectively

(Lines 6–7). We split Ay into Aly and Ary according to x-
coordinate (Lines 8–12). Next, we recursively calculate the
local dmin regarding Aly and Ary . In particular, if Aly (resp. Ary)
contains cells associated with both τ1 and τ2, we compute the
local minimum distance dlmin (resp. drmin) by calling the next
recursion of MinDistUtil; otherwise, we assign the initial value
(max) to dlmin (resp. drmin) as the local minimum distance
does not exist (Lines 13–20). Having dlmin and drmin, we
choose the smaller one as the minimum distance regarding
the left subspace and right subspace (Line 21). Following
that, we compute the local minimum distance between cells
close to the boundary line in the current recursion (Lines 22–
30). Specifically, we generate array Am, sorted based on y-
coordinate, that contains cells whose distances to the boundary
line are closer than dmin (Lines 23–25). Then we evaluate
all pairs of cells from different trajectories and update the
value of dmin (Lines 26–30). It is worth noting that the
complexity of cross-boundary computation (i.e., Lines 26–30)
is not O((|C1|+|C2|)2). Instead, it is O((|C1|+|C2|)) because
the inner loop runs at most 7 times. We regard each cell as
a point in order to prove the above proposition in a more
understandable way (cf. Theorem 1).

Theorem 1: The number of inner loops (Lines 27–30 in
Algorithm 3) in the cross-boundary computation is at most 7.

Proof: Given a point p0 that is visited by a particular
outer loop (Lines 26–30 in Algorithm 3). The points visited
by the corresponding inner loop (Lines 27–30) must lie either
in the left or in the right dmin × dmin square. Because that
for any two points pi and pj , the distance between pi and pj
is larger than dmin, we can pack at most 4 points into one
square. Thus, we have 7 points in total expect p0.

Complexity Analysis. Given two sets of cells C1 and C2

associated with trajectories τ1 and τ2, respectively, the time
complexity of MinDist algorithm is O((|C1|+|C2|)·log(|C1|+
|C2|)).

2) Textual similarity upper bound: We proceed to compute
the upper bound of text similarity between trajectories τ1 and
τ2 based on Equation 5.

STT (τ1, τ2).ub =

∑
oi∈τ1 RT (oi, τ2).ub

|τ1|
+

∑
oj∈τ2 RT (oj , τ1).ub

|τ2|
,

(5)
where RT (oi, τ).ub denotes the upper bound of text relevance
between object oi and trajectory τ . Equation 5 calculates
STT (τ1, τ2).ub by aggregating the upper bound of text rele-
vances between each oi ∈ τ1 and τ2, and between each oi ∈ τ2
and τ1.

Algorithm 4 presents the pseudo code of computing the
upper bound of text similarity between τ1 and τ2. We use
ts(τ) to denote the set of terms in trajectory τ , which can
be directly retrieved from the textual summary of τ (cf.
Figure 5). We take the text summaries of τ1 and τ2 as input.
At first, we initialize TSim , which maintains the current text
similarity (Line 1). Then we aggregate TSim with the upper
bound of text relevances between each oi ∈ τ1 and τ2 (i.e.,
RT (oi, τ2).ub) (Lines 2–4). Next, we do the same with the
upper bound of text relevances between each oi ∈ τ2 and
τ1 (i.e., RT (oi, τ1).ub) (Lines 5–7). We can see that the time

Algorithm 3: MinDistUtil
Data: Sets of grid cells C1 and C2, Sorted array of cells Ax

and Ay , Integer m
Result: Minimum distance between C1 and C2

dmin ← +∞;1
if m > 3 then2

n← bm
2
c;3

Initialize cell arrays Alx, Arx, Aly , Ary;4
il, ir ← 0;5
Alx ← Ax.subarray(0, n);6
Arx ← Ax.subarray(n+ 1,m− 1);7
for i from 0 to m− 1 do8

if Ay[i].x ≤ Ax[n].x then9
Aly[i]← Ay[i];10

else11
Ary[i]← Ay[i];12

if Alx contains cells from both C1 and C2 then13
dlmin ← MinDistUtil(C1, C2, A

l
x, A

l
y, n);14

else15
dlmin ← +∞;16

if Alx contains cells from both C1 and C2 then17
drmin ← MinDistUtil(C1, C2, A

r
x, A

r
y,m− n);18

else19
drmin ← +∞;20

dmin ← Min(dlmin, d
r
min);21

Initialize cell array Am;22
for i from 0 to m− 1 do23

if Ay[i].x−Ax[n].x < dmin then24
Am.add(Ay[i]);25

for i from 0 to |Am| − 1 do26
for j from i+ 1 to |Am| − 1 do27

if (Am[i] ∈ C1 and Am[j] ∈ C2) or28
(Am[i] ∈ C2 and Am[j] ∈ C1) then

if dist(Am[i], Am[j]) < dmin then29
dmin ← dist(Am[i], Am[j]);30

else31
dmin ← BruteForce(C1, C2, Ax,m);32

return dmin;33

Algorithm 4: MaxTSim
Data: Semantic trajectories τ1,τ2, Text summaries of τ1 and

τ2
Result: Text similarity upper bound between τ1 and τ2
TSim ← 0;1
for each oi ∈ τ1 do2

if oi.ψ ∩ ts(τ2) 6= ∅ then3
TSim ← TSim + 1

|τ1|
;4

for each oi ∈ τ2 do5
if oi.ψ ∩ ts(τ1) 6= ∅ then6

TSim ← TSim + 1
|τ2|

;7

return TSim;8

complexity of computing RT (oi, τ1).ub and RT (oi, τ2).ub is

w1

w2

batch text summary

batch MBR

trajectory batch

b(2,1)

b(2,2)

b(1,1)

b(1,2) b(1,3)

Fig. 7. Trajectory grouping

O(|oi.ψ|) and O(|oi.ψ|), respectively.11

D. Trajectory Grouping and Batch Filtering

In our semantic trajectory join setting, the number of
semantic trajectories can be very large, making it very time
consuming to evaluate each trajectory pair individually. So we
propose to evaluate groups of spatially and textually similar
trajectories simultaneously.

Figure 7 presents our framework of trajectory group-
ing scheme. Similar to the baseline approach introduced in
Section III, semantic trajectories are firstly indexed by an
inverted file. Each inverted list maintains trajectories that
contain a particular term. For example, in Figure 7, trajectories
maintained under wi must contain term wi in at least one of
their object. Trajectories in each inverted list are grouped into
batches based on their spatial information (see Section IV-D4
for grouping algorithm). Here, we use b(i, j) to denote the
j-th batch of trajectories in inverted list of term wi (i.e.,
IL(wi)). Each batch is augmented with batch MBR and batch
text summary. In particular, the batch MBR is a minimum
bounding rectangle that enclose the objects of all trajectories
in the batch and the batch text summary summarize the terms
of trajectories in the batch.

Based on our trajectory grouping scheme, we develop the
join algorithm consisting of the following three phases.

(1) Intra-list batch filtering: Given IL(wi), we first eval-
uate each pair of batches in IL(wi) (e.g., b(i, j) and b(i, k))
and check if there may exist τ ∈ b(i, j) and τ ′ ∈ b(i, k)
s.t. ST(τ, τ ′) ≥ θ. If not, batch pair b(i, j) and b(i, k) can
be filtered out. Note that it is unnecessary to evaluate batch
pair b(x, j) and b(y, k) if x 6= y (cf. Theorem 2). The upper
bound of similarity between two batches is introduced in
Section IV-D1

(2) Trajectory-batch filtering: If batch pair b(i, j) and
b(i, k) cannot be filtered, we proceed to evaluate each tra-
jectory τ ∈ b(i, j). Specifically, we check if there may exist
τ ′ ∈ b(i, k) s.t. ST(τ, τ ′) ≥ θ. If not, trajectory-batch pair τ
and b(i, k) can be filtered out. The upper bound of similarity
between a trajectory and a batch is introduced in Section IV-D2

(3) Individual evaluation: If trajectory-batch pair τ and
b(i, k) cannot be filtered, we need to evaluate each trajectory
pair of τ and ∀τ ′ ∈ b(i, k). Next, we evaluate each pair in
b(i, j). Trajectory pair pruning technique (cf. Section IV-C) is
applied in individual evaluation.

11The complexity result is based on the fact that the textual summary of
each trajectory is maintained by hashmap.

Theorem 2: Given b(x, j) and b(y, k), batch pair b(x, j)
and b(y, k) can be filtered out if x 6= y.

Proof: Let τa ∈ b(x, j) and τb ∈ b(y, k). We consider the
following two scenarios: (1) There exist om ∈ τa and on ∈ τb
s.t. om and on share common term wq; (2) For any om ∈ τa
and on ∈ τb, om and on do not share common term. For
scenario (1), we can deduce that both τa and τb are indexed
by IL(wq). Thus, they must be evaluated in intra-list batch
filtering phase. As for scenario (2), trajectory pair τa and τb
can be safely pruned based on Definition 3.

1) Spatio-textual similarity upper bound between two
batches: Given batches bi and bj where bi, bj ∈ IL(w), the
spatio-textual similarity upper bound of trajectory pair (τa, τb),
where τa ∈ bi and τb ∈ bj , is computed by Equation 6.

STB(bi, bj).ub = α·Smax(bi.mbr , bj .mbr)·2+(1−α)·2, (6)

where Smax(bi.mbr , bj .mbr) denotes the maximum spatial
similarity between the minimum bounding rectangle (MBR)
of trajectories in bi and the MBR of trajectories in bj . If
STB(bi, bj).ub < θ, we filter out all trajectory pairs in bi
and bj .

2) Spatio-textual similarity upper bound between a trajec-
tory and a batch: Given trajectory τ and batch b, the spatio-
textual similarity upper bound between τ and b is computed
by Equation 7.

STTB (τ, b).ub =∑
oi∈τ Rmax(oi, b)

|τ |
+ α · Smax(τ, b.mbr) + 1− α

(7)

Smax(τ, bj .mbr) denotes the maximum spatial score between
τ and the MBR of b, Rmax(oi, b) denotes the maximum
relevance between oi and trajectories in b, which is computed
by Equation 8.

Rmax(oi, b) = α ·Smax(oi.ρ, b.mbr)+(1−α) ·Tmax(oi.ψ, b),
(8)

where Tmax(oi.ψ, b) can be easily acquired by traversing the
text summary of b. If STTB (τ, b).ub < θ, we filter out all
pairs between τ and trajectories in b.

3) BFJoin Algorithm: Our join algorithm, BFJoin, can be
performed in parallel. Based on Theorem 2, we only need
to run trajectory join algorithm within each inverted list.
Consequently, the join algorithms regarding different inverted
lists are independent of each other.

Algorithm 5 presents the pseudo code of out join algo-
rithm regarding inverted list IL(wx). The inputs are IL(wx)
(including its MBR and text summary) and the similarity
threshold θ. The output is a set of similarity trajectory pairs
within IL(wx), which is denoted by Result. We start our
intra-list batch filtering phase (Lines 4–16). Specifically, we
compute the spatio-textual similarity upper bound between
batches b(x, i) and b(y, i) based on Equation 6. If the upper
bound is lower than θ, we filter out batch pair b(x, i) and
b(y, i). If the pair cannot be filtered, we proceed with the
trajectory-batch filtering phase (Lines 6–16). To improve the
pruning power, we compute the spatio-textual similarity upper
bound between the batch that has smaller MBR (i.e., b2) and
each τ in the batch that has larger MBR (i.e., b1) based on
Equation 7. If the upper bound is not lower than θ, we proceed

Algorithm 5: BFJoin
Data: Inverted list of term wx, Similarity threshold θ
Result: Join result of trajectories in IL(wx)
Result ← ∅;1
Initialize b1, b2;2
for each batch b(x, i) do3

for each batch b(y, i) do4
if batch pair b(x, i) and b(y, i) cannot be filtered5
then

if b(x, i).mbr is larger than b(y, i).mbr then6
b1 ← b(x, i); b2 ← b(y, i);7

else8
b1 ← b(y, i); b2 ← b(x, i);9

for each τ ∈ b1 do10
if trajectory-batch pair τ and b2 cannot be11
filtered then

for each τj ∈ b2 do12
if ST(τ, τj).ub ≥ θ then13

Compute exact value of14
ST(τ, τj);
if ST(τ, τj) ≥ θ then15

Result .add(τ, τj);16

return Result ;17

with our individual evaluation phase, which evaluates each pair
of trajectories in b1 and b2 (Lines 12–16). In particular, we
compute the similarity upper bound of a trajectory pair by
using the trajectory pruning technique (cf. Section IV-C). If
the upper bound is not lower than θ, we need to calculate the
exact value of the trajectory pair similarity (Line 14). If the
similarity is not lower than θ, we add the pair to Result (Lines
15–16).

4) Trajectory grouping algorithm: To improve the ef-
fectiveness of intra-list batch filtering and trajectory-batch
filtering, we need to compute a more accurate value of
maximum spatial score. Note that the maximum spatial score
is equivalent to minimum distance. For this purpose, it is
useful to maintain the “quality” of each batch b in order to
reduce the discrepancy between the minimum distance from
object o to b.mbr (denoted by minDist(o.ρ, b.mbr)) and the
exact distance from o to o′ (denoted by dist(o.ρ, o′.ρ)) where
o′.rho ∈ b.mbr. According to triangle inequity theorem, it
is easy to deduce that the maximum possible discrepancy be-
tween minDist(o.ρ, b.mbr) and dist(o.ρ, o′.ρ) is the diagonal
length of b.mbr, which is denoted by dg(b.mbr).

To increase the accuracy of minDist(o.ρ, b.mbr), we
constrain the value of dg(b.mbr) for each batch. We develop
a Diagonal-Constrained Online Grouping (DCOG) algorithm
for grouping trajectories in an inverted list such that the MBR
of trajectories in each batch b satisfies dg(b.mbr) ≤ θdiag ,
where θdiag is the threshold of MBR diagonal length.

Algorithm 6 presents the pseudo code of the DCOG
algorithm. It takes the original inverted list IL(w) and the
threshold of MBR diagonal length θdiag as input. For each
trajectory τ ∈ IL(w), we perform online grouping. Specifi-
cally, we assign τ to the batch with MBR that has the shortest
diagonal length. At first, we initialize bmin and diagmin, which

Algorithm 6: DCOG
Input: Original inverted list IL(w), Threshold of MBR

diagonal length θdiag
Output: Batch set B
B ← ∅;1
for each τ ∈ IL(w) do2

Initialize bmin;3
diagmin ← dist max;4
for each batch b in B do5

b′ ← b.add(τ);6
if dg(b′.mbr) < diagmin then7

diagmin ← dg(b′.mbr);8
bmin ← b;9

if diagmin ≤ θdiag then10
bmin.add(τ);11
Update bmin in B;12

else13
bn ← {τ};14
B.add(bn);15

return B;16

denote the current batch with the shortest diagonal length
and the corresponding diagonal length, respectively (Lines 3–
4). Next, for each batch b in batch set B we add τ to b,
which is denoted by b′ (Line 6). We find the batch bmin that
has the minimum MBR diagonal length (Lines 7–9). If the
corresponding diagonal length does not exceed the threshold
θdiag , we assign τ to bmin and update B (Lines 10–112;
otherwise, we create a new batch bn with the single trajectory
τ and add bn to B (Lines 13–15). Finally, we return B as the
grouping result (Line 16).

E. Extension of Non-self Join

We proceed to explain how to extend our proposal to
support non-self join, where we have two semantic trajectory
sets T and Q (T 6= Q). We can extend the BFJoin algorithm to
support the case where T 6= Q in a straightforward manner by
maintaining inverted file for trajectories in T and Q separately.

Let ILT (w) and ILQ(w) be inverted lists of term w for
T and Q, respectively. We present our extension of BFJoin
algorithm that supports non-self join (Algorithm 7).

Algorithm 7: BFJoin (non-self)
Data: Inverted lists ILT (w) and ILQ(w), Similarity

threshold θ
Result: Join result of trajectories in ILT (w) and ILQ(w)
Result ← ∅;1
for each batch bT ∈ ILT (w) do2

for each batch bQ ∈ ILQ(w) do3
Run Lines 5–16 in Algorithm 5;4

return Result ;5

V. EXPERIMENTAL STUDY

A. Experiment Settings

1) Datasets: We use two datasets: New York trajectory
data (NTD)12 and Beijing trajectory data (BTD). The NTD
consists of a road network and 10M taxi trips. Each taxi trip
is a source-destination pair. We regard the shortest path from
the source to the destination as the trajectory of a trip. In
addition, we use a real POI data set that contains 19,969 POIs
in New York City13. Each POI has a spatial coordinate with
latitude and longitude and a text description. Because the POIs
may not match the trajectory points, we map each POI to
its nearest node in road network and regard the POI as an
object in a semantic trajectory. In BTD, we use a real taxi
trajectory data set collected by the T-drive project [42]. The
original trajectories in BTD are very long since each of them
contains all trips during a particular time period, which can be
a couple of days. We divide these trajectories into half-an-hour
sub-trajectories. The intent is to create trips with a realistic
length and duration. To augment each trajectory point with
text description, we randomly select a tweet from a collection
of real-life tweets that comprises 2 million tweets and associate
the text description of the tweet with the trajectory point.

2) Implementations: In the experiments, semantic trajec-
tories and indexing structures are memory resident. All algo-
rithms are implemented in Java and run on a cluster with 10
data nodes. Each node is equipped with two Intelr Xeonr
Processors E5-2620 v3 (2.4GHz) and 128GB RAM. We use
CPU time and the number of visited trajectories are our metrics
of performance evaluation. In multi-threaded execution, the
total runtime is the maximum runtime among all individual
threads.

We study the performance of the non-self joins, i.e., T 6=
Q, and self joins, i.e., T = Q, in Sections V-B and V-C,
respectively. Semantic trajectories in T and Q are selected
randomly from the datasets.

We evaluate the following three methods:

• STIF: Search with trajectory inverted file (Section III);

• STM: Semantic trajectory summarization with trajec-
tory pair pruning (Sections IV-B and IV-C);

• BFJoin: BFJoin algorithm with trajectory grouping
and batch filtering (Sections IV-D).

When evaluating the number of trajectory visits, we do not
report the performance of STM because STM and STIF incur
the same numbers of trajectory visits. The parameter settings
are listed in Table I.

B. Experiment Results of Non-self Join

1) Effect of the number of trajectories: Figures 8 and 9
show the effect of semantic trajectory cardinalities |T | and
|Q|, respectively, on the performance of the three algorithms.
Intuitively, a larger |T | (or |Q|) causes more trajectory pairs
to be evaluated, which denotes that both CPU time and the
number of visited trajectories are expected to be higher for

12https://publish.illinois.edu/dbwork/open-data/
13https://catalog.data.gov/dataset/points-of-interest-4aea0

0.5

1.0

1.5

2.0

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Number of Trajectories |T|

STIF
STM

BFJoin

(a) BTD

50K

100K

150K

200K

250K

50K 100K 150K 200K

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Number of Trajectories |T|

STIF
BFJoin

(b) BTD

1

10

100

1000

10000

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Number of Trajectories |T|

STIF
STM

BFJoin

(c) NTD

2M

4M

6M

8M

10M

1M 4M 7M 10M

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Number of Trajectories |T|

STIF
BFJoin

(d) NTD

Fig. 8. Effect of the number of trajectories |T |

0.5

1.0

1.5

2.0

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Number of Trajectories |Q|

STIF
STM

BFJoin

(a) BTD

50K

100K

150K

200K

250K

25K 50K 75K 100K

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Number of Trajectories |Q|

STIF
BFJoin

(b) BTD

1

10

100

1000

10000

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Number of Trajectories |Q|

STIF
STM

BFJoin

(c) NTD

1M

2M

3M

4M

0.5M 1.0M 1.5M 2.0M

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Number of Trajectories |Q|

STIF
BFJoin

(d) NTD

Fig. 9. Effect of the number of trajectories |Q|

TABLE I: PARAMETER SETTINGS
NTD BTD

Cardinality of tra-
jectories |T |

1,000,000–
10,000,000 / default
1,000,000

50,000–200,000 /
default 100,000

Cardinality of tra-
jectories |Q|

500,000–2,000,000 /
default 500,000

25,000–100,000 /
default 50,000

Similarity thresh-
old θ

1.8–1.95 / default
1.9

1.8–1.95 / default
1.9

Preference param-
eter α

0.3–0.9 / default 0.5 0.3–0.9 / default
0.5

MBR diagonal
threshold θdiag

5–20 / default 10 5–20 / default 10

Side length of grid
cell

0.5–2 / default: 1 0.5–2 / default: 1

Thread count 24–120 / default 24 24–120 / default 24

all algorithms. We see that STM performs substantially better
than STIF, which underscores the efficacy of our trajectory pair
pruning scheme (cf. Sections IV-B and IV-C). In addition, our
BFJoin algorithm further improves the CPU time by a factor
of 1.8–2.2 (cf. Figures 8(a), 8(c), 9(a), and 9(c)), showing
that a substantial proportion of trajectory pairs are filtered out
during the intra-list batch filtering and trajectory-batch filtering
phases. From Figure 8(c), we see that the BFJoin is able to
process 1 million semantic trajectories (|T | = 1 M and |Q| =
0.5 M) in 12.5 seconds and 10 million semantic trajectories
(|T | = 10 M and |Q| = 0.5 M) in 85 seconds on default 24
threads. In contrast, the STIF algorithm takes 133 and 1,190
seconds in processing 1 million and 10 million trajectories,
respectively.

2) Effect of similarity threshold θ: This set of experiments
investigates the effect of similarity threshold θ. Figure 10
shows the results when we vary θ. We see that STM and
BFJoin perform better when we increase the value of θ. In
contrast, the performance of STIF remains constant as we

vary θ. The reasons can be explained as follow. For STM
and BFJoin, a higher value of θ means that more trajectory
pairs may be pruned by our trajectory pair pruning scheme.
As a consequence, both CPU time and the number of visited
trajectories may decrease. In particular, we find that BFJoin
is more sensitive to θ in comparison to STM (Figure 10(c)).
This can be explained by the fact that a higher value of θ may
increase the pruning power of both intra-list batch filtering
and trajectory-batch filtering as more trajectory batches may
be filtered out when we increase θ.

3) Effect of preference parameter α: Figure 11 shows the
effect of varying the preference parameter α, which balances
the importance of spatial similarity versus text similarity. The
importance of the spatial similarity increases as we vary α
from 0.3 to 1.0. In particular, when α = 1.0, the similarity
between two trajectories is solely measured by the spatial
proximity. We see that the value of α has little influence on
the performances of STIF and STM. STIF has no pruning
scheme, and we need to compute the exact similarity of each
pair of semantic trajectories in an inverted list. Thus, its
performance is independent of α. Next STM has a trajectory
pair pruning scheme, which considers both the spatial and
textual aspects. The observed performance of STM suggests
that our trajectory pair pruning scheme is robust to imbalanced
weights between spatial and text similarity. In contrast, BFJoin
is moderately sensitive to α. The reason is that the intra-batch
filtering technique only considers the spatial aspect. Putting
less weight on spatial similarity (i.e., decreasing α) may lower
the power of intra-batch filtering. Nevertheless, our trajectory-
batch filtering technique, followed with intra-batch filtering,
takes both spatial and textual aspects into account. As a result,
the performance of BFJoin is still moderately better than STM
even if we set α to 0.3.

4) Effect of the side length of grid cell: We proceed to
evaluate the effect of varying the grid granularity in trajectory

0.2

0.4

0.6

0.8

1.0

1.80 1.85 1.90 1.95

R
u
n
ti

m
e

(s
)

Similarity threshold θ

STIF
STM

BFJoin

(a) BTD

50K

100K

150K

200K

250K

1.80 1.85 1.90 1.95

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Similarity threshold θ

STIF
BFJoin

(b) BTD

1

10

100

1000

1.80 1.85 1.90 1.95

R
u
n
ti

m
e

(s
)

Similarity threshold θ

STIF
STM

BFJoin

(c) NTD

0.3M

0.6M

0.9M

1.2M

1.5M

1.80 1.85 1.90 1.95

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Similarity threshold θ

STIF
BFJoin

(d) NTD

Fig. 10. Effect of spatio-textual similarity threshold θ

0.2

0.4

0.6

0.8

1.0

0.3 0.5 0.7 0.9 1.0

R
u
n
ti

m
e
 (

s)

Parameter α

STIF
STM

BFJoin

(a) BTD

50K

100K

150K

200K

0.3 0.5 0.7 0.9 1.0

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Parameter α

STIF
BFJoin

(b) BTD

1

10

100

1000

0.3 0.5 0.7 0.9 1.0

R
u
n
ti

m
e
 (

s)

Parameter α

STIF
STM

BFJoin

(c) NTD

0.3M

0.6M

0.9M

1.2M

1.5M

0.3 0.5 0.7 0.9 1.0

N
u
m

b
er

 o
f

v
is

it
ed

 t
ra

je
ct

o
ri

es

Parameter α

STIF
BFJoin

(d) NTD

Fig. 11. Effect of preference parameter α

0.1

0.2

0.3

0.4

0.5

0.5 1.0 1.5 2.0

R
u
n
ti

m
e

(s
)

Side length of grid cell

STM
BFJoin

(a) BTD

10

20

30

40

50

0.5 1.0 1.5 2.0

R
u
n
ti

m
e

(s
)

Side length of grid cell

STM
BFJoin

(b) NTD

Fig. 12. Effect of the side length of grid cell

pair pruning technique. From Figure 12, we find that both
STM and BFJoin exhibit the best performance when the
side length of grid cell is set between 1 to 1.5. A finer
granularity can improve the accuracy of the spatial similarity
upper bound between two trajectories (i.e., STS(τi, τj).ub,
see Section IV-C). However, the time cost of computing the
upper bound may increase accordingly. On the contrary, a
coarser granularity may improve the efficiency of upper bound
computation at the cost of lowering the accuracy.

5) Effect of MBR diagonal length threshold θdiag:

TABLE IV: AVERAGE MBR SIZE IN PROPORTION TO THE TOTAL
MAP SIZE

Dataset

MBR diagonal
length (km) 5 10 15 20

BTD 0.46% 1.5% 3.8% 6.1%
NTD 0.22% 0.83% 1.7% 2.8%

Figure 13 shows the effect of varying the MBR diagonal
length threshold, θdiag , which is used in Algorithm 6. Table
IV reports the average MBR size in proportion to the MBR
size of the entire road network when we vary θdiag from
5 km to 20 km. When θdiag is low, we may have a large

0.05

0.1

0.15

0.2

0.25

5 10 15 20

R
u
n
ti

m
e

(s
)

MBR diagonal threshold (km)

BFJoin

(a) BTD

10

20

30

40

5 10 15 20

R
u
n
ti

m
e

(s
)

MBR diagonal threshold (km)

BFJoin

(b) NTD

Fig. 13. Effect of MBR diagonal length threshold θdiag

number of “small” batches associated with each inverted list.
If we increase θdiag , we will have fewer trajectory batches.
However, the average MBR diagonal length of each group may
increase, which lowers the accuracy of the similarity upper
bound between two batches (Equation 6) and the similarity
upper bound between a trajectory and a batch (Equation 7).

0.5

1.0

1.5

2.0

24 48 72 96 120

R
u
n
ti

m
e
 (

s)

Thread count

STIF
STM

BFJoin

(a) BTD

1

10

100

1000

10000

24 48 72 96 120

R
u
n
ti

m
e
 (

s)

Thread count

STIF
STM

BFJoin

(b) NTD

Fig. 14. Effect of thread counts

6) Effect of thread counts: We study the effect of thread
count on the efficiency of the algorithms using large trajectory
data sets (|T | = 200 K and |Q| = 50 K for BTD, and |T |
= 10 M and |Q| = 500 K for NTD). Figure 14 show that
BFJoin consistently outperforms STIF by a factor of 8–12 and

outperforms STM by 50%–75% regarding CPU time. In BTD,
when we set the thread counts to 120, BFJoin is able to solve
the STS-Join problem over a collection of 200 K trajectories
in 0.1 second, while in NTD, BFJoin is able to solve the STS-
Join problem with 10M trajectories in 25 seconds.

C. Experiment Results of Self Join

0.1

1

10

100

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Number of Trajectories |T|

STIF
STM

BFJoin

(a) BTD

1

10

100

1000

10000

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Number of Trajectories |T|

STIF
STM

BFJoin

(b) NTD

Fig. 15. Effect of the number of semantic trajectories (self-join)

Figure 15 shows the runtime for the self joins when varying
the trajectory cardinality. Note that the thread counts are set
to 24 and 120 on BTD and NTD, respectively. The trends are
similar to those of the non-self join. The BFJoin outperforms
STIF by a factor of ∼8 and by a factor of ∼11 on BTD and
NTD, respectively.

VI. RELATED WORK

Spatial keyword trajectory query processing: A spatial
keyword trajectory query contains a set of query locations and
a set of keywords. Given a collection of semantic trajectories,
the query finds a subset of trajectories that are spatio-textually
similar to the query. The problem of efficient processing of
top-k spatial keyword trajectory query is studied by Cong et
al. [13] and Zheng et al. [47]–[49] and Shang et al. [34]. Given
a set T of semantic trajectories and a query q that includes a
set of query locations and a set of keywords, a top-k spatial
keyword trajectory query (TkSK) finds k semantic trajectories
from T that have the shortest minimum match distances to
q. In particular, the minimum match distance considers (1)
the distance between query locations and a trajectory and (2)
the number of POIs in the trajectory that cover the query
keywords. Besides, Han et al. [17] focus on processing spatial
keyword range trajectory query over semantic trajectory data.
The query consists of query ranges and a set of keywords. It
finds all trajectories that locate within the query ranges and
collectively contain query keywords.

These proposals cannot process the STS-Join due to three
reasons. (1) Different problems and matching schemes (query
vs. join): The spatial keyword trajectory query contains a set
of locations and a set of keywords, which means that the text
information is not associated with the locations. In contrast,
each object in a semantic trajectory contains both location
text information, indicating that they are associated with each
other. As a result, the query-trajectory matching scheme is
totally different our trajectory-trajectory matching scheme. (2)
Parallel processing: none of the above proposals are developed
for parallel processing. Hence, they are incapable of handling
very large semantic trajectory data sets.

Spatial keyword search and join: Given two collections of
geo-textual objects T and Q, the problem of spatial keyword
join is to find all pairs of objects respectively from R and
S that are both spatially close and textually similar. Liu et
al. [16], [20] and Hu et al. [19] develop a filter-and-refine
framework by utilizing spatial and textual signatures. Bouros et
al. [3] propose a batch processing mechanism that dynamically
partitions the geo-textual objects into groups according to their
spatial and textual information. Rao et al. [28] develop two
spatial-first and two text-first indexing schemes for efficient
spatial-textual joint search. Either grid or Quad-tree is used for
spatial indexing part. Zhang et al. [45] develop solutions for
spatio-textual join under MapReduce framework by reducing
the duplicates of data and the workload of the reducers.
However, these proposals focus on object-object matching,
which is different from our problem of trajectory-trajectory
matching. Additionally, spatial keyword search is extensively
investigated by existing studies [4], [7], [23], [24]. Given a
collection of static or a stream of dynamic geo-textual objects,
the problem is to find a subset of geo-textual objects (e.g., [25],
[26], [41]) or summarized results (e.g., [8], [9], [37], [46])
based on a query with both spatial and textual requirements.

Traditional trajectory search and join: Trajectory join
without text information is widely studied in literature [1],
[2], [6], [11], [14], [29]–[33], [35], [36], [38]. The applications
of trajectory similarity joins include trajectory near-duplicate
detection, data cleaning, ridesharing recommendation, and
traffic congestion prediction. Developing such joins typically
involves a definition step and a query processing step. First,
a similarity function is defined to evaluate the spatial and
temporal similarities between two trajectories. Second, an
efficient algorithm is developed to retrieve all trajectory pairs
whose similarity satisfies a pre-defined threshold. However,
these studies do not take text domain into consideration when
calculating the similarity between two trajectories.

VII. CONCLUSIONS

We studied a novel semantic trajectory similarity join (STS-
Join), which targets a number of useful applications such as
term-based trajectory duplicate detection, geo-text data clean-
ing, personalized ridesharing/carpooling recommendation, and
itinerary recommendation. To process the STS-Join efficiently,
we developed a number of trajectory pair filtering techniques
that took into account the parallel processing capabilities of
modern processors. We also proposed an efficient divide-and-
conquer algorithm for computing an upper bound of spatio-
textual similarity between two semantic trajectories. The per-
formance of the STS-Join was investigated through extensive
experiments on large trajectory data. Experimental result has
shown that the pruning power of our filtering techniques were
strong enough and our join algorithm was capable of achieving
high efficiency and scalability on massive-scale trajectory data.

ACKNOWLEDGEMENTS

This work was supported by the National Natural
Science Foundation of China (61932004, 61922054,
61872235, 61729202, 61832017, U1636210) and the
National Key Research and Development Program of China
(2018YFC1504504, 2016YFB0700502).

REFERENCES

[1] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient
trajectory joins using symbolic representations. In MDM, pages 86–93,
2005.

[2] P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory joins.
In GSN, pages 109–128, 2006.

[3] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins.
PVLDB, 6(1):1–12, 2012.

[4] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D. Wu,
and M. L. Yiu. Spatial keyword querying. In ER, volume 7532, pages
16–29. Springer, 2012.

[5] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query
processing: An experimental evaluation. PVLDB, 6(3):217–228, 2013.

[6] L. Chen, S. Shang, C. S. Jensen, B. Yao, Z. Zhang, and L. Shao. Effec-
tive and efficient reuse of past travel behavior for route recommendation.
In KDD, pages 488–498.

[7] L. Chen, S. Shang, C. Yang, and J. Li. Spatial keyword search: a survey.
GeoInformatica, 24(1):85–106, 2020.

[8] L. Chen, S. Shang, Z. Zhang, X. Cao, C. S. Jensen, and P. Kalnis.
Location-aware top-k term publish/subscribe. In ICDE, pages 749–760.

[9] L. Chen, S. Shang, K. Zheng, and P. Kalnis. Cluster-based subscription
matching for geo-textual data streams. In ICDE, pages 890–901.

[10] L. Chen, J. Xu, X. Lin, C. S. Jensen, and H. Hu. Answering why-not
spatial keyword top-k queries via keyword adaption. In ICDE, pages
697–708, 2016.

[11] Y. Chen and J. M. Patel. Design and evaluation of trajectory join
algorithms. In ACM-GIS, pages 266–275, 2009.

[12] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching
trajectories by locations: an efficiency study. In SIGMOD, pages 255–
266, 2010.

[13] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang. Efficient spatial
keyword search in trajectory databases. arXiv:1205.2880, pages 1–12,
2012.

[14] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of
large sets of moving object trajectories. In TIME, pages 79–87, 2008.

[15] C. Doulkeridis, A. Vlachou, D. Mpestas, and N. Mamoulis. Parallel and
distributed processing of spatial preference queries using keywords. In
EDBT, pages 318–329, 2017.

[16] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. SEAL: spatio-textual
similarity search. PVLDB, 5(9):824–835, 2012.

[17] Y. Han, L. Wang, Y. Zhang, W. Zhang, and X. Lin. Spatial keyword
range search on trajectories. In DASFAA, pages 223–240, 2015.

[18] H. Hu, Y. Liu, G. Li, J. Feng, and K. Tan. A location-aware pub-
lish/subscribe framework for parameterized spatio-textual subscriptions.
In ICDE, pages 711–722, 2015.

[19] H. Huiqi, L. Guoliang, B. Zhifeng, F. Jianhua, W. Yongwei, G. Zhiguo,
and X. Yaoqing. Top-k spatio-textual similarity join. IEEE Trans.
Knowl. Data Eng., 28(2):551–565, 2016.

[20] S. Liu, G. Li, and J. Feng. Star-join: spatio-textual similarity join. In
CIKM, pages 2194–2198, 2012.

[21] S. Liu, G. Li, and J. Feng. A prefix-filter based method for spatio-
textual similarity join. IEEE Trans. Knowl. Data Eng., 26(10):2354–
2367, 2014.

[22] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor search.
ACM Trans. Database Syst., 39(2):13:1–13:46, 2014.

[23] A. Magdy, L. Abdelhafeez, Y. Kang, E. Ong, and M. F. Mokbel.
Microblogs data management: a survey. VLDB J., 29(1):177–216, 2020.

[24] A. R. Mahmood and W. G. Aref. Scalable Processing of Spatial-
Keyword Queries. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2019.

[25] A. R. Mahmood, W. G. Aref, A. M. Aly, and M. Tang. Atlas: on the
expression of spatial-keyword group queries using extended relational
constructs. In SIGSPATIAL, pages 45:1–45:10.

[26] K. Mouratidis, J. Li, Y. Tang, and N. Mamoulis. Joint search by social
and spatial proximity. IEEE Trans. Knowl. Data Eng., 27(3):781–793,
2015.

[27] C. Parent, S. Spaccapietra, C. Renso, G. L. Andrienko, N. V. Andrienko,
V. Bogorny, M. L. Damiani, A. Gkoulalas-Divanis, J. A. F. de Macêdo,
N. Pelekis, Y. Theodoridis, and Z. Yan. Semantic trajectories modeling
and analysis. ACM Comput. Surv., 45(4):42:1–42:32, 2013.

[28] J. Rao, J. Lin, and H. Samet. Partitioning strategies for spatio-textual
similarity join. In BigSpatial@SIGSPATIAL, pages 40–49, 2014.

[29] S. Ray, A. D. Brown, N. Koudas, R. Blanco, and A. K. Goel. Parallel in-
memory trajectory-based spatiotemporal topological join. In Big Data,
pages 361–370. IEEE, 2015.

[30] S. Shang, L. Chen, C. S. Jensen, J. Wen, and P. Kalnis. Searching
trajectories by regions of interest. IEEE Trans. Knowl. Data Eng.,
29(7):1549–1562, 2017.

[31] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Trajectory similarity join in spatial networks. PVLDB, 10(11):1178–
1189, 2017.

[32] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Parallel trajectory similarity joins in spatial networks. VLDB J.,
27(3):395–420, 2018.

[33] S. Shang, L. Chen, K. Zheng, C. S. Jensen, Z. Wei, and P. Kalnis.
Parallel trajectory-to-location join. IEEE Trans. Knowl. Data Eng.,
31(6):1194–1207, 2019.

[34] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User
oriented trajectory search for trip recommendation. In EDBT, pages
156–167, 2012.

[35] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou. Per-
sonalized trajectory matching in spatial networks. VLDB J., 23(3):449–
468, 2014.

[36] Z. Shang, G. Li, and Z. Bao. DITA: distributed in-memory trajectory
analytics. In SIGMOD, pages 725–740, 2018.

[37] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen. Scalable top-k spatio-
temporal term querying. In ICDE, pages 148–159.

[38] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng. Signature-based
trajectory similarity join. IEEE Trans. Knowl. Data Eng., 29(4):870–
883, 2017.

[39] P. Tampakis, C. Doulkeridis, N. Pelekis, and Y. Theodoridis. Distributed
subtrajectory join on massive datasets. CoRR, abs/1903.07748, 2019.

[40] X. Wang, W. Zhang, Y. Zhang, X. Lin, and Z. Huang. Top-k spatial-
keyword publish/subscribe over sliding window. VLDB J., 26(3):301–
326, 2017.

[41] C. Yang, L. Chen, S. Shang, F. Zhu, L. Liu, and L. Shao. Toward
efficient navigation of massive-scale geo-textual streams. In IJCAI,
pages 4838–4845.

[42] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving
directions with taxi drivers’ intelligence. IEEE Trans. Knowl. Data
Eng., 25(1):220–232, 2013.

[43] C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted linear quadtree:
Efficient top k spatial keyword search. In ICDE, pages 901–912, 2013.

[44] D. Zhang, K. Tan, and A. K. H. Tung. Scalable top-k spatial keyword
search. In EDBT, pages 359–370, 2013.

[45] Y. Zhang, Y. Ma, and X. Meng. Efficient spatio-textual similarity join
using mapreduce. In WI-IAT, pages 52–59, 2014.

[46] K. Zhao, L. Chen, and G. Cong. Topic exploration in spatio-temporal
document collections. In SIGMOD, pages 985–998, 2016.

[47] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. W. Sadiq, and X. Zhou.
Approximate keyword search in semantic trajectory database. In ICDE,
pages 975–986, 2015.

[48] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient search
for activity trajectories. In ICDE, pages 230–241, 2013.

[49] K. Zheng, B. Zheng, J. Xu, G. Liu, A. Liu, and Z. Li. Popularity-
aware spatial keyword search on activity trajectories. World Wide Web,
20(4):749–773, 2017.

