
Parallel Shortest Path for Arbitrary Graphs�

Ulrich Meyer and Peter Sanders

Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken, Germany.

{umeyer,sanders}@mpi-sb.mpg.de.
http://www.mpi-sb.mpg.de/{∼umeyer,∼sanders}

Abstract. In spite of intensive research, no work-efficient parallel algo-
rithm for the single source shortest path problem is known which works
in sublinear time for arbitrary directed graphs with non-negative edge
weights. We present an algorithm that improves this situation for graphs
where the ratio dc/∆ between the maximum weight of a shortest path
dc and a “safe step width” ∆ is not too large. We show how such a step
width can be found efficiently and give several graph classes which meet
the above condition, such that our parallel shortest path algorithm runs
in sublinear time and uses linear work. The new algorithm is even faster
than a previous one which only works for random graphs with random
edge weights [10]. On those graphs our new approach is faster by a factor
of Θ(log n/ log log n) and achieves an expected time bound of O(log2 n)
using linear work.

1 Introduction

The single source shortest path problem (SSSP) is a fundamental and well-studied
combinatorial optimization problem with many practical and theoretical appli-
cations [1]. Let G = (V,E) be a directed graph, |V | = n, |E| = m, let s be a
distinguished vertex of the graph, and c be a function assigning a non-negative
real-valued weight to each edge of G. The objective of the SSSP is to compute,
for each vertex v reachable from s, the weight of a minimum-weight (“shortest”)
path from s to v, denoted by dist(v); the weight of a path is the sum of the
weights of its edges.

The theoretically most efficient sequential algorithm on directed graphs with
non-negative edge weights is Dijkstra’s algorithm [5]. Using Fibonacci heaps
its running time is given by O(n log n + m). Dijkstra’s algorithm maintains a
partition of V into settled, queued and unreached nodes and for each node v
a tentative distance tent(v); tent(v) is always the weight of some path from s
to v and hence an upper bound on dist(v). For unreached nodes, tent(v) =
∞. Initially, s is queued, tent(s) = 0, and all other nodes are unreached. In
each iteration, the queued node v with smallest tentative distance is selected
and declared settled and all edges (v, w) are relaxed, i.e., tent(w) is set to
� Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 461–470, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



462 Ulrich Meyer and Peter Sanders

min{tent(w), tent(v) + c(v, w)}. If w was unreached, it is now queued. It is well
known that tent(v) = dist(v), when v is selected from the queue.

The only known O(n logn + m) work parallel SSSP approach for arbitrary
directed graphs based on Dijkstra’s algorithm uses parallel relaxation of the
edges leaving a single node [7]. It has running time O(n log n) on a PRAM1.
All existing algorithms with sublinear execution time require Ω(n logn + m)
work (e.g., O(log2 n) time and O(n3(log logn/ logn)1/3) work [8]). Some less
inefficient algorithms are known for planar digraphs [15] or graphs with separator
decomposition [3].

Higher parallelism than in Dijkstra’s approach can be obtained by a version
of the Bellman-Ford algorithm [1] which considers all queued nodes with their
outgoing edges in parallel. However, it may remove nodes v from the queue for
which dist(v) < tent(v) and hence may have to reinsert those nodes until they
are finally settled. Reinsertions lead to additional overhead since their outgoing
nodes may have to be rerelaxed.

The present paper is based on the ∆-stepping algorithm of [10] which is a gen-
eralization of Dijkstra and Bellman-Ford: Tentative distances are kept in an array
B of buckets such that B[i] stores the unordered set {v ∈ V : v is queued and
tent(v) ∈ [i∆, (i + 1)∆)}. In each phase, the algorithm removes all nodes from
the first nonempty bucket and relaxes all light edges (c(e) ≤ ∆) of these nodes.
This may cause reinsertions into the current bucket. For the remaining heavy
edges, it is sufficient to relax them once and for all when a bucket finally re-
mains empty (see Figure 1). The parameter ∆ should be small enough to keep
the number of reinsertions small yet large enough to exhibit a useful amount of
parallelism.

1.1 Overview and Summary of New Results

The simple parallelization of the ∆-stepping in [10] relies on the particular prop-
erties of random graphs with random edge weights thus severely limiting its
usage. In Section 2, we introduce a parallel ∆-stepping algorithm which works
for arbitrary graphs in time O(dc

∆ l∆ logn) and work O(m + n∆+) whp2. The
parameters which depend on the graph class and the step width are explained in
Section 1.2. A further acceleration is achieved in Section 3 by actively introducing
shortcut edges into the graph thereby reducing the number of times each bucket
is emptied to at most two, i.e., the fastest efficient parallel execution time is now
O((l∆ + dc/∆) log n) while performing O(m+n′

∆+) work whp. In Section 4 it is
explained how a good value for the step width ∆ (which limits n′

∆+ to O(m))
can be determined efficiently and in parallel. Many of the PRAM results can
be adapted to distributed memory machines using techniques described in Sec-
tion 5. Finally, in Section 6 we summarize the results and apply them on different
1 We use the arbitrary CRCW PRAM model (concurrent read concurrent write parallel

random access machine) [9] which specifies that an adversary can choose which access
out of a set of conflicting write accesses is successful.

2 A result holds with high probability (whp) in the sense that the respective bound is
met with probability at least 1 − n−β for any constant β > 0.



Parallel Shortest Path for Arbitrary Graphs 463

for each v ∈ V do tent(v) := ∞
relax(s, 0); (* Source node at distance 0 *)
while ¬isEmpty(B) do (* Some queued nodes left *)

i := min{j > i : B[j] �= ∅} (* Smallest nonempty bucket *)
R := ∅ (* No nodes deleted for bucket B[i] yet *)
while B[i] �= ∅ do (* New phase *)

Req := findRequests(B[i], light) (* This may reinsert nodes *)
R := R ∪ B[i]; B[i] := ∅ (* Remember deleted nodes *)
relaxRequests(Req)

Req := findRequests(R, heavy) (* This may reinsert nodes *)
relaxRequests(Req)

Function findRequests(V ′, kind : {light, heavy}) : set of Request
return {(w, tent(v) + c(v, w)) : v ∈ V ′ ∧ (v, w) ∈ Ekind)}

Procedure relaxRequests(Req) for each (w, x) ∈ Req do relax(w, x)

Procedure relax(w, x) (* Shorter path to w? *)
if x < tent(w) then (* Yes: decrease-key or insert *)

B[�tent(w)/∆] := B[�tent(w)/∆] \ {w} (* Remove if present *)
B[�x /∆] := B[�x /∆] ∪{w}
tent(w) := x

Fig. 1. Sequential ∆-stepping.

graph classes. Although our new algorithm is more general than the specialized
previous algorithm [10], it turns out to be a factor of Θ(log n/ log log n) faster
on random graphs. It has execution time O(log2 n) using linear work.

1.2 Notation and Basic Facts

We have already used dc as an abbreviation for the maximum weight of a shortest
path, i.e., dc := max{dist(v) : dist(v) < ∞}. Call an edge disjoint path with
weight at most ∆ a ∆-path. Let C∆ denote the set of all node pairs 〈u, v〉
connected by some ∆-path (u, . . . , v) and let n∆ := |C∆|. Similarly, define C∆+

as the set of triples 〈u, v′, v〉 such that 〈u, v′〉 ∈ C∆ and (v′, v) is a light edge and
let n∆+ := |C∆+|. Let n′

∆ (n′
∆+) denote the number of simple ∆-paths (plus a

light edge). To simplify notation, we exclude very extreme graphs and assume
n = O(m), n∆ = O(n∆+) and n′

∆ = O(n′
∆+). The maximum ∆-distance l∆ is

defined to just exceed the number of edges needed to connect any pair 〈u, v〉 ∈ C∆

by a path of minimum weight, i.e.,

l∆ = 1 + max
〈u,v〉∈C∆

min{|A| : A = (u, . . . , v) is a minimum-weight ∆-path} .

Similarly, let l′∆ denote the number of edges in the longest simple ∆-path.
The graph theoretic results from [10] are relatively easy to generalize to see

that the number of phases performed by ∆-stepping is bounded by O(dc

∆ l∆) and
that the number of reinsertions (rerelaxations) is at most n∆ (n∆+). For details
refer to the full paper [11] which is available electronically.

2 Parallelization

In this section we develop a first parallelization of ∆-stepping which works for
arbitrary graphs and prove the following bound:



464 Ulrich Meyer and Peter Sanders

Theorem 1. The single source shortest path problem for directed graphs with
n nodes, m edges, maximum path weight dc, maximum ∆-distance l∆ and n∆+

defined as in Section 1.2 can be solved on a CRCW PRAM in time O(dc

∆ l∆ logn)
and work O(m + n∆+) whp.

Initialization, loop control, deleting nodes and generating a set ‘Req’ of node-
distance pairs to be relaxed (we call these requests) are easy to do in parallel if the
nodes are randomly assigned to PUs and if a global array stores the assignment.

The most difficult part is to schedule PUs for actually performing the re-
quests: several relaxations can occur for one node in a phase, and the number
of such conflicting relaxations can vary arbitrarily and in an unpredictable way.
On CRCW-PRAMs, we can do the PU scheduling efficiently by grouping the
requests according to the addressed nodes using the following lemma:

Lemma 1. Semi-sorting k records with integer keys, i.e., permuting them into
an array of size k such that all records with equal key form a consecutive block,
can be performed in time O(k/p+ logn) using p PUs of a CRCW-PRAM whp.

Proof. First find a perfect hash function h : V → 1..ck for an appropriate
constant c. Using the algorithm of Bast and Hagerup [2] this can be done in
time O(k/p+ logn) (and even faster) whp. Subsequently, we apply a fast, work
efficient sorting algorithm for small integer keys such as the one by Rajasekaran
and Reif [13] to sort by the hash values.

Once the set of requests ‘Req’ is grouped by receiving nodes w, we can
use prefix sums to schedule �p |Req(w)| / |Req|� PUs for blocks of size at least
|Req| /p, and to assign smaller groups with a total of up to |Req| /p requests to
individual PUs. The PUs concerned with a group collectively find a request with
minimum distance in time O(|Req| /p+log p) and then relax it in constant time.

Summing the work and time for all l∆dc/∆ phases yields the desired bound.

3 Finding Shortcuts

In the analysis of the number of phases for our algorithms we bounded the
maximum number of iterations, l∆, that are required until the current bucket
under consideration remains finally empty. It was already noticed in [6] that only
one iteration per bucket is needed if the bucket width is smaller than any edge
weight. No reinsertions occur in that case but in the presence of very small edge
weights, the number of buckets, dc/∆, might become very large due to the small
∆. However, l∆ can be reduced to 2 by explicitly introducing a shortcut edge
(u, v) for each node pair connected by a ∆-path.

What interests us here is how to find these edges in parallel and how the
search itself can be performed in a load balanced way. Although, we do not
know a general algorithm doing that using O(m+ n∆+) work, we can solve the
problem if the number of simple ∆-paths is not too large. More precisely, the
remainder of this section is devoted to establishing the following Theorem:



Parallel Shortest Path for Arbitrary Graphs 465

Theorem 2. There is an algorithm which inserts an edge (u, v) with weight
c(u, v) = dist(u, v) for each shortest path (u, . . . , v) with dist(u, v) ≤ ∆ us-
ing O(l′∆ logn) time and O(m + n′

∆+) work on a CRCW PRAM whp. (Where
dist(u, v) denotes the weight of a shortest path from u to v.)

Applying the results from Section 2 we get:

Corollary 1. The single source shortest path problem for directed graphs with n
nodes, m edges, maximum path weight dc and n′

∆+, l′∆ as defined in Section 1.2
can be solved on a CRCW PRAM in time O((l′∆ + dc

∆ ) logn) and work O(m +
n′

∆+) whp.

Figure 2 outlines a routine which finds shortcuts by applying a variant of the
Bellman-Ford algorithm to all nodes in parallel. It solves an all-to-all shortest
path problem constrained to ∆-paths. The shortest connections found so far
are kept in a hash table of size O(n′

∆+) (we can use dynamic hashing if we do
not know a good bound for n′

∆+). This table plays a role analogous to that of
tent(·) in the main routine of ∆-stepping. The set Q stores active connections,
i.e., triples (u, v, y) where y is the weight of a shortest known path from u to v
and where paths (u, . . . , v, w) have not yet been considered as possible shortest
connections from u to w with weight y + c(v, w). In iteration i of the main
loop, the shortest connections using i edges are computed and are then used
to update ‘found’. Applying similar techniques as before, this routine can be
implemented to run in O(l′∆ logn) parallel time using O(m + n′

∆+) work: We
need l′∆ iterations each of which takes time O(log n) and work O(|Q′|) whp. The
overall work bound holds since for each simple ∆-path (u, . . . , v), 〈u, v〉 can be
a member of Q only once. Hence,

∑
i |Q| ≤ n + n′

∆ and
∑

i |Q′| ≤ n+ n′
∆+.

Function findShortcuts(∆) : set of weighted edge
found : HashArray[V × V ] (* return ∞ for undefined entries *)
Q := {(u, u, 0) : u ∈ V } (* (start, destination, weight) *)
Q′ : MultiSet
while Q �= ∅ do

Q′ := ∅
for each (u, v, x) ∈ Q dopar

for each light edge (v, w) ∈ E dopar
Q′ := Q′ ∪ {(u, w, x + c(v, w))}

semi-sort Q′ by common start and destination node
Q := {(u, v, x) : x = min{y : (u, v, y) ∈ Q′}}
Q := {(u, v, x) ∈ Q : x ≤ ∆ ∧ x < found[(u, v)]}
for each (u, v, x) ∈ Q dopar found[(u, v)] := x

return {(u, v, x) : found[(u, v)] < ∞}

Fig. 2. CRCW-PRAM routine for finding shortcut edges

4 Determining ∆

In the case of arbitrary edge weights it is necessary to find a step width ∆ which
is large enough to allow for sufficient parallelism and small enough to keep the



466 Ulrich Meyer and Peter Sanders

algorithm work-efficient. Although we expect that application specific heuristics
can often give us a good guess for ∆ relatively easily, for a theoretically satisfying
result we would like to be able to find a good ∆ systematically.

We now explain how this can be done if the adjacency lists have been
preprocessed to be partially sorted : Let ∆0 := mine∈E c(e) and assume3 that
∆0 > 0. The adjacency lists are organized into blocks of edges with weight
2j∆0 ≤ c(e) < 2j+1∆0 for some integer j. Blocks with smaller edges precede
blocks with larger edges.4

Theorem 3. Let n′
∆, n′

∆+ and l′∆ be defined as in Section 1.2 and consider
an input with partially sorted adjacency lists. For any constant α, there is an
algorithm which identifies a step width ∆, such that n′

∆+ ≤ αm and n′
2∆+ > αm,

and which can be implemented to run in O((l′∆ + log ∆
∆0

) logn) time using O(m)
work whp.

The basic idea is to reuse the procedure findShortcuts(∆) of Figure 2 but
to divide the computation into rounds. In round i, 0 ≤ i ≤ log maxe∈E c(e)

∆0
), we

set ∆cur = 2i∆0 and find all connections (u, v, x) with ∆cur ≤ x < 2∆cur. In
order to remain work efficient, a number of additional measures are necessary
however. We now outline the changes compared to the routine ‘findShortcuts’
from Figure 2. Most importantly, we have a bucketed todo-list T . T [i] stores
entries (u, v, x, b) where (u, v, x) stands for a connection from u to v with weight
x, and b points to the first block in the adjacency list of v which may contain
edges (v, w) with 2i∆0 ≤ x+c(v, w) < 2·2i∆0. (Note that the number of buckets
may be arbitrarily large. In this case, we store the buckets in a dynamic hash
table and only initialize those buckets which actually store elements.)

At the beginning of round i, for each entry (u, v, x, b) of T [i], the adjacency
list of v is scanned beginning at block b until a block is encountered which
cannot produce any candidate connections for bucket i. A new entry of the todo
list is produced for the first bucket k > i for which it can produce candidate
connections. The candidate connections found are used to initialize Q′.

Both this initialization step and the iteration on Q can produce candidate
connections whose weights reach into bucket i+1. After removing duplicates and
longer connections than found before, we therefore split the remaining candidates
into the new content of Q and a set Qnext storing connections with weight in
bucket i+ 1.

At the end of round i, when Q finally remains empty, we create new entries
in the todo-lists for all connections newly encountered in round i. In order to do
that, we keep track of all new entries into ‘found’ using two sets S and Snext for
connections with weights in bucket i and i+ 1, respectively. Qnext and Snext are
used to initialize Q and S in the next round respectively.

3 This assumption can be removed.
4 This preprocessing is trivially parallelizable on a node-by-node basis, we get a good

parallel preprocessing algorithm for the case p = O(n/d) if d is the maximum out-
degree of a node.



Parallel Shortest Path for Arbitrary Graphs 467

The total number of connection-edge pairs considered is monitored so that the
whole procedure can be stopped as soon as it is noticed that this figure exceeds
αm. At this time, the entries of ‘found’ constitute at least all simple (∆cur/2)-
paths. Thus, taking ∆ := ∆cur/2 as the final step width, it is guaranteed that
the number of reinsertions and rerelaxations in a subsequent application of the
∆-stepping will be bounded by O(m). On the other hand, n′

2∆+ > αm.
Using an analogous analysis as for the function ‘findShortcuts’ it turns out

that the search for ∆ can be implemented to run in O((l′∆ + log ∆
∆0

) logn) time
using O(m) work where l′∆ denotes the number of edges in the longest simple
∆-path.

5 Adaptation to Distributed Memory Machines

In this section we consider the following distributed memory model: There are
p processing units (PUs) numbered 0 through p − 1 which are connected by
a communication network. Let Trouting(k) denote the time required to route
k constant size messages per PU to random destinations. Let Tcoll(k) bound
the time to perform a (possibly segmented) reduction or broadcast involving a
message of length k and assume that Tcoll(x)+Tcoll(y) ≤ Tcoll(1)+Tcoll(x+y),
i.e., concentrating message length does not decrease execution time. Note, that
on powerful interconnection networks like multiported hypercubes we can achieve
a time O(log p+ k) whp for Trouting(k) and Tcoll(k).

So far it is unknown how to efficiently implement the linear work semi-sorting
procedure for load-balancing on distributed memory5. However, if shortcuts are
present we now explain how this problem can be circumvented. We also assume
that the nodes can be randomly assigned to PUs using a constant time hash
function6 ind(·) and that we know indegree(v) when looking at an edge (u, v).

Theorem 4. Given a directed graph G with n nodes, m edges, maximum path
weight dc and n∆+, l∆ as defined in Section 1.2. Under the assumptions given
above, the single source shortest path problem can be solved in time

O
(
m+ Trouting(m) + Tcoll(m) +

dc

∆
(Tcoll(1) + Trouting(1))

)

on a distributed memory machine with p PUs for m = m+n∆+
p and any given

source node s whp.

We first simplify the search algorithm to exploit the fact that in the presence
of shortcuts, classifying edges as light or heavy is no longer important for the
5 The preprocessing can be done (somewhat inefficiently) by implementing semi-

sorting using ordinary sorting or using a slower yet work efficient algorithm re-
quiring O(Trouting(n

ε)) time for any positive constant ε. Both alternatives yield a
work-efficient algorithm for powerful interconnection networks if the preprocessing
overhead can be amortized over sufficiently many source nodes.

6 This is a common assumption, e.g., in efficient PRAM simulation algorithms.



468 Ulrich Meyer and Peter Sanders

shortest path search itself. By explicitly treating intra-bucket edges (source and
target reside in the same bucket) first, each edge is relaxed at most once: After
buckets 0 through i− 1 have been emptied, a single relaxation pass through the
edges reaching from B[i] into B[i] suffices to settle all nodes now in B[i]. After
that, B[i] can be emptied by relaxing all edges reaching out of B[i] once.

The two most difficult parts are (1) generating the set of requests, i.e. iden-
tifying the set of edges that are to be relaxed and (2) assigning the requests
to their nodes and scheduling the PUs for performing the relaxations. We start
with (1):

In a distributed memory setting we cannot dynamically schedule outgoing
edges between the PUs in the same way as we did for PRAMs. Scanning ad-
jacency lists to generate requests is therefore load balanced using a static as-
signment of edges to PUs: An adjacency list of size outdegree(v) is collectively
handled by an out-group of PUs. Out-groups are selected as follows: W.l.o.g.,
assume that p is a power of two minus one and the PUs are logically arranged as
a complete binary tree. If outdegree(v) > p then all PUs participate in v’s out-
group. Otherwise, a subtree rooted at a random PU is chosen which is just large
enough to accommodate one edge per PU, i.e., it contains 2�log(outdegree(v)+1)�−1
nodes. Requests for a bucket can now be generated by first sending the tentative
distance of the nodes in B[i] to the roots of out-groups responsible for them.
(We will later see where this information comes from.) Then, the PUs pass all
the node-distance pairs they have received down the tree in a pipelined fashion
and do the same for the distances of the nodes received from above.

Now consider a fixed leaf PU j for a fixed iteration of the algorithm. (Since
interior tree-nodes pass all their work downwards, interior PUs have no more
work to do than a leaf node.) LetXi := 1 if PU j is part of the out-group of a node
i expanded in this iteration and Xi = 0 otherwise. We have P [Xi = 1] = 2−h(i)

if the root of the out-group of node i is h(i) levels away from the root of the
PU-tree. The total number of nodes PU j has to work on is Y :=

∑k
i=1Xi if k

is the number of nodes expanded in the current iteration and E[Y ] =
∑

i 2−h(i).
By definition of the size of subtrees, we get E[Y ] = O(K/p) if K is the total
number of edges leaving nodes expanded in this iteration. Using a Chernoff
bound with nonuniform probabilities [12, Theorem 4.1], it is now easy to see
that Y = O(K/p+logn) whp. Since the communication pattern is just a slightly
generalized form of a broadcast, distributing the tentative distances can be done
in time O(Tcoll(K/p + logn)) whp. Summing over all iterations we get time
O(Tcoll(m/p + logn) + Tcoll(1)dc/∆). Generating the actual request values is
then possible using local computations only.

Now we tackle problem (2): how to assign the requests to nodes and schedule
PUs for performing the relaxations. The idea for arbitrary graphs is to postpone
the relaxation of an edge until the latest possible moment – just before the
bucket of the target node is emptied. Since edges are relaxed only once (recall
that we assume the presence of short-cuts), it pays to allocate an in-group of
size 2�log(indegree(v)+1)� − 1 for node v analogously to the way out-groups are
allocated. Each PU maintains an additional bucket structure Bq for the nodes



Parallel Shortest Path for Arbitrary Graphs 469

for which it is part of the in-group. Requests are routed to a preassigned position
in the in-group, but this information is only used to place the node into Bq.
So, after iteration i − 1 is computed, the content of B[i] is not yet known.
Rather, we first have to find B[i] =

⋃
Bq[i]. This can be done locally for each

in-group using a pipelined tree operation which is the converse of the operation
used for broadcasting in the out-groups. (Each PU maintains a hash table of
nodes already passed up the tree.) Then, the result is broadcast to all PUs
in the in-groups so that from now on, redundant entries of nodes in buckets
beyond B[i] can be deleted. Also, edges which have not received a request yet are
marked as superfluous. Requests ending up there in later iterations will simply
be discarded. Finally, the actual global minima are computed using another
pipelined reduction operation. Now, the heads of the in-groups are ready to
send the tentative distances of nodes in B[i] to the heads of the out-groups. The
analysis of these tree-operations is analogous the analysis for the out-groups.

6 Conclusion

The parameters governing the performance of ∆-stepping are the maximum path
weight dc and the largest step width ∆ which ensures that there is only a linear
number of ∆-connections (plus a light edge), n∆ (n∆+). If we want to introduce
shortcuts efficiently, the choice of ∆ must also bound the number of simple ∆-
paths (plus a light edge), n′

∆ (n′
∆+). For parallelization, the corresponding l′∆

has some influence too: On a CRCW PRAM our new algorithm with shortcut
insertion needs O((l′∆ + dc

∆ ) logn) time and O(m + n′
∆+) work whp.

We now instantiate the result for some input graph classes. As a role model
we look at general graphs with maximum in-degree and out-degree d and random
edge weights, uniformly distributed7 in the interval [0, 1]. For ∆ = Θ(1/d) we
have l′∆ = O(logn/ log logn) whp and E[n∆+] ≤ E[|P2∆|] = O(n) [10]. Thus, we
get expected parallel time O((ddc + logn) logn) and linear work. For example,
for r-dimensional meshes with random edge weights we have dc = O(n1/r) and
hence execution time O(n1/r logn) using linear work for any constant r.

For random graphs from G(n, d/n), i.e., with edge probability d/n and ran-
dom edge weights the maximum path weight is dc = O(logn/d) whp [10]. Thus,
with our new approach we get an O(log2 n) parallel time linear expected work
PRAM algorithm. This is a factor Θ(log n/ log logn) better than the best pre-
viously known work efficient algorithm from our earlier paper [10].

Another example are random geometric graphs Gn(r) where n nodes are
randomly placed in a unit square and each edge weight equals the Euclidean
distances between the two involved nodes. An edge (u, v) is included if the Eu-
clidean distance between u and v does not exceed the parameter r ∈ [0, 1].
Random geometric graphs have been intensively studied since they are consid-
ered to be a relevant abstraction for many real world situations [14, 4]. Taking
r = Θ(

√
log(n)/n) results in a connected graph with m = Θ(n log n) edges and

7 The results carry over to some other random distributions, too.



470 Ulrich Meyer and Peter Sanders

dc = O(1) whp. For ∆ = r the graph already comprises all relevant ∆-shortcuts
such that we do not have to explicitly insert them. Consequently our PRAM al-
gorithm runs in O((1/r) log n) parallel time and performs O(n+m) work whp.

Acknowledgements

We would like to thank in particular Hannah Bast, Kurt Mehlhorn and Volker
Priebe for many fruitful discussions and suggestions. Hannah Bast also pointed
out the elegant solution of using a perfect hash function for semi-sorting re-
quests.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows :
theory, algorithms and applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] H. Bast and T. Hagerup. Fast and reliable parallel hashing. In 3rd Symposium on
Parallel Algorithms and Architectures, pages 50–61, 1991.

[3] Edith Cohen. Efficient parallel shortest-paths in digraphs with a separator de-
composition. Journal of Algorithms, 21(2):331–357, September 1996.

[4] J. Diaz, J. Petit, and M. Serna. Random geometric problems on [0, 1]2. In RAN-
DOM: International Workshop on Randomization and Approximation Techniques
in Computer Science, volume 1518, pages 294–306. Springer, 1998.

[5] E.W. Dijkstra. A note on two problems in connexion with graphs. Num. Math.,
1:269–271, 1959.

[6] E. A. Dinic. Economical algorithms for finding shortest paths in a network. In
Transportation Modeling Systems, pages 36–44, 1978.

[7] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An
alternative to fibonacci heaps with applications to parallel computation. Commu-
nications of the ACM, 31, 1988.

[8] Y. Han, V. Pan, and J. Reif. Efficient parallel algorithms for computing all pair
shortest paths in directed graphs. In Proceedings of the 4th Annual Symposium
on Parallel Algorithms and Architectures, pages 353–362, San Diego, CA, USA,
June 1992. ACM Press.

[9] Joseph Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, Reading,
1992.

[10] U. Meyer and P. Sanders. ∆-stepping: A parallel shortest path algorithm. In
6th European Symposium on Algorithms (ESA), number 1461 in LNCS, pages
393–404. Springer, 1998.

[11] U. Meyer and P. Sanders. ∆-stepping: A parallelizable shortest path algorithm.
http://www.mpi-sb.mpg.de/~sanders/papers/long-delta.ps.gz, 1999.

[12] J. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[13] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM Journal on Computing, 18(3):594–607, 1989.

[14] R. Sedgewick and J. S. Vitter. Shortest paths in euclidean graphs. Algorithmica,
1:31–48, 1986.

[15] Jesper Larsson Träff and Christos D. Zaroliagis. A simple parallel algorithm for
the single-source shortest path problem on planar digraphs. In Parallel algorithms
for irregularly structured problems : Intern. workshop (IRREGULAR-3), volume
LNCS 1117, pages 183–194S., Berlin, 1996. Springer.

http://www.mpi-sb.mpg.de/~sanders/papers/long-delta.ps.gz

	Introduction
	Overview and Summary of New Results
	Notation and Basic Facts

	Parallelization
	Finding Shortcuts
	Determining $Delta $
	Adaptation to Distributed Memory Machines
	Conclusion

