
Parallel Simulated Annealing

for the Job Shop Scheduling Problem

Wojciech Bożejko�, Jaros�law Pempera, and Czes�law Smutnicki

Institute of Computer Engineering, Control and Robotics
Wroc�law University of Technology

Janiszewskiego 11-17, 50-372 Wroc�law, Poland
wojciech.bozejko@pwr.wroc.pl, jaroslaw.pempera@pwr.wroc.pl,

czeslaw.smutnicki@pwr.wroc.pl

Abstract. This paper describes two parallel simulated annealing algo-
rithms for the job shop scheduling problem with the sum of job comple-
tion times criterion. Some properties of the problem associated with the
block theory have been presented and discussed. These properties allow us
to introduce the effective neighborhood based on the adjacent swap type
moves. In this paper, an original method for parallel calculation of opti-
mization criterion value for set of solutions, recommended for the use in
metaheuristics with single- and multiple- search trajectories is proposed.
Additionally, the vector calculation method, that uses multiple mathe-
matical instructions MMX supported by suitable data organization, is
presented. Properties of parallel calculations are empirically verified on
the PC with Intel Core 2 Duo processor on Taillard’s benchmarks.

Keywords: parallel metaheuristics, scheduling, optimization, job shop,
simulated annealing.

1 Introduction

Job shop scheduling problems follow from many real cases, which means that
they own good practical applications as well as the industrial significance. Be-
cause of NP-hardness of the problem, despite the criteria value form, heuristics
and metaheuristics are recommended as “the most reasonable” solution methods.
The majority of these methods refers to the makespan minimization. We mention
here, as an example, a few recent studies: Jain, Rangaswamy, and Meeran [7];
Pezella and Merelli [11]; Grabowski and Wodecki [4]; Nowicki and Smutnicki [10].

The job shop problem with general regular criteria is commonly regarded as
harder than the job shop problem with the makespan criterion, mainly because
of the lack of special properties that would reinforce the solution algorithm.
Moreover, till now, there have not been discovered for the problem any sequen-
tial accelerators (properties that can speed up computations throughout skillful
aggregation and decomposition of calculations). In this context, parallelization

� Corresponding author.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 631–640, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



632 W. Bożejko, J. Pempera, and C. Smutnicki

techniques are the only methods allowing ones, practical instances in reasonable
time to be solved. Therefore they are especially desirable.

Some heuristics algorithms based on dispatching rules for the considered prob-
lem are presented in papers of Holthaus and Rajendran [6], Bushee and Svestka
[3]. For the other regular criteria such as the total tardiness there are proposed
metaheuristics based on various local search techniques: simulated annealing [5],
[14], tabu search [2] and genetic search [8].

In this paper we propose a genuine method of cost function computing in
parallel by using multi-processor system as well as a single-processor system with
multiple mathematical instructions MMX. The obtained results can be applied
directly to modern PCs equipped with a few processors, multi-core processors
or processors with multiple mathematical instructions.

2 The Problem

We consider a manufacturing system with any structure consisting of m ma-
chines of a unit capacity given by the set M = {1, . . . , m}. In the system, there
are processed n jobs given by set J = {1, 2, ..., n}. The job j-th requires the
sequence of nj operations indexed consecutively (lj−1 + 1, ..., lj−1 + nj), where
lj =

∑j
i=1 ni, is the total number of operations of the first j jobs, j = 1, 2, ..., n,

(l0 = 0), and o =
∑n

i=1 oi. The operation x is to be processed on the machine
μx ∈ M during an uninterrupted processing time px > 0, x ∈ O = {1, 2, . . . , o}.
Our aim is to find the schedule under the following constraints: (1) each machine
can process at most one product at a time, (2) each product can be processed
by at most one machine at a time, (3) operations cannot be preempted.

The set of operations O can be decomposed into subsets Ok = {x ∈ O :
μx = k}, each of them contains operations to be processed on the machine k,
k ∈ M . Let the permutation πk defines the processing order of operations from
the set Ok on machine k, and let Πk be the set of all permutations on Ok. The
processing order of all operations on machines is determined by the m-tuple
π = (π1, π2, ..., πm), where π ∈ Π1 × Π2 × ... × Πm.

For any operation j ∈ O and processing order given by π we define the machine
predecessor/successor sj , sj as well as the technological predecessor/successor
tj , tj , according to the expressions below

sπi(j)
=

⎧
⎨

⎩

0 j = 1

πi(j − 1) j = 2, . . . , nj ,
sπi(j)

=

⎧
⎨

⎩

πi(j + 1) j = 1, . . . , nj − 1,

0 j = nj ,

tπi(j) =

⎧
⎨

⎩

0 j = li−1 + 1, i ∈ J

j − 1 otherwise,
tπi(j) =

⎧
⎨

⎩

0 j = li, i ∈ J

j + 1 otherwise,

Note that if the index of predecessor of the operation j is 0, then j is the
first operation of proper job or/and the first operation processed on the proper
machine. Similarly, if the index of successor of the operation j is 0 then j is the
last operation of proper job or/and the last operation processed on the proper



Parallel Simulated Annealing for the Job Shop Scheduling Problem 633

machine. The machine predecessor/successor depends on π, but for simplicity in
a notation we will not express it explicitly.

The schedule for the fixed processing order π is described by event vectors
S = (S1, . . . , So) and C = (C1, . . . , Co), where values Sj and Cj denote the
starting time of operation j and its completion time. The schedule has to satisfy
the following constraints

Ctj
≤ Sj tj �= 0, j ∈ O, (1)

Csj
≤ Sj sj �= 0, j ∈ O, (2)

Cj = Sj + pj j ∈ O. (3)

Because of equation (3), the schedule can be represented by a single event vector,
and we use C to this aim. The schedule C, for the fixed π, is feasible if it satisfies
conditions (1)–(3). The constraint (1) follows from the technological processing
order of operations inside job, whereas (2) from the unit capacity of machines.
Our aim is to find the feasible processing order π∗ ∈ Π , so that

Csum(π∗) = min
π∈Π

Csum(π), (4)

where Csum(π) =
∑n

i∈OL Ci is the sum of jobs completion times and OL = {i :
i = li, i ∈ O} is the set of the last operations of jobs.

It is convenient to represent the processing order π and the schedule C by
using the following direct graph G(π) = (O, R ∪ E(π)) with a set of nodes O
and a set of arcs R ∪ E(π), where R = {(tj , j) : tj �= 0, j ∈ O} E(π) = {(sj , j) :
sj �= 0, j ∈ O}. The node j ∈ O represents the j-th operation of a certain job
and has the weight pj . Arcs from the set R represent the processing order of
operations in jobs and correspond to the constraint (1), whereas arcs from set
E(π) represent the processing order of operations on machines and correspond
to the constraint (2). All arcs from both subsets have the weight zero. Let us
start from some well-known facts.

Property 1. The processing order π is feasible if G(π) does not contain a cycle.

Consider the graph G(π) for a feasible π. Denote by Ui the longest path (i.e.
sequence of nodes) going to node i and by di the length (including pi) of Ui,
i ∈ O.

Property 2. For each feasible processing order π, there exists a feasible schedule
C of the problem, such that Ci = di and each Ci is as small as possible, i ∈ O.

The path Ui can be written as Ui = (ui(1), ui(2), . . . , ui(wi)), where ui(x) ∈ O,
1 ≤ x ≤ wi, and wi is the number of nodes in this path. Clearly, ui(wi) = i. Each
path Ui, i ∈ O can naturally be decomposed into several specific subpaths, so
that each subpath contains nodes linked by the same type of arcs. We define block
as the maximal subsequence B∗

i = (ui(g∗i ), ..., ui(h∗
i )) of Ui such that μui(g∗

i ) =
μui(g∗

i +1) = . . . = μui(h∗
i ) and (ui(j), ui(j + 1)) ∈ E(π) for all i = g∗i , . . . , h∗

i − 1,



634 W. Bożejko, J. Pempera, and C. Smutnicki

g∗i < h∗
i . A block corresponds to a sequence of operations (jobs) processed on the

same machine without inserted an idle time. In further considerations we will be
interested only in non-empty blocks, i.e. containing at least two operations.

Based on the properties of the job shop problem with the makespan criterion
[4] one can prove the following properties of the problem.

Theorem 1. Let B1
i , B2

i , . . . , Bri

i be decomposition of Ui, i ∈ OL for the acyclic
graph G(π). If the acyclic graph G(α) has been obtained from G(π) through the
modifications of π so that Csum(α) < Csum(π), then in G(α) at least one opera-
tion x ∈ Bk

i is executed on earlier position than an original one in permutation
πμx , for some k ∈ {1, 2, ..., ri} and some i ∈ OL.

Property 3. Let Bk
i = (ui(gk

i ), ..., ui(hk
i )), k ∈ {1, 2, ..., ri}, i ∈ OL for the

acyclic graph G(π). If the graph G(α) has been obtained from G(π) through the
interchanging two successive operations of Bk

i that G(α) is acyclic.

Property 4. All paths Ui, i ∈ O and their lengths can be found in the time O(o).

3 Simulated Annealing

Simulated annealing (SA) method applies an analogy to the thermodynamic
cooling process to avoid local minima and escape from them. The search trajec-
tory is guided through the set of solution Π in a ”statistically suitable” direction.
The SA application to our problem is described briefly as follows. In each iter-
ation the new processing order π′ is selected randomly among those from the
neighborhood N(π) of current processing order π. This processing order (solu-
tion) can provide either Csum(π′) ≤ Csum(π) or Csum(π′) > Csum(π). In the
former case π′ is accepted immediately as the new solution for the next itera-
tion, i.e. π = π′. In the latter case π′ is accepted as the new solution with the
probability exp(Δ/T ), where Δ = Csum(π′) − Csum(π) - and T is a parameter
called a temperature at iteration. The temperature T is getting changed along
iterations by the use of a cooling scheme. A number of iterations, say m, is
performed at the fixed temperature. Although the cooling should be carried out
very slowly, most of the authors consider the change of the temperature at every
iteration (m = 1). Two schemes of the temperature modification are commonly
used: geometric Ti+1 = λiTi and logarithmic Ti+1 = 1/(1 + λiTi), i = 1, . . . , N ,
where N is the total number of iterations, λi is a parameter, and T0 is an initial
temperature.

Aarts and van Laarhooven [1] have also made several suggestions concern-
ing the choice of initial solution π0, initial temperature T0, λi, m and the
stopping criterion. They have proposed to select π0 at random, which helps
with randomizing the search and removing solution dependence on π0. The
initial temperature is set to be k = 10 times the maximum value Δmax =
max1≤i≤k(Csum(πi) − Csum(πi−1)) between any two successive perturbed so-
lutions when both are accepted, where πi is the current solution in i-th iteration
of algorithm. The initial temperature is set T0 = −Δmax/ ln(p), where p = 0.9,



Parallel Simulated Annealing for the Job Shop Scheduling Problem 635

the logarithmic cooling scheme parameter λi = ln(1 + δ)/3σi where δ is the
parameter of closeness to the equilibrium (0.1 - 10.0) and σi is the standard de-
viation of Csum(π) for all π generated at the temperature T . The value m equals
the number (or its fraction) of different solutions that can be reached from the
given one by introducing a single perturbation.

3.1 Neighborhood

The neighborhood N(V, π) of a solution π is defined as a set of new solutions
generated by the set of moves V (π). The move v ∈ V (π) transforms (perturbs)
solution π ∈ Π into another one π(v) ∈ Π . One of the well-known transition
operators for the job shop problem is the swap operator which takes two adja-
cent operation x and y and insert the operation y into the original position of
operation x and x into the original position of operation y. The swap move can
be unambiguously described by the pair of adjacent operation v = (x, y). The
set of moves V (π) consists of all such moves that can be applied to π. For each
machine i ∈ M there are nk − 1 possible swap moves. Thus, the size of this set
and neighborhood is o − m =

∑m
k=1(nk − 1). Unfortunately, N(V, π) contains a

huge number of unfeasible solutions as well as a quite large number of solutions
worse than π.

Based on the Theorem 1 and Property 3 we can reduce the set V (π) to the set
X(π) ⊂ V (π) which consists of only feasible and perspective moves. Formally,
the set X(π) is defined by the following formula

X(π) = {(x, y) ∈ V (π) : x = ui(j), y = ui(j + 1),

j = gk
i , . . . , hk

i − 1, k = 1, . . . , ri, i ∈ OL}. (5)

The size of X(π) strongly depends on the distribution of blocks in π.

3.2 The Representative Neighborhood

As already mentioned, in each iteration, the SA algorithm selects in N(X, π)
randomly a single solution neighboring to π. We consider also an alternative
method of selecting neighbors which refers to the idea of representatives, see
Nowicki and Smutnicki, [9], applied to the tabu search method for the permu-
tation flow shop problem with a makespan criterion. This method has been also
successively applied by Yamada and Reeves [12] for the permutation flow shop
problem with the total completion time criterion.

In the representative neighborhood the large original neighborhood N(X, π) is
shared into small subsets (clusters). The representative of the cluster is the best
solution in this cluster. Selection is made among representatives. Notice that
selection of representatives requires significantly greater computational effort
than for the conventional SA method. Hence, this method is useful for problems
having effective accelerators and/or effective methods of parallel computing.



636 W. Bożejko, J. Pempera, and C. Smutnicki

4 Parallel Computation of the Objective Function

In this section we propose the original method of parallel computation of Csum

criterion for the given set of neighbors N(π) of the current solution π. At the be-
gin, we will analyze properties of π and π(v), where v is a move. In the description
we refer to the well known method of computing Ci, i ∈ O values.

Fact 1. Values Ci, i ∈ O, can be found by using the recursive formula

Ci = max(Csi
, Cti

) + pi, where C0 = 0. (6)

The application of (6) is correct if nodes of the graph are revised in a suitable
order. Let Tπ = (t1, . . . , to) be a topological order of nodes in graph G(π). Note
that Tπ can be perceived as a permutation of elements from the set O.

Fact 2. The topological order Tπ, for the fixed feasible π, can be found in the
O(o) time.

Fact 3. Values Ci, i ∈ O, for the fixed feasible π, can be found by running (6)
for i = t1, . . . , to. It requires the O(o) time.

Using Facts (1)–(3) one can propose the following Procedure C of calculating Ci,
i ∈ O, for the fixed π. The computational complexity of this procedure is O(o).

PROCEDURE C

Step 1. Find the topological order Tπ. If it does not exist return the unfeasible
solution.

Step 2. Calculate values Ci, i ∈ O, by using (6) for i = t1, . . . , to, where
(t1, . . . , to) = Tπ.

Let us analyze the quick method of obtaining Tπ(v) and Ci, i ∈ O, after the
swap move v = (x, y) made from π. Let T−1

π be the inverse permutation to
Tπ. The element T−1

π (x) denotes the position of x in Tπ. Clearly, we have
T−1

π (x) < T−1
π (y) for move v = (x, y). It is easy to verify that Tπ(v) can be ob-

tained by reordering in Tπ elements from position T−1
π (x) to position T−1

π (y). It
takes O(T−1

π (y)−T−1
π (x)+1) time. For frequently met case T−1

π (y) = T−1
π (x)+1

the computation complexity is O(1). Unfortunately, regarding to Ci, the change
of completion time of two swapped operations should be broadcasted to all suc-
cessive operations; then updating of Ci from the position T−1

π (x) to position o,
in Tπ(v) obtained by reordering Tπ, requires O(o − T−1

π (x) + 1) time.
Now, we are ready to present our parallel computing method dedicated to

the fast calculation of objective function values for a set of neighbors. Among
the known parallel computation models we select the vector calculations which
are the most promising now and easy in hardware implementation. The selected
model is the special case of the single instruction multiple data (SIMD) model.

Assume that the vector processor operates on vectors consisting of s ele-
ments. Let Vs = {v1, . . . , vs} be a subset of parallel computed neighbors and let



Parallel Simulated Annealing for the Job Shop Scheduling Problem 637

Ci = (C
1

i , . . . , C
s

i ), where C
k

i , k = 1, . . . , s, denote completion times of opera-
tions i ∈ O calculated for the k-th neighbor. In a similar way we define the vector
of processing times P i = (P

1

i , . . . , P
s

i ), obviously P
1

i = P
2

i =, . . . , = P
s

i = pi.
For each v = (x, y) ∈ Vs we define three positions in Tπ : (i) fTπ (v) = T−1

π (x)
the first position of updating Tπ, (ii) lTπ (v) = T−1

π (y) = T−1
π (sx) the last posi-

tion of updating Tπ, (iii) lC(v) the last position of updating C
k
. The lC(v) =

T−1
π (y) if operation y is the last operation executed on the proper machines and

lC(v) = T−1
π (sy) in the opposite case. Finally, we reorder moves from the set Vs

according to the non-decreasing value of lC(v). The proposed method is outlined
in the Procedure P.

PROCEDURE P

Step 0: set C0 = 0.
Step 1: for i = 1 to o do
Step 1.1: Calculate values Cti by using (6).
Step 1.2: for each k such that lC(vk) = i do
Step 1.2.1: execute move vk in π

Step 1.2.2: reorder Tπ from position fTπ (vk) to lTπ (vk)

Step 1.2.3: calculate values C
k

ti
from position fTπ (vk) to lC(vk).

Step 1.2.4: restore π and Tπ

The initial Step 0 is clear. In the Step 1.1 all values of the vector Cti are
calculated in parallel. This step is performed for t1, . . . , to and takes O(o) time.
It is easy to verify that computations in Step 1.1 are performed according to
order Tπ determined by π. Therefore, for each πv, v ∈ Vs it is necessary to
recalculate the completion times for all operations whose position have changed,
i.e. from the position fTπ (vk) to lTπ (vk) and additionally for the successor of the
operation y.

The computational complexity of the Step 1.2.1 is O(1), for Step 1.2.2 and
1.2.4 is O(lTπ (vk) − lTπ (vk)). Step 1.2.3 is the most time consuming and takes
O(lC(vk)−lTπ (vk)) time. The total time required by Step 1.2 is O(

∑
v∈Vs

(lC(v)−
fTπ (v))). In the optimistic case, namely lC(vk) − lTπ (vk) = 2 for all k = 1, ..., s,
the computational complexity of the algorithm is O(o + s).

4.1 Multiple Mathematical Instructions

Contemporary used PCs are equipped with processors having the extended in-
struction MMX set. These special instructions allow one to make vectoring com-
putations. The single instruction operates in a single processor cycle on extended
registers (8 bytes). In the MMX set, it can be distinguished three groups of vec-
tor instructions operating on vector 8×1, 4×2, 2×4, where the former number
denotes the vector size and the latter number – the data size. Since for the
tested instances all performed values (Ci, pi) can be coded on two bytes, we can
perform vectoring operation on the vector of a size equals 4.



638 W. Bożejko, J. Pempera, and C. Smutnicki

The seven main steps of parallel computation of expression (6) using MMX
intrinsics are shown in Fig. 1. In the steps 1 and 2, the MMX registers mm0 and
mm1 are loaded by data following from the vectors Csi and Cti respectively.
The calculation of value max(Csi , Cti) are decomposed into two steps: 3 and 4.
At first, the value of max(0, Csi − Cti) are calculated by using subtracts with
saturation MMX intrinsic (step 3), the result is stored into the mm0 register.
Afterwards the content of the mm0 register is increased by Cti (step 4). The
values of vector P i are stored in the mm1 register (step 5) and added to the
contents of the mm0 register (step 6). The final results (contents of the mm0
register) are stored into memory in the step 7.

C
1

C
2

C
3

C
4

i

i

i

iC
1

C
2

C
3

C
4

t
i

t
i

t
i

t
i

Cs
i

1

Cs
i

2

Cs
i

3

Cs
i

4

P
1

P
2

P
3

P
4

i

i

i

i

mm0

p
s
u

b
u

s
w

m
m

o
,m

m
1

p
a
d

d
u

s
w

m
m

o
,m

m
1

p
a
d

d
u

s
w

m
m

o
,m

m
1

mm1mm0 mm0 mm0 mm0

1 2 53 4 6 7

mm1

Memory

Step

Fig. 1. Parallel computation of expression (6) for the given operation i

5 Computational Experiments

We have implemented three algorithms based on the simulated annealing method.
In the first algorithm PSA-R we have used the representative-based neighbor-
hood. From the neighborhood N(X, π) we can select randomly s = 4 neighbors
and we compute in parallel the value of the objective function. From the set
obtained now we select the best solution. In the second PSA algorithm, for each
solution s = 4 moves from X(π) are generated at random. Moves are applied
in turn to order π until a new solution is accepted. The objective function for
all the solutions is computed in parallel. It is easy to observe that PSA emu-
lates a traditional one-thread simulated annealing (SA) algorithm. The classic
SA algorithm is the third from the implemented and tested algorithms.

Algorithms were coded in Visual C++ 2008 Express Edition, ran on a PC with
Intel Core 2 Duo 2.66 GHz processor and the Windows XP operating system, and
tested on 50 benchmark instances provided by Taillard [13]. The benchmark set



Parallel Simulated Annealing for the Job Shop Scheduling Problem 639

contains 5 groups of hard instances in different sizes. For each size (group) n×m :
15×15, 20×15, 20×20, 30×15, 30×20 a set of 10 instances was provided. In our
tests all the values of tuning parameters for algorithms are found in the automatic
way described in the previous section. Each algorithm was terminated after per-
formed 1000 iterations. At the fixed temperature, the SA-R algorithm performs n
iteration, whereas SA and PSA algorithms 4n iteration, i.e. all algorithms calcu-
lated the objective function value for the same number of solutions.

For each test instance and for each run of algorithm we have collected the fol-
lowing values: πref – reference solution – the best solution found in all runs of
algorithms, PRD = 100 · (Csum(π) − Csum(πref ))/Csum(πref ) – the value of
the percentage relative difference between Csum function values for the solution
π and reference solution πref , CPU – total computations time (in seconds). For
each instance and for each algorithm based on 10 solutions generated during each
of 10 runs we have calculated the following values: MPRD – minimal PRD value,
APRD – average PRD value, ACPU – average computation time (in seconds).

Table 1. Computational results of PSA-R, PSA and SA for PRD and CPU values

Group PSA-R PSA (SA) ACPU time Speedup ratio

MPRD APRD MPRD APRD PSAR PSA SA PSAR PSA

15×15 1.27 2.72 0.11 1.07 3.9 10.3 18.7 4.7 1.8
20×15 1.38 3.10 0.11 1.21 6.7 19.3 34.2 5.1 1.8
20×20 0.51 1.72 0.23 1.43 11.3 33.6 61.6 5.4 1.8
30×15 0.60 3.02 0.42 1.45 14.8 46.9 81.2 5.5 1.7
30×20 0.20 2.23 1.11 1.97 26.1 83.9 147.2 5.6 1.8

Table 1 shows results of computational experiments. The main observation is
that the proposed method of SA algorithm parallelization significantly reduces
the computation time. The speedup values are from 4.7 to 5.6 and increase
with the increasing number of machines. It is easy to notice that the speedup is
greater than the theoretical one (≤ 4) (we are obtaining superlinear speedup).
The additional speedup is obtained due to the MMX instruction utilization,
which eliminates branches in the executing code. The branches are essential for
implementation of max function in x86 set of instruction. Comparing compu-
tations time of PSA and SA one can observe that the speedup is significantly
smaller (1.8). With respect to PRD values it has been pointed that PSA provides
better results than PSA-R for the majority of groups of instance. For the first
five groups the MPRD values are from 0.5 to 1.4 for PSA-R, whereas from 0.1
to 0.4 for PSA (SA). In the last group of instances, conversely PSA-R provides
better results (MPRD=0.2) than PSA-R (MPRD=0.2). It can be notice that for
this group of instances we observe the highest speedup value.

6 Conclusions

To the best of our knowledge, this is the first paper which deals with the small-
grain parallelization of algorithms for the job shop problem. A special attention



640 W. Bożejko, J. Pempera, and C. Smutnicki

has been paid to the kind of parallelism which can be easily applied to the new
generation of processors installed in PCs, with multiple cores (dual, quad, etc.)
as well as with the extended set of instructions (such as MMX and SSE2). The
proposed methods have been applied successfully to various simulated annealing
metaheuristics for the job shop problem with Csum criterion.

References

1. Aarts, E.H.L., van Laarhoven, P.J.M.: Simulated annealing: a pedestrain review
of the theory and some aplications. In: Deviijver, P.A., Kittler, J. (eds.) Pattern
Recognition and Applications. Springer, Berlin (1987)

2. Armentano, V.A., Scrich, C.R.: Tabu search for minimizing total tardiness in a job
shop. International Journal of Production Economics 63(2), 131–140 (2000)

3. Bushee, D.C., Svestka, J.A.: A bi-directional scheduling approach for job shops.
International Journal of Production Research 37(16), 3823–3837 (1999)

4. Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for job shop prob-
lem. In: Rego, C., Alidaee, B. (eds.) Metaheuristic optimization via memory and
evolution. Tabu search and scatter search, vol. 30, pp. 117–144. Kluwer Academic
Publ., Boston (2005)

5. He, Z., Yang, T., Tiger, A.: An exchange heuristic embedded with simulated an-
nealing for due-dates job-shop scheduling. European Journal of Operational Re-
search 91, 99–117 (1996)

6. Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: further develop-
ments. Production Planning and Control 11, 171–178 (2000)

7. Jain, A.S., Rangaswamy, B., Meeran, S.: New and stronger job-shop neighborhoods:
A focus on the method of Nowicki and Smutnicki (1996). Journal of Heuristics 6(4),
457–480 (2000)

8. Mattfeld, D.C., Bierwirth, C.: An efficient genetic algorithm for job shop scheduling
with tardiness objectives. European Journal of Operational Research 155(3), 616–
630 (2004)

9. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow
shop problem. European Journal of Operational Research 19(1), 160–175 (1996)

10. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling 8, 145–159 (2005)

11. Pezzella, F., Merelli, E.: A tabu search method guided by shifting bottleneck for
the job-shop scheduling problem. European Journal of Operational Research 120,
297–310 (2000)

12. Reeves, C.R., Yamada, T.: Solving the Csum Permutation Flowshop Scheduling
Problem by Genetic Local Search ICEC 1998. In: IEEE International Conference
on Evolutionary Computation, pp. 230–234 (1998)

13. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64, 278–285 (1993)

14. Wang, T.Y., Wu, K.B.: An eficient configuration generation mechanism to solve
job shop scheduling problems by the simulated annealing. International Journal of
Systems Science 30(5), 527–532 (1999)


	Parallel Simulated Annealing for the Job Shop Scheduling Problem
	Introduction
	The Problem
	Simulated Annealing
	Neighborhood
	The Representative Neighborhood

	Parallel Computation of the Objective Function
	Multiple Mathematical Instructions

	Computational Experiments
	Conclusions
	References


