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Abstract 

All along, people have a high enthusiasm for the 

research of optimization algorithm. A large number of 

new algorithms and methods have emerged. The sine 

cosine algorithm (SCA) is an excellent algorithm that has 

appeared in recent years. It is a stochastic optimization 

algorithm based on population. Compared with the 

existing algorithms, SCA is a suitable solution to different 

optimization problems, especially the optimization of 

unimodal functions. It is qualified to optimize real-world 

problems with unknown and limited search space. But 

sometimes it does not perform satisfactorily when dealing 

with some specific problems, such as optimization of 

multimodal functions or composite functions. This paper 

presents a parallel version of the sine cosine algorithm 

(PSCA) with three communication strategies. Different 

strategies can be selected according to the type of 

optimization function to achieve better results. We have 

repeatedly tested different types of functions, and the 

results show that the proposed PSCA can solve the 

optimization problem more specifically. In the simulation 

of wireless sensor network (WSN) dynamic deployment 

optimization, it is found that using this method can get 

the ideal sensor node distribution, which makes PSCA’s 

performance in solving other practical problems worth 

looking forward to. 

Keywords: Sine cosine algorithm (SCA), Parallel sine 

cosine algorithm (PSCA), Communication 

strategies, Wireless sensor networks (WSN), 

Dynamic deployment 

1 Introduction 

Optimization is a technique that studies how to 

determine the optimal value of unknown parameters of 

the target system under certain constraints. With 

optimization, you can find the best solution from a set 

of available solutions by reaching the extreme value of 

the system’s objective function. Obviously, optimization 

problems are widespread in various fields. Due to 

the needs of practical applications and advances in 

computing technology, research on optimization 

methods has developed rapidly. More and more 

optimization algorithms are extensively used in 

function optimization, scientific research, engineering 

application, etc. Moreover, researchers have been 

actively pursuing better optimization results. 

The traditional optimization method is “method-

oriented”, that is, it can only solve the problem of 

meeting the applicable conditions of the method. So 

many times, we have to simplify or change the original 

problem in order to use a certain method. This makes 

the traditional optimization methods have many 

limitations such as low calculation efficiency, easy to 

fall into local optimum, and restricted application range. 

Due to the variety of optimization problems and the 

increasing requirements for the performance, traditional 

optimization methods have failed often. Aiming at the 

shortcomings of traditional optimization methods, 

people put forward some new requirements for 

optimization. It cannot be limited to the solution of a 

certain type of problem, and should be changed from 

“method-oriented” to “problem-oriented”. Since the 

1960s and 1970s, people have introduced artificial 

intelligence technology and biological evolution 

mechanisms into optimization methods, and 

progressively formed a group of refreshing modern 

optimization methods that are completely different 

from traditional optimization methods, for example 

genetic algorithms (GA) [1], particle swarm 

optimization (PSO) [2], differential evolution (DE) [3], 

bat algorithm (BA) [4], ant colony optimization (ACO) 

[5], etc. 

Different types of optimization problems can use 

different optimization methods, even the same type of 

problems can adopt multiple optimization methods. In 

contrast, some optimization methods can be used to 

solve multiple types of problem models, and they may 

outperform other algorithms for specific problems. 

This can be explained by No Free Lunch (NFL) 

theorem [6]. This has greatly encouraged the majority 

of researchers to conduct extensive and in-depth 

research on optimization algorithms. The theoretical 
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research surrounding optimization involves three main 

aspects: improving existing technologies, combining 

different algorithms, and proposing original algorithms. 

In 2016, the Australian scholar Mirjalili proposed a 

new algorithm, the sine cosine algorithm (SCA) [7], 

which is not only novel in thought but also refined in 

structure. As a stochastic algorithm based on 

population, it has very loose requirements for objective 

function. Like other stochastic algorithms, optimization 

problem is regarded as a black box [8]. In addition, the 

algorithm has simple structure, few controlled 

parameters and is easy to realize. The global 

optimization problems can be solved only by using the 

iterations of sine cosine function. The superior 

optimization performance of SCA and its high 

adaptability to various complex optimization problems 

have attracted researchers’ attention. SCA has been 

successfully applied in many application areas. 

Along with the sustained development of 

optimization theory and the continuous progress of 

computing technology, parallel processing is generally 

considered as an effective method for function 

optimization, which can not only increase the 

efficiency of optimization, but also improve the effect 

[9]. The parallel processing of the optimization 

algorithm can not only allocate the computation to 

multiple processors, but also expand the global search 

capability and improve the precision compared with 

the original algorithm. The parallel processing has 

been applied for many existing algorithms, for example 

parallel GA [10], parallel PSO [11], parallel CSO [12], 

parallel BA [13], etc. 

This article introduces the concept of parallel 

processing into SCA and designs three communication 

strategies for this purpose. Three kinds of 

communication strategies are designed according to 

different types of functions, which can solve the 

optimization problems of unimodal, multimodal, 

composite functions and even unknown types. The 

benchmark function test confirms that PSCA has better 

optimization performance than SCA both in accuracy 

and convergence. In order to further demonstrate the 

practical value of PSCA, application simulation was 

carried out at the end of the work. We try to optimize 

the dynamic deployment problem in wireless sensor 

networks (WSN). Comparing the simulation results, 

the distribution of sensor nodes obtained by PSCA is 

the most uniform. This further proves the effectiveness 

and potential of the PSCA in practical applications. 

Briefly introduce the organizational structure of the 

rest of the article: 

Section 2 reviews SCA and related research work 

around it. In section 3, the design of the PSCA with 

three communication strategies is introduced in detail. 

Then We show relevant experimental results and make 

an analysis comparison between SCA and PSCA in 

section 4. Section 5 is about the practical application of 

PSCA. We use it to solve the dynamic deployment 

problem of WSN. The final section 6 is summary and 

outlook. 

2 Related Woks 

2.1 Sine Cosine Algorithm 

The design of SCA is very ingenious. Finding the 

best solution just uses the oscillation characteristics of 

sine and cosine functions. First, the algorithm is 

initialized to generate a set of random solutions. Then, 

through the cooperation of the two phases of exploration 

and exploitation, the continuous optimization of the 

search space is achieved. The optimization trend is 

dominated by the sine cosine function. After several 

iterations, the optimization process ends and the 

optimal solution is output or approximated. The 

following is the specific optimization process of 

SCA. At the beginning, N search individuals 

1 2 3
, , , ,

N
X X X X…  are randomly generated in d-

dimensional search space. 
1 2 3

( , , , , )
i i i i id

X x x x x= …  is 

the position of the ith individual, where 1, 2, ..., .i N=  

Next, substitute each individual 
i

X  in the population 

into the evaluation function and calculate its fitness 

value ( ).
i

f X  And record the current optimal 

individual 
1 2

( , , , ),
i i i id
P P P P= …  whose fitness value is 

the best. The update equations of search individual 

position in each iteration are as follows: 

 
1 2 3 41

1 2 3 4

sin( ) | |, 0.5

cos( ) | |, 0.5

t t t

i i it

i
t t t

i i i

X r r r P X r
X

X r r r P X r

+

 + × × − <
= 

+ × × − ≥
 (1) 

In Eqs. (1), t represents the current number of 

iterations. t

i
X  is the value of the solution at the current 

number of iterations in the ith dimension. It will 

become 1t

i
X
+  in the next iteration. t

i
P  is the value of 

the ith dimension of the current destination point. And 

| |⋅  is an absolute value symbol. The Eqs.(1) shows that 

there are four primary parameters, 
1
r , 

2
r , 

3
r , and 

4
r , all 

of which are random numbers. The parameter 
1
r  is a 

linear decreasing function which decreases gradually 

from a to 0 with the increase of iterations. Its 

calculation method is as follows: 

 
1

a
r a t

T
= −  (2) 

In Eq. (2), a is a constant and 0.a >  T is the upper 

limit of the number of iterations of the algorithm. The 

parameter 
1
r  mainly acts as a guide for the ith 

individual in the next iteration. Specifically, when 

1
1r < , the next search space is between the current 

solution and the dimension, i.e. local exploitation; 

when 
1
1r > , the search space is outside it, i.e. global 
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exploration. The parameter 
2

[0, 2 ]r π∈ , which is 

subject to uniform distribution, is used to control the 

movement distance in the next iteration. The parameter 

3
[0, 2]r ∈ , as a random weight subject to uniform 

distribution, can control the influence of the current 

optimal solution t

i
P  on the update of individual 

position. The parameter 
4

[0,1]r ∈  is responsible for 

switching the position update strategies: when 
4

0.5r < , 

chooses the sine component in Eqs. (1); otherwise, 

chooses the cosine component. 

SCA is efficient, fully distributed and with low 

complexity. It can switch between exploration and 

exploitation, which is conducive to finding more 

potential solutions and has strong global optimization 

capabilities. In addition, SCA also realized a gradual 

transition from early emphasis to exploration to late 

focus on exploitation, which accelerated the 

convergence of the function. Figure 1 shows the 

principle of SCA optimization. 

 

Figure 1. Principle of SCA algorithm 

2.2 The Improvement of Sine Cosine Algorithm 

It turns out that SCA has better optimization 

performance than many other algorithms (e.g. PSO, 

GA, BA, firefly algorithm (FA) [14], flower 

pollination algorithm (FPA) [15], etc.). It has faster 

convergence speed and higher convergence accuracy. 

However, through the analysis of the SCA population 

update model, it is found that during the entire 

optimization iteration process, the dependence of the 

search individual’s position update on the position of 

the search individual itself is always the same, which 

causes the global search capability to be weakened in 

the early stages. In addition, since the solution always 

updates its position near the current optimal solution, 

the search space is gradually shifting towards the 

optimal region during the optimization process. 

However, the negative effect of this operation is that 

the individual diversity of solution space is greatly 

reduced. And this will increase the risk of premature 

convergence or only local optimization of the 

algorithm. What’s more, SCA optimization is slower 

and takes longer than most other stochastic algorithms 

when the search space is relatively larger. Some 

scholars put forward many improved algorithms based 

on the existing problems of SCA, and the research on 

SCA improvement strategies is mainly divided into 

two categories. One is to integrate with other 

algorithms to develop the optimization performance. 

For instance, by combining grey wolf optimization 

(GWO) [16] with SCA, a novel hybrid GWO-SCA 

method [17] is proposed, which significantly improved 

the accuracy of the algorithm. The hybrid SCA-DE 

algorithm [18] which integrates SCA with differential 

evolution can reduce the local optimization to a certain 

extent and make the convergence speed faster. The 

other is to use the search strategy of other optimization 

algorithms to improve SCA’s search ability. For 

example, a new sine and cosine algorithm improves the 

traditional SCA by increasing two coefficients of 

exploration rate and exploitation rate, which greatly 

improves the convergence speed [19]. The opposition-

based sine cosine global optimization algorithm 

(OBSCA) [20] can obtain higher accuracy of the 

optimization process. In order to improve the ability of 

SCA for global exploration and local exploitation, 

some researchers have also tried to re-establish the 

change law of existing parameters or introduce other 

new methods, and achieved certain results [21]. 

Although the current improvement of SCA has 

achieved some results, it still has various defects. And 

the hybridization and fusion of multiple algorithms will 

make the algorithm more and more complicated. To 

this end, we propose a parallel processing of SCA 

(PSCA). While improving the overall performance of 

SCA, it also combines the advantages of parallel 

processing. The next section goes into detail. 

3 Parallel Sine Cosine Algorithm (PSCA) 

In this part, the main idea and implementation 

scheme of PSCA are discussed in detail. For the 
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purpose of effectively making up for the deficiencies 

of the original SCA, we introduced the concept of 

multi-population. This is conducive to maintaining the 

diversity of population, so as to ensure that the best 

solution can be found in the process of optimization as 

much as possible. Because the search process is from 

one-point set (population) to another point set 

(population) in space, it is actually a kind of parallel 

search. In this way, it can not only help to jump out of 

local optimization, but also realize large-scale parallel 

computing. The specific scheme is as follows: first 

construct a parallel processing structure by grouping 

the entire population to get several sub-populations. 

Then each sub-population evolves independently 

according to the iterative rules. The evaluation of the 

solution is based on the fitness value. After triggering a 

certain inter-population communication scheme, 

replace inappropriate individuals in the population with 

corresponding strategies, and exploit or explore the 

promising area. Based on this idea, this paper designs 

three kinds of PSCA communication strategies adapted 

to different function types. Strategy 1 is mainly 

applicable to simple unimodal functions. Strategy 2 is 

suitable for multimodal functions, which usually 

present multi-peak and multi-valley. Strategy 3 is 

available for complex functions, or when the type of 

the function is unknown. The following is a detailed 

description of the three communication strategies: 

Strategy 1 is a communication method based on 

global optimal replacement. First, the search 

population X obtained by SCA initialization is divided 

into N groups 
i
g , ( 1, 2, 3, , ).

i
g X i N∈ = …  Each group 

i
g  is independently optimized by SCA. Suppose the 

total number of iterations is M, including K exchanges 

( , 2 , 3 , , ),K k k k M= …  k is the predefined number of 

iterations. When the communication condition is 

triggered (assuming iteration t), migration occurs 

between the groups. The worst n individuals in each 

group are replaced by the global optimal solution t

P  

with the highest fitness the population X. M, N, k, t are 

predefined constants. Figure 2 shows the first 

communication strategy in the form of a flowchart. 

 

Figure 2. Communication strategy 1 for unimodal function optimization 

When the objective function is complex, such as 

multimodal function, the optimization algorithm is 

prone to situations that cannot rely on previous 

iterative rules to get rid of local optimum local 

optimum. Generally speaking, the local optimum is 

caused by the lack of communication between 

populations. So we propose the second strategy, as 

shown in Figure 3. Strategy 2 adds a method of 

genome replacement based on strategy 1. In each group, 

the individual with the best fitness value is recorded as 

,

,

i b
g  and the individual with the sub-best fitness is 

recorded as 
.

,

i sb
g  1, 2, 3, ..., .i N=  The best fitness 

individual and the sub-best fitness individual of each 

group form a dominant genome 
1. 1. 2.

( , , ,
b sb b

Gen g g g  

1. . .
, ..., , ).

sb N b N sb
g g g  When the communication condition 

is triggered, one individual candidate ( )candidate Gen∈  

in the genome is randomly selected to replace the 

individual with the worst fitness in each group. This 

method can effectively protect the diversity of the 

population and maintain evolutionary vitality. 

Therefore, strategy 2 contains two alternatives: global 

optimal replacement and genome replacement. While 

communicating between groups, choose one randomly. 

When we know the type of the objective function, a 

targeted selection of strategy 1 or strategy 2 can 

achieve better optimization effect. However, if the 

objective function is complex or unknown, improper 

application may lead to poor performance. In this case, 

the third strategy which is inspired by Tabu search [22-

24], can be considered, as shown in Figure 4. Tabu 

search is a heuristic algorithm which can avoid circuit 

search as much as possible. It is a deterministic local 

optimal jumping strategy and has great potential in 

global optimization of functions. The most important 

idea is to mark some objects corresponding to the 

searched local optimal solution, and try to avoid these 

objects in further iterations, so as to ensure to explore  
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Figure 3. Communication strategy 2 for multimodal function optimization 

 

Figure 4. Communication strategy 3 for composite or unknown function optimization 

with different effective search paths. Inspired by this, 

strategy 3 is proposed. The initialization and grouping 

of the population are the same as strategy 1 and 

strategy 2. The difference is that when running to the 

tth iteration for communication, the current global 

optimal solution t

P  is used to replace all the 

individuals of its group which is marked as bestg  while 

the other groups remain unchanged. When the t′th 

iteration triggers the next communication, it continues 

to replace all individuals in the group it belongs to with 

the current global optimal t

P
′
. If t

P
′
 appears outside 

the bestg  group marked last time, the previous bestg  

group will be reinitialized and the 
best
g  group’s mark 

will be updated. Repeat until all iterations are 

completed. 

Here are the complete steps for the proposed PSCA: 

1. Initialization: 

Generate S search individuals randomly and divide 

them into N groups. The jth group has 
j
N  individuals, 

so 
1

0

.

N

j

j

S N
−

=

=∑  Each individual is denoted as t

ij
x , which 

represents the value of the ith individual in the jth 

group when the tth iteration is performed, where 

0,1, 2, 3, , 1.
j

i N= −…  

2. Evaluation: 

Evaluate each individual’s fitness value ( )t
ij

f x  in all 

the groups. 

3. Update: 

Use Eqs. (1) to update the position of each 

individual. 

4. Communication: 
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Choose one of the three communication strategies: 

Strategy 1: Migrate the optimal individual t

P  in the 

population X to each group, replace the worst 

individual in each group with t

P , and update t

j
P  of 

each group in every iteration cycle. 

Strategy 2: Randomly choose global optimal 

replacement or genome replacement. The global 

optimal replacement method is the same as strategy 1. 

Genome replacement is as follows: The optimal 

individual 
.

t

i b
g  and the sub-optimal individual 

.

t

i sb
g  in 

each group constitute the genome Gen. An individual 

candidate is randomly selected and migrated to each 

group, replacing the worst searching individual in each 

group and updating the t

j
P  in every iteration cycle. 

Strategy 3: Replace the other members of the group 

with the best individual t

P  in the whole population X, 

which is marked as 
best
g  group; the other groups are 

unchanged, and only t

j
P  of each group is updated. In 

the next communication, repeat the above operations, 

and check whether the group to which the optimal 

solution belongs is the last marked 
best
g  group. If not, 

reinitialize the last marked group and re-mark the 
best
g  

group. 

5. Termination: 

Repeat steps 2 to 4. If a predefined function value 

has been obtained or all iterations have been completed, 

record the global optimal solution t

P  and its best 

fitness value ( )tP , and the optimization process ends 

here. 

4 Experiment Results and Analysis 

Whether the PSCA including the three 

communication strategies meets the theoretical 

expectations requires relevant experiments to verify. 

This section introduces the experimental scheme in 

detail and conducts a comprehensive analysis of the 

experimental results. In order to make an objective 

comparison with SCA, all the benchmark functions 

selected are from the literature that proposed the 

original SCA. The experimental results show that 

strategy 1 is the best for unimodal function optimization, 

while strategy 2 is excellent when solving multimodal 

function. Finally, the comprehensive processing 

capacity of strategy 3 is tested when facing unimodal, 

multimodal and composite benchmark functions. 

In the test of strategy 1, the performance of SCA and 

PSCA in the optimization of unimodal functions 

1 4
( ( ) ( ))F x F x−  was compared. In order to achieve fair 

competition, the populations of SCA and PSCA are set 

to the same size. There are 500 iterations in total and 

the structures of the solutions are all 10-dimensional 

real-valued vectors. To verify the effectiveness of 

strategy 1, the number of exchanges was set to 20 and 

the replacement ratio was set to 25% in the first 

experiment. The experimental results show that 

strategy 1 performs well in solving optimization 

problems of unimodal functions, and its convergence 

speed and optimization accuracy are significantly 

improved compared with SCA. Please see Table 1 for 

detailed experimental results. The optimal solutions 

have been highlighted in the table. And Figure 5 shows 

the optimization result of the benchmark function 
1
F . 

Table 1. Performance comparison of SCA and PSCA’s strategy 1 for the unimodal functions 
1 4

( ( ) ( ))F x F x−  

Functions values 
Functions 

SCA PSCA (strategy 1) 

1
( )F x  1.50E-13 1.76E-15 

2
( )F x  2.44E-08 3.89E-11 

3
( )F x  1.74E-05 1.24E-05 

4
( )F x  1.48E-03 2.30E-06 

 

 

Figure 5. The experimental result of benchmark function 
1
F  
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Next experiment compares the performance of SCA 

and PSCA based on strategy 1 and strategy 2 in 

multimodal function optimization. From the 

experimental results, strategy 2 has the best effect, and 

the average convergence accuracy is 35% higher than 

SCA. In addition, the performance of strategy 1 

became unstable. Please see Table 2 for detailed 

experimental results. The optimal solutions have been 

highlighted in the table. And Figure 6 shows the 

optimization result of the benchmark function 
9
F . 

Table 2. Performance comparison of SCA and PSCA (including strategy 1 and strategy 2) for the multimodal 

functions 
9 12

( ( ) ( ))F x F x−  

Functions values 
Functions 

SCA PSCA (strategy 1) PSCA (strategy 2) 

8
( )F x  5.77E-01 2.67E-11 0.00E+00 

9
( )F x  1.85E-07 2.18E-08 1.50E-09 

10
( )F x  3.08E-12 1.44E-15 0.00E+00 

11
( )F x  1.07E-01 6.23E-02 3.65E-02 

12
( )F x  4.70E-01 2.24E-01 1.96E-01 

 

 

Figure 6. The experimental result of benchmark function 
9
F  

The third experiment tests the optimization 

performance of SCA and PSCA when the objective 

function contains multiple types. There are unimodal, 

multimodal, and composite functions. Through 

repeated experiments, the results show that the overall 

performance of PSCA’s strategy 3 is better than others. 

Compared with SCA, strategy 3 generally has higher 

convergence accuracy and speed, increased by 25% 

and 19% respectively. Most of the time, strategy 1 and 

strategy 2 performed better than SCA, but still lagged 

behind Strategy 3. So strategy 3 is recommended when 

faced with complex optimization problems or unclear 

problems. Table 3 shows the experimental results. The 

optimal solutions are highlighted. And Figure 7 

displays the optimization results of five benchmark 

functions: 
4 11 12 13 18
, , , , .F F F F F  

Table 3. Performance comparison of SCA and PSCA (including strategy 1, strategy 2 and strategy 3) for all the 

benchmark functions 

Functions values 
Functions 

SCA PSCA (strategy 1) PSCA (strategy 2) PSCA (strategy 3) 

1
( )F x  3.81E-17 1.57E-12 4.92E-10 2.43E-18 

2
( )F x  5.75E-12 1.77E-12 1.87E-10 7.76E-10 

3
( )F x  7.48E-15 2.98E-15 1.88E-13 2.99E-17 

4
( )F x  2.20E-25 4.59E-22 8.59E-25 1.94E-32 

5
( )F x  2.45E-12 4.67E-12 7.15E-10 2.04E-10 

6
( )F x  4.45E-04 6.67E-05 8.49E-07 3.84E-04 

7
( )F x  0.00E+00 0.00E+00 0.00E+00 0.00E+00 

8
( )F x  3.18E-27 1.77E-31 6.27E-26 5.47E-25 
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Table 3. Performance comparison of SCA and PSCA (including strategy 1, strategy 2 and strategy 3) for all the 

benchmark functions (continue) 

Functions values 
Functions 

SCA PSCA (strategy 1) PSCA (strategy 2) PSCA (strategy 3) 

9
( )F x  6.64E-03 2.85E-03 4.31E-04 4.66E-04 

10
( )F x  7.26E+00 7.33E+00 7.22E+00 7.65E+00 

11
( )F x  3.77E-13 3.51E-10 2.03E-04 1.75E-10 

12
( )F x  8.54E-01 2.47E+01 4.54E+00 2.61E-06 

13
( )F x  1.46E-08 4.47E-12 1.24E-01 2.65E-14 

14
( )F x  2.11E+03 2.11E+03 2.36E+03 2.09E+03 

15
( )F x  2.35E-07 4.22E-08 1.28E-06 3.62E-08 

16
( )F x  7.82E-02 8.04E-02 4.83E-02 7.26E-02 

17
( )F x  3.80E-01 1.83E-01 4.02E-01 2.23E-01 

18
( )F x  1.90E-08 2.78E-08 1.02E-07 4.34E-11 

19
( )F x  2.74E+00 2.36E+00 4.10E+00 1.45E+00 

20
( )F x  -5.00E+00 -5.00E+00 -5.00E+00 -5.00E+00 

21
( )F x  9.78E-03 9.72E-03 9.72E-03 9.72E-03 

Win 4 6 7 12 

 

 

(e) 
4
F  (a) 

11
F  

 

(b) 
12
F  (c) 

13
F  

 

(d) 
18
F  

Figure 7. Convergence curves for the benchmark functions: 
4 11 12 13 18
, , , ,F F F F F  
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5 Application of PSCA in Dynamic 

Deployment of Wireless Sensor Networks 

The value of the proposed PSCA also needs to be 

reflected in the solution of actual optimization 

problems. To this end, we selected the dynamic 

deployment problem of WSN for application 

simulation. WSN is composed of a large number of 

sensor nodes deployed in the monitoring area. The 

nodes exchange messages through wireless 

communication, thus forming a self-organizing network. 

This technology can not only reduce the mutual 

interference between different nodes, but also cuts the 

cost [25-27], and the node position can be set flexibly 

[28]. WSN can realize real-time sensing and monitoring 

of various objects of interest in the target area [29-33]. 

Today in the age of the Internet of Things, WSN has 

become a key technology which has a broad application 

prospect and has been successfully applied in military, 

disaster rescue, environment, medical, industrial, 

commercial and other fields [34-36]. Node deployment 

is a key issue related to the overall performance of 

WSN. It will have an important impact on coverage, 

energy consumption, reliability, security, quality of 

service (QoS) and other aspects [37-42]. The 

deployment problem of WSN can be simply understood 

as how to maximize coverage rate with as few sensors 

as possible, while maintaining excellent network 

connectivity and consuming the least energy [43-44]. 

Depending on whether the node location changes in the 

application scenario, two schemes for deploying nodes 

have been generated: static deployment and dynamic 

deployment. The so-called static deployment means 

that it has been formulated in advance before the 

network starts. The topology of the sensor network is 

predefined, and the specific location of each node has 

been designed. After setting the node position, it is 

considered that the node will not move and the network 

structure will not change dynamically. This method is 

mainly applicable to the situation of friendly 

environment and stable structure in the target area, 

such as indoor monitoring, industrial control, etc. 

Obviously, if the network topology needs to be 

dynamically adjusted, or the environment is harsh (e.g. 

large-scale unmanned areas, nuclear radiation areas, 

battlefields, etc.), static deployment is no longer 

suitable and dynamic deployment is required in these 

cases [45]. In dynamic deployment, sensor node 

locations are randomly set during initialization. 

Obviously, this node deployment method is very prone 

to uneven distribution in the target area, which will 

lead to poor network connections, unbalanced workload 

and low coverage quality. So subsequent efforts need 

to be made to adjust the position of the nodes to cover 

as much of the target area as possible. How to arrange 

sensor positions reasonably to achieve high coverage 

rate has always been the focus of researchers. An 

improved algorithm ACO-Greedy [46], which is 

produced by introducing the greedy migration 

mechanism into the ant colony optimization, can 

quickly achieve high network coverage and reduce 

power consumption, but it will increase the cost 

because more sensor nodes are needed for the area with 

large traffic. Although the node deployment strategy 

using the modified ABC algorithm [47] can sometimes 

achieve higher coverage and faster deployment speed, 

it still faces the high risk of falling into a local 

optimum. The glowworm swarm optimization (GSO) 

[48] also be applied to sensor deployment [49], which 

can expand the network coverage scale without 

increasing the number of nodes, but the impact of 

errors on the optimal solution will accumulate as the 

number of iterations increases. 

5.1 Coverage Model 

The node sensing model we chose is the disk 

sensing model, and its other name is Boolean sensing 

model. In a two-dimensional coordinate system, draw a 

circle with the node position as the center and r as the 

radius. The resulting closed circular area is the 

coverage of a sensor node. r is called the node’s 

sensing radius. Any point located inside the circle can 

be fully monitored, while points outside the circle are 

considered to be undetectable. So there are only two 

possibilities in this model, the target is either 

absolutely detected or not. The outstanding advantage 

of this model is that it can simplify the solution of the 

coverage strategy, allowing us to explore the 

optimization problem in more depth. 

Suppose the target area is a two-dimensional square 

with A w w= × . In order to simplify the calculation, 

this area is discretized into m n×  pixel points 

( 1, 2, ..., ).
j

L j m n= ×  The pixel position ( , . )
j j j

L x y  is 

the optimized destination for node deployment. N 

sensor nodes 
i
S  are randomly scattered, where 

1, 2, ..., ,i N=  and ( , )
i i i

S x y  represents the position 

coordinate of the ith node. ( , )
i j

d S L  is the Euclidean 

distance between the sensor node 
i
S  and the pixel 

j
L . 

In order to determine whether the pixel 
j
L  is covered 

by the sensor node 
i
S , the Euclidean distance 

( , )
i j

d S L  between the two needs to be obtained first, 

and then the distance is compared with the sensing 

radius r. The calculation method of ( , )
i j

d S L  is shown 

in Eq.(3). 

 2 2( , ) ( ) ( )
i j j i j i

d S L x x y y= − + −  (3) 

( , )
i j

P S L  is the probability that the pixel 
j
L  is 

perceived by the node 
i
S , and can be calculated using 

Eq.(4). 
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1, ( , )

( , )
0,

i j

i j

d S L r
P S L

otherwise

≥
= 


 (4) 

There may be overlap between the sensing areas of 

the sensor nodes. That is, there may be a case where 

multiple nodes 
i
S  simultaneously cover the position of 

the same pixel 
j
L  in the monitoring area. So ( , )

j
P S L  

is defined as the joint sensing probability of the pixel 

j
L , as shown in Eq. (5). 

 
1

( , ) 1 (1 ( , ))
N

j i j

i

P S L P S L

=

= − −∏  (5) 

Here, S represents the collection of all sensor nodes 

that simultaneously sense the target point 
j
L  in the 

area. 

The definition of node coverage is as follows: 

 1

N

i

i

A

P
A

=

=

∑
 (6) 

As can be seen from Eq.(6), two items need to be 

calculated separately: the union of the coverage of all 

nodes 
1 2 3

1

{ }
N

i n

i

A A A A A

=

=∑ ∪ ∪ ⋯∪  and the size of the 

entire monitoring area A. The ratio of the two is the 

total node coverage rate P. But it is not convenient to 

calculate by definition. In order to simplify the 

operation, it can be replaced with another ratio, which 

is the ratio of the number of pixels in the sensing range 

of all sensor nodes to the total number of pixels in the 

target area. The calculation method is shown in Eq.(7). 
 

 

*

1

( , )

*

m n

j

j

S L

P
m n

=

=

∑
 (7) 

5.2 PSCA in the Dynamic Deployment of 

WSN 

The goal of WSN node deployment is to hope to 

obtain the best sensor distribution and maximize the 

coverage. This requires a reasonable setting of the 

location of each sensor node. In the optimization 

algorithm, the optimal solution of the target problem 

can be found through some optimization mechanism. 

So we can consider using the PSCA to establish the 

optimal sensor node distribution. This paper focuses on 

the issue of maximizing the coverage rate. Assume that 

the monitoring area is a regular plane, and the sensor 

nodes have the following three properties: all nodes are 

the same, the nodes can be moved to a specified 

position and get the locations of other nodes in the 

sensing range in real time. Now establish the following 

correspondence between the problem domain and the 

solution space: the position coordinates of the sensor 

are the values of the dimensions in the solution, and the 

node coverage rate is the fitness value of the solution. 

Obviously, the best distribution of sensor nodes is the 

optimal solution of the optimization algorithm. 

5.3 Simulation Results 

To test the effectiveness of PSCA in solving WSN 

dynamic deployment problems, simulation experiments 

are performed for the SCA and PSCA’s three strategies. 

In the process of testing the coverage optimization 

results of different algorithms, the same monitoring 

area is used, and the structure and number of sensor 

nodes deployed are also the same. Assume that the 

monitoring area is a square two-dimensional plane A 

with a side length of 100m, i.e. 100 100 .A m m= ×  For 

processing convenience, discretize A into 100 100×  

pixels. In area A, 50 sensor nodes are randomly 

distributed, and their sensing radius are all 10 .r m=  

The population size of PSCA is consistent with the 

number of sensors, so the number of individuals is set 

to 50.N =  The algorithm iterates a total of 1000 times. 

The simulation experiments of each algorithm were 

performed 10 times independently. Table 4 shows the 

average coverage rate of the 10 experiments and Figure 

8 shows the node distribution of the 10th optimization. 

In the simulation process of dynamic deployment, 

the premature tendency of SCA and the shortcomings 

of difficulty in getting rid of local optimum are 

exposed. All this leads to poor node distribution. 

Although PSCA’s strategy 1 increases the coverage 

rate to a certain extent, the improvement is limited. 

Strategy 2’s optimization result is significantly 

improved compared to strategy 1 because it introduces 

a dominant genome which will effectively provide a 

motive force for the sustainable evolution of the 

population, thereby avoiding excessive population 

singularity and loss of evolutionary vitality. Strategy 3 

has the best performance, achieves the ideal coverage 

results, and the nodes are evenly distributed, which 

benefits from its excellent global exploration and local 

exploitation capabilities. 

6 Conclusion 

This paper first proposed parallel sine cosine 

algorithm (PSCA), involving the optimization of three 

types of objective functions: unimodal, multimodal, 

and  compos i te  func t ions .  Accord ing  to  the 

characteristics of different types of functions, three 

communication strategies are proposed. Strategy 1 is a 

simple and effective choice in the optimization of 

unimodal functions. Strategy 2 based on dominant 

genome replacement achieves the optimization of 

multimodal functions well. Strategy 3 is inspired by 

Tabu search which can deal with the optimization of 

complex functions and it can also be selected when the  
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(a) Initialization (b) SCA (c) PSCA-Strategy 1 

  

(d) PSCA-Strategy 2 (e) PSCA-Strategy 3 

Figure 8. Sensor distribution  

Table 4. Comparison of competition algorithms in coverage rate 

Algorithm Initialization SCA PSCA-Strategy 1 PSCA-Strategy 2 PSCA-Strategy 3 

Coverage Rate 81.82% 84% 88.70% 94.11% 97.30% 

 

function type is unknown. The effectiveness of the 

PSCA strategies have been tested on the benchmark 

functions. Experiment results indicated that all three 

strategies are superior to the original SCA and display 

excellent performance in the optimization process of 

corresponding types of functions. We have achieved 

the successful application of the proposed PSCA in 

WSN dynamic deployment, which further proves that 

it has high practical application value. In the next step, 

we will make more improvements on the basis of SCA 

parallelization by combining some promising methods 

[50-55]. 
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