Parallel Skeletons for Structured Composition

John Darlington

Yi-ke Guo

Hing Wing To Jin Yang

Department of Computing
Imperial College
180 Queen’s Gate, London SW7 2BZ, U.K.

E-mail: {jd, yg, hwt, jy}@doc.ic.ac.uk

Abstract

In this paper, we propose a straightforward solution
to the problems of compositional parallel programming
by using skeletons as the uniform mechanism for struc-
tured composition. In our approach parallel programs
are constructed by composing procedures in a con-
ventional base language using a set of high-level, pre-
defined, functional, parallel computational forms known
as skeletons. The ability to compose skeletons pro-
vides us with the essential tools for building further and
more complex application-oriented skeletons specifying
important aspects of parallel computation. Compared
with the process network based composition approach,
such as PCN, the skeleton approach abstracts away the
fine details of connecting communication ports to the
higher level mechanism of making data distributions
conform, thus avoiding the complexity of using lower
level ports as the means of interaction. Thus, the frame-
work provides a natural integration of the compositional
programming approach with the data parallel program-
ming paradigm.

1 Introduction

It has been recognised that effective parallel program
development requires a more structured approach that
separates the concerns of parallel computation from se-
quential computation. Such a separation allows the
task of parallel programming to focus on the parallel
coordination of sequential components [9]. This coordi-
nation based parallel programming approach is in con-
trast to the low level parallel extensions to sequential
languages where both parallel and sequential computa-
tion tasks have to be programmed simultaneously in
a unstructured way. Rather, with a powerful paral-
lel coordination mechanism, parallel programs can be
constructed systematically with the following composi-

tional properties:

e Reusability of sequential code: Parallel pro-
grams can be developed by composing existing
modules written in conventional languages.

¢ Reusability of parallel code: Complex paral-
lel programs can be written by composing parallel
modules.

e Portability: Parallel programs can be efficiently
implemented on a wide range of parallel machines
by specialised implementations of the composi-
tional operators on target architectures.

Developing parallel coordination mechanisms with nat-
ural support for structured program composition has
been one of the most important research areas in parallel
programming. The most well known example is perhaps
the Program Composition Notation (PCN) [8]. In PCN,
composition is achieved through the plugging together
of explicitly-declared communication ports. Thus the
composition of two program modules may require the
connection of several communication ports. A core set
of three primitive composition operators: parallel, se-
quential and choice composition is used in PCN to spec-
ify the control flow of processes. More sophisticated
combining forms, such as divide-and-conquer, can be
defined and implemented using this notation and pre-
served as reusable templates. In PCN, logical variables
are used as channel variables for communication syn-
chronisation based on their single assignment feature.
Based on the PCN, a class of parallel languages has
been proposed such as Fortran-M [7], where Fortran is
taken as the base language for sequential programming.
Unfortunately, this clean methodology is still quite low
level. Thus, high level compositions have to be pro-
gramed with lower level primitives concerned with pro-
cess activations, interprocess communications and pro-
cess mapping. This problem has been addressed by the
recent development of the P?L language [4]. Rather
than using a set of primitive composition operators, P3L
uses a set of parallel constructs to program composi-
tion forms. Each parallel construct in P3L abstracts

a specific form of commonly used parallelism. For ex-
ample, the map construct i1s used to compose programs
to form data parallel computation. This approach is
based on the integration of the skeleton approach [3, 5]
and the PCN model. The computational structure of
commonly used classes of algorithms are abstracted as
skeletons and parallel programming becomes instanti-
ating these skeletons. Such an integration, however, is
not smooth since the high level abstraction of parallel
computation is complicated by the lower level process
model resulting in a system which presents difficulties
for both programming and reasoning.

In this paper, we propose an alternative solution to com-
position which attempts to integrate both data and task
parallelism and maintain portability. We propose the
use of functional skeletons as a uniform approach to
abstract all essential aspects of parallelism. Applying
skeletons to coordinate sequential components provides
a structured way of composition. Using skeletons as the
means of composition removes the need to work with the
fine details of port connection. Not only is this natural
and high level, but it also enables reasoning about opti-
misations over the parallel aspects of a program through
formal transformations.

This paper is organised into the following sections. In
section 2, a structured composition language SCL is
introduced by presenting three groups of SCL skele-
tons. Compositional parallel programming examples
are presented in section 3 to illustrate the program-
ming style and expressive power of the language. A
transformation-based optimisation approach for parallel
structures defined in SCL is outlined in section 4. Sec-
tion 5 presents some performance figures from a hand
worked implementation of one of the examples. We
compare our approach with related work and summarise
our work 1n section 6.

2 SCL: A Coordination Language for
Structured Composition

We propose a structured coordination language (SCL)
where parallel programs are constructed by composing
procedures in a conventional base language using a set
of high-level, pre-defined, functional, parallel compu-
tational forms known as skeletons. Application writ-
ten in this way have a two-tier structure. The upper
layer SCL language abstracts all the relevant aspects
of a program’s parallel behaviour, including partition-
ing, data placement, data movement and control flow,
whilst the lower level expresses sequential computation
through procedures written in any sequential base lan-
guage (BL). SCL skeletons can be freely composed and
eventually instantiated with the base language compo-
nents, but the base language cannot call any of the SCL
primitives. This structure abstracts all parallel control

Array

Virtual Processors
(Configuration)
D
Partition [:::::}////////
D

Align

Figure 1: Data distribution model.

to the upper SCL level and facilitates optimisation by
transformation rules applied safely to the SCL.

In this section, the SCL language is introduced by de-
scribing its three components: configuration skeletons,
elementary skeletons and computational skeletons.

2.1 Configuration Skeletons

The basic parallel computation model underlying SCL
is the data parallel model. In SCL data parallel compu-
tation 1s abstracted as a set of parallel operators over a
distributed data structure. In this paper distributed ar-
rays are used as our underlying parallel data structure,
but this idea can be generalised to richer and higher
level data structures. Each distributed array, called a
parallel array, has the type ParArray index « where
each element is of type « and each index is of type
index. In this paper we use << ... >> to represent a
ParArray. To take advantage of locality when manipu-
lating such distributed data structures, one of the most
important issues is to specify the relative distribution
of one data structure to another, i.e. data alignment.
The importance of abstracting this configuration infor-
mation in parallel programming has been recognised
in other languages such as High Performance Fortran
(HPTF), where a set of compiler directives are used to
specify parallel configurations [10]. In SCL we abstract
control over both distribution and alignment through a
set of configuration skeletons.

A configuration models the logical division and distri-
bution of data objects. Such a distribution has several
components: the division of the original data structure
into distributed components, the location of these com-
ponents relative to each other and finally the allocation
of these co-located components to processors. In SCL
this process is specified by a partition function which
divides the initial structure into nested components and
an align function that forms a collection of tuples rep-
resenting co-located objects. This model, illustrated in
Fig. 1, clearly follows and generalises the data distribu-
tion directives of HPF. Applying this general idea to ar-
rays, the following configuration skeleton distribution
defines the configuration of two arrays A and B:

distribution (f,p) (g,q) A B

= align (p o partition f A)
(q o partition g B)

This skeleton takes two functions pairs, £ and g spec-
ify the required partitioning (or distribution) strategies
of A and B respectively and p and q which are bulk
data-movement functions specifying any initial data re-
arrangement that may be required. The distribution
skeleton is defined by composing the functions align
and partition. The skeleton partition divides a se-
quential array into a parallel array of sequential subar-
rays:

partition :: Partition pattern —
SeqArray index o —
ParArray index

(SeqArray index «)

where Partition pattern is a function of type
(indexg — indexp), where indexs is associated with
the SeqArray and indexp addresses the ParArray. The
type SeqArray is the ordinary sequential array type of
our base language. Some commonly occurring partition
strategy functions are provided as built-in functions.
For example, partitioning a 1 x m two-dimensional array
using row_block gives:

partition (row block p) A
= << ii := B ii | ii «— [1..p] >>
where
B 1 = SeqArray (1:1/p, 1:m)
[(i,3) := & (i+(di-1)*1/p, j)
| i — [1..1/p], j « [1..m]]

Other similar functions for two-dimensional arrays
are col block, rowcolblock, rowcyclic and
col cyclic.

The align operator:
align :: ParArray index a —

ParArray index [—

ParArray index («a, f3)

pairs corresponding subarrays in two distributed ar-
rays together to form a new configuration which is an
ParArray of tuples. Objects in a tuple of the configu-
ration are regarded as being allocated to the same pro-
cessor. A more general configuration skeleton can be
defined over lists of distribution strategies and arrays:

distribution [(f,p)] [d]
= p o partition f d
distribution ((f,p):fl) (d:d1)
= align (p o partition f d)
(distribution £f1 dl1)

Applying the distribution skeleton forms a configu-
ration which is an array of tuples. Each element i of
the configuration is a tuple of the form (DA, ... DA})
where n is the number of arrays that have been dis-
tributed and DA;: represents the sub-array of the jth

array allocated to the ith processor. As a short hand
rather than writing a configuration as an array of tuples
we can also regard it as a tuple of (distributed) arrays
and write it as <DA{,...,DAp> where the DA, stands for
the distribution of the array As. In particular we can
pattern match to this notation to extract a particular
distributed array from the configuration.

Configuration skeletons are capable of abstracting not
only the initial distribution of data structures but
also their dynamic redistribution. Data redistribu-
tion is uniformly defined by applying bulk data move-
ment operators to configurations. Given a config-
uration C: <DAq,...,DAp>, a mnew configuration C’:
<DA’1, ...,DAR> can be formed by applying fj to the
distributed structure D4, where £ is some bulk data
movement operator specifying collective communica-
tion. This behaviour can be abstracted by the following
skeleton redistribution:

redistribution [fq,..., fn] < DAy,..., DAp >
=< fyD4q,..., fn DAp >

SCL supports nested parallelism by allowing ParArrays
as elements of a ParArray and by permitting a parallel
operation to be applied to each of the elements of the
ParArrays in parallel. An element of a nested array
corresponds to the concept of a group in MPI [13]. The
leaves of a nested array may contain any valid sequential
data structure of the base programming language.

The following skeleton gather collects together a dis-
tributed array:

ParArray index (SeqArray index «)
— Seglrray index o

gather ::

The functions split and combine provide another pair
of configuration skeletons:

split :: Partitionpattern —

ParArray index a —

ParArray index (ParArray index «)

combine :: ParArray index (ParArray index «)
— ParArray index «
where split divides a configuration into sub-

configurations and combine is used to flatten a nested
ParArray.

2.2 Elementary Skeletons

Next, we introduce several functions, known as elemen-
tary skeletons which abstract the basic operations of the
data parallel computation model.

The following familiar functions abstract essential data
parallel computation patterns:

map :: (a—) — ParArray index a —
ParArray index [
map f << xq,...,%n >> = << £xq,...,fxn >>
imap :: (index —a — () —
ParArray index a —
ParArray index [

imap f << xq,...,%Xn >>
= << £0xq,...,fnxn >>
fold :: (¢ —a—a) —

ParArray index a — «
fold (D) << xq,...,%Xp >> = x0@D - Dxp

scan :: (a— a — «a) — ParArray index «
— ParArray index o
scan (@) << xg,Xq...,Xp >>

= << X0,X0DXq,...,X0D D xXn >>

The function map abstracts the behaviour of broadcast-
ing a parallel task to all the elements of an array. A
variant of map is the function imap which takes into
account the index of an element when mapping a func-
tion across an array. The reduction operator fold and
the partial reduction operator scan abstract tree-based
parallel reduction computation over arrays. The argu-
ment () must be associative in both cases otherwise
the result in undefined.

Data communication among parallel processors are ex-
pressed as the movement of elements in ParArrays. In
SCL, a set of bulk data movement functions (called
communication skeletons) are introduced as the data
parallel counterpart of sequential loops which rearrange
array elements. Communication skeletons can be gen-
erally divided into two classes: regular and irregular.
The following rotate function is a typical example of
regular data-movement.
rotate :: Int — ParArray Int o —

ParArray Int «

rotate k A = << 1 := A((i+k) mod SIZE(A))

| i «— [1..SIZE(A)] >>

For an m x n array, the following rotate row and
rotate_col operators express the data rotation of all
rows or columns, in which df is a function and (df i)
indicates the distance of rotation for the ith row or col-
umn to be rotated.

(Int — Int) —
ParArray (Int,Int) a —
ParArray (Int,Int) «
rotaterow df A =
<< (1,3) := A(1,(j+(af 1)) mod n)
| i — [1..m], j « [1..n] >>

rotaterow ::

(Int — Int) —
ParArray (Int,Int) a —
ParArray (Int,Int) «
rotatecol df A =
<< (i,j) = A((i+(df j)) mod m, j)
| i — [1..m], j « [1..n] >>

rotate_col ::

Broadcasting can be thought as a regular data-
movement in which a data item 1s broadcast to all sites
and is aligned together with the local data. This skele-
ton is defined as:
brdcast :: « — ParArray index § —
ParArray index (o, /)
brdcast a A = map (alignpair a) A

where align pair groups a data item with the local
data of a processor.

A variant of the brdcast operator is the function
applybrdcast:

applybrdcast £ i A = brdcast (£ A(i)) A

this skeleton applies the function f locally to the data
on the ith element and broadcasts the result.

For irregular data-movement the destination is a func-
tion of the current index. This definition introduces
various communication modes. Multiple array elements
may arrive at one index (i.e. many to one communi-
cation). We model this by accumulating a sequential
vector of elements at each index in the new array. Since
the underlying implementation is non-deterministic no
ordering of the elements in the vector may be assumed.
The index calculating function can specify either the
destination of an element or the source of an element.
Two functions, send and fetch are provided to reflect
this. Obviously, the fetch operation models only one
to one, or one to many communication. For one dimen-
sional arrays, the two functions are defined as:

send :: (Int — (SeqArray Int Int)) —
ParArray Int o —
ParArray Int (SeqArray Int «)
send f << xq,...,Xn >>
= << [xg |0 in fXk],... [xx|n in fk] >>

fetch :: (Int — Int) —

ParArray Int o —
ParArray Int o
fetch f << xq,...,%xn >>
= << [xg [fO=K],...,[xg|fn =k >>

The above functions can be used to define more com-
plex and powerful communication skeletons required by
practical problems.

2.3 Computational Skeletons: Abstracting
Control Flow

A key to achieving proper coordination is to provide
the programmer with the flexibility to organise multi-
threaded control flow in a parallel environment. In SCL,
this flexibility is provided by abstracting the commonly
used parallel computational patterns as computational
skeletons. The control structures of parallel processes
can then be organised as the composition of compu-
tational skeletons. This structured approach of process
coordination means that the behaviour of a parallel pro-
gram is amenable to proper mathematical rigour and
manipulation. Moreover, a fixed set of computational
skeletons can be efficiently implemented across various
architectures. In this subsection, we present a set of
computational skeletons abstracting data parallel com-
putation.

The farm skeleton, defined by the following functional
specification, captures the simplest form of data paral-
lelism.

farm :: (a— § —~v) — a — ParArray index [
— ParArray index v

farm f env = map (f env)

A function is applied to each object of a ParArray. The
function also takes an environment which represents
data which is common to all processes. Parallelism 1s
achieved by utilising multiple processors to evaluate the
jobs (i.e. “farming them out” to multiple processors).
The farm skeleton can be generally defined based on the
map operator of any underlying parallel data structure.

The SPUD skeleton, defined as follows, abstracts the fea-
tures of SPMD (Single Program Multiple Data) compu-
tation:

SPMD []1 = id
SPMD (gf, 1f) : fs
= (SPMD fs) o (gf o (imap 1f))

The skeleton takes a list of global-local operation pairs,
which are applied over configurations of distributed data
objects. The local operations are farmed to each pro-
cessor and computed in parallel. Flat local operations,
which contain no skeleton applications, are sequential

program fragments in a base language. The global op-
erations over the whole configuration are parallel oper-
ation that require synchronisation and communication.
Thus, the composition of gf and imap 1f abstracts a
single stage of SPMD computation where the composi-
tion operator models the behaviour of barrier synchro-
nisation.

The iterateUntil skeleton, defined as follows, cap-
tures a common form of iteration. The condition
The function
iterSolve is applied at each iteration, while the func-
tion finalSolve i1s applied when condition is satisfied.

con 1s checked before each iteration.

iterUntil iterSolve finalSolve con x
= if con x
then finalSolve x
else iterUntil iterSolve finalSolve
con (iterSolve x)

Variants of iterUntil can be used. For example, when
an iteration counter is used, an iteration can be cap-
tured by the skeleton iterFor defined as follows:

iterFor terminator iterSolve x
= fst (iterUntil iSolve id con (x, 1))
where
iSolve (x, i) = (iterSolve i x, i+1)
con (x, j) = j > terminator

3 Structured Composition in SCL

We illustrate the compositional features of SCL by pro-
gramming two examples. The first is a parallel solver
to solve a system of linear equations:

Ax =10

We use the Gauss-Jordan method with partial pivot-
ing which is a simple variant of Gaussian elimination
transforming the system of equations into an upper tri-
angular form. The algorithm iteratively scans all the
columns of the matrix. In a single iteration i, rows i
through to n are searched for the row whose i’th col-
umn has the largest absolute value. The chosen row is
then swapped with row i and used as the pivot row to
annihilate elements. The algorithm can be parallelised
by distributing the columns of the matrix and updating,
in each iteration step, all the columns in parallel. The
parallel structure of the program is expressed in SCL be-
low. The matrix is partitioned column-wise simply by
applying the partition operator. The main iteration is
specified again by the computational skeleton iterFor.

gauss A p
= iterFor p elimPivot DA
where

DA = partition [column block p] [A]
elimPivot i x = map (UPDATE i)
(applybrdcast PARTIAL-PIVOT i x)

where PARTIAL-PIVOT is the sequential procedure for
selecting the pivot and UPDATE is the sequential proce-
dure for updating based on the pivot. Parallel updating
is specified by the computational skeleton map apply-
ing UPDATE to annihilate elements of all the columns in
parallel.

The compositional power of SCL can be further il-
lustrated by the following example of a parallel sort-
ing algorithm suitable for implementation on hyper-
cube multi-processor. The algorithm, known as hyper-
quicksort [15], has a non-trivial parallel control struc-
ture including data communication, barrier synchroni-
sation and dynamic processor grouping (for nested par-
allelism). The following SCL program is a concise spec-
ification of these parallel behaviours, where A is the list
of values to be sorted in a d-dimension hypercube multi-
processor.

hypersort 4 d
= let DA = map SEQ_QUICKSORT
(partition (block 2°d) A)
in gather (hsort d DA))

hsort O DA = DA

hsort d DA
= let SubCubes
= mergeAndDiv
(exPart d (spreadPivot DA))
in

combine (map (hsort (d-1)) SubCubes)

spreadPivot
= applybrdcast MIDVALUE O

exPart d
= SPMD [(fetchPartner, SPLIT d)]
where
fetchPartner <localData, toBeSent>
= < localData recvData >
recvData = fetch myPart toBeSent
myPart i = xor(i, 27(d-1))

mergeAndDiv
= SPMD [(split (block 2), MERGE)]

The program is illustrated in Fig. 2 where the 32 val-
ues to be sorted are initially located on processor 0 (see
Fig. 2 (a)). The first step distributes the list to be
sorted evenly across 4 processors. After that the se-
quential quicksort code SEQ_QUICKSORT! is performed

T All sequential code is omitted. This can be written, for ex-
ample, in Fortran or C.

in parallel on each processor. The remaining compu-
tation is an iteration which merges locally sorted data
of corresponding processors in subcubes. Each step of
iteration is the composition of the following tasks:

1. pivot: broadcast the median value of the sequential
array on node 0. The median value is computed by
the sequential code MIDVALUE in node 0.

2. split: every processor uses the sequential code
SPLIT which takes the broadcast median as a pivot
value to split their local data into two portions.

3. exchange partner: For each processor p; in an -
dimensional cube, the processors in the lower half
of the hypercube exchange the upper portion of its
sorted vector with the lower portion of the sorted
vector in its partner in the upper half of the hyper-
cube (see Figure 2 (d) and (f))

4. merge: each processor uses the sequential code
MERGE to merge the portion it receives with the por-
tion it has kept. Thus, at each step of iteration, an
¢ hypercube is split into two sub-cubes where all
value less than or equal to the pivot are in lower
(¢ — 1)-dimensional sub-hypercube, and all values
greater than the pivot are in the upper (i — 1)-
dimensional sub-hypercube (see Figure 2 (e) and

(8))

After 4 iterations, 32 values are sorted and are collected
to processor 0.

The above examples show how parallel programs can
be systematically constructed by composing sequential
and parallel program fragments with respect to a user-
defined parallel computation structure. Therefore, SCL
provides a structured mechanism for composing pro-
grams based on the data parallel computation model.

4 Transformations for Optimisation

One of the advantages of the functional abstraction
mechanism of SCL is that meaning preserving transfor-
mation techniques can be generally applied to optimise
the parallelism specified uniformly in terms of skeletons.
Thus, with such a high level functional specification of
parallel behaviour, compile time optimisation can be
systematically realised based on a class of transforma-
tion rules. We overview some basic transformation rules
in this section.

Map Fusion: A simple but important transformation
which reduces parallel overhead is the following map
fusion law :

map £ o map g = map (f o g)

p2 | | p3 ‘ |
(a)

p0 [97,48. 16,8, 66, 4,4, 23,15, 5] pl | |

p2 [11 36(4“59 53 67 86 95 | (49 p3 [L 5 15 Io_2335 4481 | (@

p0 [8 16 17 ()[40 66 9 97 | @ p1[3947]51 54 58 65 76 82 | (a9

(©

p2[49 50 53 66(67[86 95 96 97 () p3 [51 54 58 ﬁ;\ 76 8182 | @
O]

po[8 11 16(1)[36 44 48 | @ pt [1 5 15 16]23 35 39 44 47] ()

p2 [49 50 51 53 5458 65 66 67 | p3 16 818 86 0506 07 |
(®

po[1 5 8 11 1516 1617 | pl [23 3536 39 44 44 47 48 |

p2[1150 53 95 36 67 86 44 | p3[3516 81 1 4423155 |
(b)

p0[97 4816 8 66 96 17 49 | pl [5876 54 39 8247 6551 |

P2 [49 66 96 97[50 53 67 86 95| L3 [51 5458 65 76 8281 |
(@

pO[8 1617 48[1136 44 | pl[49 47[1 5 15 16 23 35 44]

p2[4950 53 66 67[51 54 58 65 p3 [86 95 96 977681 82 |
®

pO[8 11 16 171 5 15 16 | pl[36 44 48[2335 39 44 47 |

pZ‘ ‘ P3‘ ‘
()

p0 [1.5.8, 11, 15, 16, 86. 95, 96, 97

pl‘ ‘

Figure 2: Illustration of the hyperquicksort algorithm on a 2-dim hypercube

To maintain the synchronous semantics of the system
some form of barrier synchronisation must be performed
between the two maps of the left-hand-side. This trans-
formation reduces the need to perform a barrier syn-
chronisation and provides for better load balancing.
Since the map function abstracts parallel loops (e.g. the
forall construct in HPF), this transformation law is a
functional abstraction of the loop fusion [11] technology
of conventional compiler optimisation.

Map Distribution: The following transformation,
called map distribution, is intended to increase the level
of parallelism in a program:

foldrl (f o g) = fold £ o map g

Assume that £ is associative and that g is applied to
an element before £ combines the accumulated result
and the element. Clearly, the left-hand-side is not par-
allel as the combined function (£ o g) is not associa-
tive. However, by splitting the foldr into a fold and
map the program becomes parallel. This transforma-
tion performs a very similar role to the well known loop
distribution technique presented in [11].

Communication Algebra: As all data-movement
patterns are described using functional operators, it is
possible to develop a set of rules to optimise communi-
cation. For example the rules:

send f o send g = send (f o g)
fetch £ o fetch g = fetch (g o £)

enable communication steps to be removed by combin-
ing two communication steps into one. By taking these

transformation rules as algebraic laws, a powerful com-
munication algebra is developed [6].

Flattening: Transformation can be applied to flatten
nested data parallelism. Let

sgf = gfo o map gf; o (split P)
then the rule for flattening is:

SPMD [(gfy, SPMD [(gfi, 1£1)1)] o (split P) =
SPMD [(sgf, 1f)]

With this rule, nested SPMD computation can be trans-
formed into a flat data parallel computation with a seg-
mented global function sgf. Thus, the sgf provides
the a similar functionality to the Segmented Instruc-
tions [1] used in the NESL language implementation.
More transformation rules can be found in [6].

5 Experimental Results

To assess the performance of code resulting from
this approach some initial experiments have been per-
formed. The experiments were conducted on a Fujitsu
AP1000 [12] using Fortran and MPI as the target code
for our hand compilation. MPI was chosen to ensure
future portability at the language level. The first step
was the preliminary implementation of several elemen-
tary skeletons in a problem independent manner.

Hyperquicksort, as described in section 3, was chosen
as a case study. As a SCL compiler is still under devel-
opment, the compilation route was followed by hand.
Firstly the recursive divide and conquer program was
flattened into a linear iterative program by transforma-
tion. The resulting program is shown below:

no. procs. | runtime (secs)
1 30.55
2 15.16
4 8.49
8 4.43
16 2.88
32 2.17

Table 1: Performance of hyperquicksort.

hypersort 4 d
= let
DA = map SEQ_QUICKSORT
(partition (block 2°d) A)

in iterfor d step DA

where

step i x = map MERGE

(exPart 4’ (wpivot d’ x))

d’ = d-i+1

wpivot d x
= align x pivots

where
pivots = SPMD
[(fetch (mf d4), MIDVALUE d)]
mfdi=|1/2da] x 27d
exPart d
= SPMD [(getpartner, SPLIT d)]
where

getpartner <localData, tobeSent>

= align localData partnerData
partnerData = fetch mypartner tobeSent
mypartner i = xor(i, 27(d-1))

The flattened SPMD program was then hand translated
into intermediate code. The remaining tasks were to in-
stantiate calls to the elementary skeleton templates with
the sequential code and to link these skeletons together.

The resulting code was tested on an AP1000 using a
vector of 131072 random numbers. Table 5 shows the
total execution time in seconds as the number of pro-
cessors 1s increased. A graph of the speedup is shown
in Fig. 3. Note that linear speedup is not possible with
this problem. Our achieved performance compares well
with the best speedup available for this problem.

These encouraging performance results give us confi-
dence that SCL skeletons can be efficiently implemented
as libraries or macros defined over base languages and
standard communication libraries. A prototype SCL
compiler is currently under development.

T
hyperquicksort +—
linear speedup -~

speedup

processors

Figure 3: Speedup of sorting 131072 integers on AP1000

6 Related Work and Conclusion

In this paper we have proposed a structured composi-
tion framework based on the idea of using skeletons as
a uniform mechanism for composition. The work is a
natural integration of two major families of parallel pro-
gramming: compositional languages and data parallel
programming and skeleton based parallel programming.
It stems from our original work on functional skeletons
to capture re-occurring patterns of parallel computa-
tion and is based on systematical synthesis of a class of
research activities on parallel programming including:

Pure functional languages: The side-effect free
property of functional languages makes possible to spec-
ify the meaning of skeletons in a purely declarative
way. SCL adopts the functional formalism to define the
meaning of skeletons. Functional composition provides
a natural model for synchronous composition within the
SPMD computation paradigm. However, SCL is not a
general functional programming system. By using only
pre-defined skeletons to co-ordinating and compose se-
quential computation threads, the SCL has full control
over granularity. This overcomes many of the efficiency
problems of implicit parallel functional programming.
Furthermore we abandon the use of a general functional
computational model for sequential computation. Thus,
we do not suffer from the inefficiency of general func-
tional programming.

Data parallel languages: Data parallel languages
exploit parallelism from basic aggregate data types [17].
Several examples of these for languages are the HPF
standard [10], C* [16] and NESL [2]. We adopt data
parallelism as our unit of composition. The main ad-
vantage our approach comes from the departure from
the flat parallelism approach where parallel data struc-
tures cannot be nested. However, unlike NESL which

provides a similar level of parallelism, facilities are also
provided for describing data distribution.

Compositional languages: As we discussed in the
introduction, the main problem with process oriented
compositional languages i1s the complexitys of using
ports as the means of interaction. This complexity in-
creases when expressing programs containing multiple
phases of data parallelism. This is a direct result of the
loss of the knowledge that the collection of processes is
a data structure. With SCL, we identify the idea of par-
allel configurations and parallel data structures. Thus,
process interaction can be abstracted as collective com-
munication operators between structures. Functional
composition provides a uniform means of constructing
configurations which provides a direct support for pro-
gram composition within the data parallel paradigm.
Moreover, parallel composition of concurrent tasks can
be supported by applying a concurrent constraint pro-
gramming model on the top of SCL layer. Thus, task
parallelism is supported when it is needed.

Algorithmic Skeletons: Cole [3] first proposed a so-
lution to the contradiction of elegant high level parallel
programming and efficient low level parallel program-
ming based on algorithmic skeletons. Our early work
extended the concept of skeletons and exploited the
clean relationship between skeletons and higher-order
functions in a functional language [5]. The primary
problem of the skeleton proposal was the lack of fa-
cilities for composing skeletons to define parallel struc-
tures. The major contribution of SCL to the skeleton
based parallel programming is that we developed SCL as
a functional abstraction language to define both skele-
tons and their composition forms. Thus, skeletons can
be defined and composed to abstract various parallel
computation structures.

The work by the Pisa group has also noticed the prob-
lems caused by the inability to compose skeletons [14].
However, the main focus of P3L is to connect together
skeletons whose interfaces are single streams. The SCL
approach attempts to capture a broader class of paral-
lel algorithm. As such our approach tackles problems
of data distribution as well as control distribution.

Future Work: As an exercise in developing a SCL
language, we are designing a language, Fortran-S, to
act as a powerful front end for Fortran based parallel
programming. Conceptually, the language is designed
by using Fortran as the base language. Thus, to write
a parallel program in Fortran-S, we use SCL, which is
the higher level of the Fortran-S language, to define the
parallel structure of the program. Local sequential com-
putation for each processor is then programmed in For-

tran. A prototype system based is under implementa-
tion targeted at a Fujitsu AP1000 machine [12].

Acknowledgements

We would like to thank our colleagues in the Advanced
Languages and Architectures Section at Imperial Col-
lege for their assistance and ideas. Special thanks are
due to Moustafa Ghanem for his helpful comments on
earlier drafts. The second author is supported by the
ESPRC funded project GR/H77545 “Definitional Con-
straint Programming: a Foundation for Logically Cor-
rect Concurrent Systems”.

References

[1] G. E. Blelloch. Vector Models for Data-Parallel
Computing. MIT Press, 1990.

[2] G. E. Blelloch. NESL: A nested data-parallel lan-
guage (version 3.0). Technical Report CMU-CS-94
(Draft), Carnegie Mellon University, March 1994.

[3] M. Cole. Algorithmic Skeletons: Structured Man-
agement of Parallel Computation. Pitman/MIT
Press, 1989.

[4] M. Danelutto, R. Di Meglio, S. Orlando, S. Pala-
gatti, and M. Vanneschi. The P3L language: An
introduction. Technical Report HPL-PSC-91-29,
Hewlett-Packard Laboratories, Pisa Science Cen-
tre, December 1991.

[5] J. Darlington, M. Ghanem, and H. W. To. Struc-
tured parallel programming. In Programmaing Mod-
els for Massively Parallel Computers. IEEE Com-
puter Society Press, September 1993.

[6] J. Darlington, Y. Guo, and H. W. To. Struc-
tured parallel programming: Theory meets prac-

tice. Technical report, Imperial College, 1995. un-
published.

[7] 1. Foster and K. M. Chandy. Fortran M: A lan-
guage for modular parallel programming. Journal
of Parallel and Distributed Computing, 25(1), 1995.

[8] I. Foster, R. Olson, and S. Tuecke. Productive par-
allel programming: The PCN approach. Scientific
Programming, 1(1), 1992.

[9] D. Gelernter and N. Carriero. Coordination lan-
guages and their significance. Communications of

the ACM, 35(2):97-107, February 1992.

[10] High Performance Fortran Forum. Draft High Per-
formance Fortran Language Specification, version
1.0. Available as technical report CRPC-TR92225,
Rice University, January 1993.

[11]

[12]

[13]

S. Hiranandani, K. Kennedy, and C.-W. Tseng.
Compiling Fortran D for MIMD distributed mem-
ory machines. Communications of the ACM,

35(8):66-80, August 1992.

H. Ishihata, T. Horie, S. Inano, T. Shimizu,
S. Kato, and M. Ikesaka. Third generation mes-
sage passing computer AP1000. In Iniernational
Symposium on Supercomputing, pages 46-55, 1991.

Message Passing Interface Forum. Draft Document
for a Standard Message-Passing Interface. Avail-
able from Oak Ridge National Laboratory, Novem-
ber 1993.

S. Pelagatti. A Methodology for the Development
and the Support of Massively Parallel Programs.
PhD thesis, Universita Delgi Studi Di Pisa, 1993.

M. J. Quinn. Parallel Computing: Theory and
Practice. McGraw-Hill, second edition, 1994.

J. R. Rose and G. L. Steele Jr. C*: An extended C
language for data parallel programming. Technical
Report PL 87-5, Thinking Machine Corporation,
1987.

J. M. Sipelstein and G. E. Blelloch. Collection-
oriented languages. Proceedings of the IEEE,
79(4):504-523, April 1991.

