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Abstract

The computation of selected eigenvalues and eigenvectors of a symmetric (Her-
mitian) matrix is an important subtask in many contexts, for example in elec-
tronic structure calculations. If a significant portion of the eigensystem is re-
quired then typically direct eigensolvers are used. The central three steps are:
Reduce the matrix to tridiagonal form, compute the eigenpairs of the tridiag-
onal matrix, and transform the eigenvectors back. To better utilize memory
hierarchies, the reduction may be effected in two stages: full to banded, and
banded to tridiagonal. Then the back transformation of the eigenvectors also
involves two stages. For large problems, the eigensystem calculations often are
the computational bottleneck, in particular with large numbers of processors. In
this paper we discuss variants of the tridiagonal-to-banded back transformation,
improving the parallel efficiency for large numbers of processors as well as the
per-processor utilization. We also modify the divide-and-conquer algorithm for
symmetric tridiagonal matrices such that it can compute a subset of the eigen-
pairs at reduced cost. The effectiveness of our modifications is demonstrated
with numerical experiments.
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1. Introduction

Finding the eigenvalues and eigenvectors of symmetric (Hermitian) matrices
is a classic problem in linear algebra, and computationally efficient solutions
are enormously important. Since the solution effort for the full spectrum scales
as O(n3) with matrix size n, solving an eigenproblem as part of a larger com-
putational task can easily dominate the entire workload, or can even render
the solution impossible on the most advanced computational hardware avail-
able today. We here discuss two particular improvements to the efficiency of
general-purpose eigensolvers, regarding the overall workload and the parallel
performance on platforms with thousands of CPUs. The examples in the paper
arise in large-scale, all-electron electronic structure theory, i.e., the prediction
of materials properties from the atomic scale on upwards, based only on the
“first principles” of quantum mechanics. However, all algorithms described in
this paper are general, and applicable in any field where the solution of large
eigenproblems is needed.

A central task of electronic structure theory is the solution of Schrödinger-
like eigenproblems ĤΨm = EmΨm, with Ĥ a Hamilton operator, Ψm a wave
function and Em the corresponding eigenenergy. Most frequently the ground-
state total energy of a many-electron system in a given external potential (usu-
ally due to classical atomic nuclei at fixed geometry) is sought. The most widely
used approach to this problem is Kohn-Sham (KS) density functional theory
(DFT) [1], for which a set of effective single-particle eigenvalue/eigenfunction
pairs for an eigenproblem ĤKSψl = εlψl must be found. Similar eigenprob-
lems arise in many other contexts in electronic structure theory, for exam-
ple Hartree-Fock (HF) theory [2], or in the description of optical excitations
through the Bethe-Salpeter [3] or Casida [4] equations. In KS-DFT, ψl(r) are
continuous functions in three-dimensional space. In practice, they are usually
discretized by inserting a set of basis functions {φi(r), i = 1, . . . , n} such that
ψl(r) =

∑
i cliφi(r). The result is a generalized matrix eigenproblem:

HKScl = εlScl (1)

with Hamilton matrix HKS and overlap matrix S, where S = I for some but
not all basis types. In KS or HF theory, only the lowest k out of n possible
eigenvalue/-vector pairs are needed. They correspond to those electronic “or-
bitals” which are “occupied,” and which thus contribute to the ground-state
electron density n(r) =

∑k
l=1 |ψl(r)|2. Equation (1) is only formally a linear

problem. In fact, HKS ≡ HKS[n(r)] depends on its own eigenvectors cl through
n(r). One thus seeks a particular Hamiltonian that yields as solutions the same
eigenvectors cl used to construct it in the first place—a “self-consistent” solu-
tion of (1). To find such solutions HKS and cl iteratively, (1) must be solved
successively for ten(s) of times even in the simplest case, self-consistency for
a single, fixed nuclear geometry. Hundreds of thousands (or more) iterations
may be desirable for other questions, such as long ab initio molecular dynamics
simulations, where the nuclear geometry changes with every step.
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Most importantly, the effort to solve the matrix problem (1) scales as O(N3),
where N refers to overall system size, not necessarily just the matrix size n. By
contrast, all other steps needed to set up and solve HKS can be implemented to
scale as O(N); see, e.g., [5, 6, 7, 8, 9, 10, 11]. As the system size increases, the
solution of (1) must therefore come to dominate. In practice, the crossover typi-
cally occurs for molecule or unit cell sizes of≈ 100–1000 atoms [12, 13, 14, 15, 16]
even for favorable basis sets, well within the range of interest for many appli-
cations (biomolecules, nano-electronics, defects in solids, etc.). Furthermore,
O(N3) scaling means that any larger calculations are rendered infeasible even
on the most advanced supercomputers, unless the prefactor can be reduced.
Adding to the problem is the fact that solving (1) in parallel requires quite fine-
grained, communication-intensive operations. Especially on massively parallel
computer systems with thousands of processor cores and using standard im-
plementations, this places an additional practical limitation on the calculations
that can be done.

Solving or even circumventing the solution of (1) is thus an active research
field, with many new and original contributions even in the most recent literature
[13, 14, 16, 17, 18, 19, 20, 21, 22, 23]. Among the strategies pursued in electronic
structure theory, one finds:

(i) For specific problem classes—eigenspectra with a gap between occupied
and unoccupied electronic states—the solution of (1) can be avoided altogether;
see, e.g., [10, 12, 24, 25, 26]. Where this works, O(N) scaling for systems up to
even millions of atoms has been demonstrated [27]. However, O(N) strategies
are not generally applicable. For example, the requirement for a spectral gap
excludes all metals. Likewise, any calculation where the effective single-particle
band structure εl itself is of interest of course requires a solution of (1).

(ii) Another active research area are iterative solution strategies (Lanczos,
Davidson[28]-based, locally optimal preconditioned gradient [29, 30], many oth-
ers [31, 32]), for cases where only a small fraction k/n of all possible eigenpairs
are needed (e.g., large, systematically convergeable basis types such as plane
waves or real-space grid functions). For example, a well preconditioned blocked
Davidson scheme is superior even for augmented plane wave based all-electron
DFT, with k/n ≈ 3–10% [16]. However, iterative strategies usually still require
at least one O(N3) operation [19, 13, 30, 32, 33, 16] (subspace diagonalization,
orthonormalization, matrix inversion at the outset, etc.).

(iii) A straightforward path to push the crossover point between (1) and all
other, O(N) type operations out is to reduce n, the basis size itself. Obviously,
in a system with k occupied states to be treated, n ≥ k sets a lower bound.
Nonetheless, k/n is often already in the range 10–40% for localized Gaussian-
type basis sets of quantum chemistry [2, 13]. Other choices, e.g., Slater-type or
numerically tabulated atom-centered orbitals (NAOs) (see [15] for references and
discussion), can yield essentially converged accuracy with even more compact
basis sets that still remain generically transferable. Finally, a recent localization-
based filtering approach [14, 23] contracts a large, generic basis set into a system-
dependent minimal basis (n = k), prior to solving (1). The O(N3) bottleneck
is then reduced to the minimum cost O(k3), at negligible accuracy loss.
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In practice, (iii) is attractive because, for many relevant system sizes, (1)
then does not yet dominate the overall computational effort. Therefore, robust,
conventional eigensolver strategies such as implemented in LAPACK [34] can
be used, avoiding system-specific complications such as the exact form of the
eigenspectrum, or the choice of an optimal preconditioning strategy [35, 16].
Even for (ii) and (i), though, a conventional diagonalization of some kind may
still be required or is a necessary fallback.

In general, the solution of (1) proceeds in five steps: (A) Transforma-
tion to a dense standard eigenproblem (e.g., by Cholesky decomposition of S),
HKScl = εlScl  AqA = λqA, λ ≡ εl; (B) Reduction to tridiagonal form,
A T; (C) Solution of the tridiagonal problem for k eigenvalues and -vectors,
TqT = λqT; (D) Back transformation of k eigenvectors to dense orthonor-
mal form, qT  qA; (E) Back transformation to the original, non-orthonormal
basis, qA  cl. Figure 1 shows the overall timings of these operations on a mas-
sively parallel IBM BlueGene/P system, for one specific example: the electronic
structure of a 1003-atom polyalanine peptide (small protein) conformation in
an artificially chosen, fixed α-helical geometry. The example is set up using the
“Fritz Haber Institute ab initio molecular simulations” (FHI-aims) all-electron
electronic structure package [15, 11], at essentially converged basis set accuracy
for DFT (tier 2 [15]). For (1), this means n = 27 069. The number of cal-
culated eigenpairs is k = 3 410, somewhat more than the theoretical minimum
kmin = 1 905, one state per two electrons. Steps (A)–(E) were performed us-
ing only subroutine calls as in the ScaLAPACK [36] library where available,
as implemented in IBM’s system-specific ESSL library, combined as described
briefly in [15, Sect. 4.2]. The reason is that ScaLAPACK is arguably the indus-
try standard for (massively) parallel linear algebra. ScaLAPACK provides the
driver routine pdsyevd, which calls pdsytrd, pdstedc, and pdormtr for tridiag-
onalization, solution of the tridiagonal eigenproblem and back transformation
respectively. pdstedc is based on the divide-and-conquer (D & C) algorithm,
tridiagonalization and back transformation are done using Householder trans-
formations and blocked versions thereof [37, 38]. The back transformation was
done only for the needed eigenvectors.

Our point here are some key conclusions, in agreement with reports in the
wider literature [17, 13, 39]. What is most apparent from Fig. 1 is that even for
this large matrix size, the calculation does not scale beyond 1 024 cores, thus
limiting the performance of any full electronic structure calculation with more
processors. By timing steps (A)–(E) individually, it is obvious that (B) the re-
duction to tridiagonal form, and then (C) the solution of the tridiagonal problem
using the D & C approach dominate the calculation, and prevent further scaling.
For (B), the main reason is that the underlying Householder transformations
involve matrix–vector operations (use of BLAS-2 subroutines and unfavorable
communication pattern); the magnitude of (C) is more surprising (see below).
By contrast, the matrix multiplication-based transformations (A), (D), and (E)
either still scale or take only a small fraction of the overall time.

In the present paper, we assume that step (A) already has been completed,
and step (E) will not be considered, either. We present a new parallel imple-
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Figure 1: Left: Segment of the α-helical Polyalanine molecule Ala100 as described in the
text. Right: Timings for steps (A)–(E) of a complete eigenvalue/-vector solution for this
molecule, n = 27 069, k = 3 410, as a function of the number of processor cores. The calcula-
tion was performed on an IBM BlueGene/P system, using a completely ScaLAPACK-based
implementation. Step (C) was performed using the divide-and-conquer method.

mentation based on the two-step band reduction of Bischof et al. [40] concerning
step (B), tridiagonalization; Sect. 2.1, with improvements mainly for step (D),
back transformation; Sect. 2.2. We also extend the D & C algorithm, thus speed-
ing up step (C); Sect. 3. Some additional optimization steps in the algorithmic
parts not specifically discussed here (reduction to banded form, optimized one-
step reduction to tridiagonal form, and corresponding back transformations)
will be published as part of an overall implementation in [41]. These routines
are also included in recent production versions of FHI-aims. For simplicity we
will present only the real symmetric case; the complex Hermitian case is similar.

In addition to synthetic testcases, we show benchmarks for two large, real-
world problems from all-electron electronic structure theory: first, the n =
27 069, k = 3 410 polyalanine case of Fig. 1, which will be referred to as
Poly27069 problem in the following, and second, an n = 67 990 generalized
eigenproblem arising from a periodic Pt(100)-“(5×40)”, large-scale reconstructed
surface calculation with 1 046 heavy-element atoms, as needed in [42]. In the
latter calculation, the large fraction of core electrons for Pt (atomic number
Z = 78) makes for a much higher ratio of needed eigenstates to overall basis
size, k = 43 409 ≈ 64%, than in the polyalanine case, even though the basis set
used is similarly well converged. This problem will be referred to as Pt67990.
Benchmarks are performed on two distinct computer systems: The IBM Blue-
Gene/P machine “genius” (with a maximum of 16 384 cores) used in Fig. 1, and
a Sun Microsystems-built, Infiniband-connected Intel Xeon (Nehalem) cluster
with individual eight-core nodes. We note that for all standard ScaLAPACK
or PBLAS calls, i.e., those parts not implemented by ourselves, the optimized
ScaLAPACK-like implementations by IBM (ESSL) or Intel (MKL) were em-
ployed.

2. Efficient tridiagonalization and back transformation

The two-step band reduction of Bischof et al. [40] is a promising approach
for an efficient parallel tridiagonalization of dense symmetric matrices. In this
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Table 1: Comparison of the flop-count of one-step and two-step tridiagonalization. The nb in
the one-step tridiagonalization stands for the internal blocking parameter.

Reduction Back transformation

One-step tridiag. 4
3n

3 (50% BLAS-2) +O(n2nb) 2kn2

Two-step tridiag. 4
3n

3 +O(n2b) 4kn2

approach the full matrix A of size n is first reduced to banded symmetric form
with (semi)bandwidth b. In a second step the banded matrix B is brought to
tridiagonal form. This procedure has the advantage that the vast majority of
the operations can be done with highly efficient BLAS-3 routines instead of
memory bandwidth limited BLAS-2 routines. The drawback of the two-step
approach is the additional computational effort for the second reduction step
and its back transformation respectively. While the reduction from banded to
tridiagonal form is comparatively cheap (6bn2 flops), the additional costs for
the back transformation are significant (2kn2 flops). This holds especially true
for a high number k of desired eigenvectors.

For the parallel reduction to banded form and the corresponding back trans-
formation of eigenvectors we used well established algorithms based on House-
holder transformations. We refer to [40] and [43] for further information.

In Sect. 2.1 we will briefly revisit the bulge-chasing algorithm for reducing
banded symmetric matrices to tridiagonal form [44]. In Secs. 2.2 and 2.3 we
will present new parallelization strategies for the tridiagonal-to-banded back
transformation of eigenvectors.

2.1. Reduction from banded to tridiagonal form
For the reduction of banded matrices to tridiagonal form there exist spe-

cialized algorithms which exploit the banded structure of the matrix. In [45],
Schwarz introduced an algorithm which successively decreases the bandwidth of
the matrix by one, using Givens rotations. In [44] a parallel algorithm based on
Householder transformations was presented, where b − 1 subdiagonal elements
are removed at once. This concept was generalized to a successive band reduc-
tion [46, 47]. All algorithms necessarily generate intermediate fill-in. To preserve
the banded structure, all or some of the fill-in is removed with bulge-chasing
techniques.

The bulge-chasing algorithm in [44] takes n − 2 stages to tridiagonalize a
symmetric matrix B = (bij) =: B(1) ∈ Rn×n having (semi)bandwidth b. In
the vth stage, the vth column of the band is brought to tridiagonal form. To
this end, the remaining band is treated as a block tridiagonal matrix B(v) with
B(v)

00 = bvv ∈ R1×1 and B(v)
10 = (bv+1,v, . . . , bv+b,v)T ∈ Rb×1 containing just the

first remaining column, and diagonal blocks B(v)
ββ and subdiagonal blocks B(v)

β+1,β

of size b× b for β ≥ 1 (except for smaller blocks at the end of the band). Note
that because of symmetry only the lower triangle of B(v) needs consideration.
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Figure 2: Householder vectors from the bulge-chasing algorithm for the reduction from banded
to tridiagonal form [44]. The arrows indicate the order of execution during reduction (left)
and back transformation of eigenvectors (right).

The stage is initiated by a length-b Householder transformation, which re-

duces the first remaining column to tridiagonal form: U(v)
1

T
B(v)

10 = (∗, 0, . . . , 0)T .
This transformation must be applied to the whole first block row and block col-

umn, B̄11 = U(v)
1

T
B(v)

11 U(v)
1 , B̄21 = B(v)

21 U(v)
1 , thereby filling the subdiagonal

block completely. To preserve the banded structure for future stages, at least
the zeros in the first column of B21 must be recovered with a second House-
holder transformation, and so on. More precisely, in the βth step of stage v, the
first column of the subdiagonal block B(v)

β,β−1 has been filled by the preceding

transformation, B̄β,β−1 = B(v)
β,β−1U

(v)
β−1. The next length-b transformation U(v)

β

is chosen to re-eliminate this column, U(v)
β

T
B̄β,β−1(:, 1) = (∗, 0, . . . , 0)T . This

transformation must be applied to the whole βth block row and block column,

B̄ββ = U(v)
β

T
B(v)
ββU(v)

β , B̄β+1,β = B(v)
β+1,βU(v)

β , which in turn leads to the trans-

formation U(v)
β+1. The stage is complete when the end of the band is reached,

and then the block decomposition is shifted by one row/column for the next
stage. (Thus the rows/columns affected by U(v+1)

β are shifted by one position,

as compared to those affected by U(v)
β .)

The transformations from the whole reduction and their data dependency
are sketched in Fig. 2. One column (v) of the figure contains the Householder
vectors (their nonzero entries) from one stage v of the described algorithm. The
first sweep of transformations (vectors painted white) eliminates elements of the
original banded matrix B. All other sweeps (painted in gray and black) remove
intermediate fill-in.

2.2. Tridiagonal-to-banded back transformation of eigenvectors
In the tridiagonal-to-banded back transformation all the transformations

from the banded-to-tridiagonal reduction have to be applied from the left side
to the desired eigenvectors qTi of the tridiagonal matrix,

qBi =
(∏
v,β

U(v)
β

)
qTi, i = 1, . . . , k. (2)
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For this task two different approaches have been implemented, which rely on
two different parallel data layouts. Of course the Householder transformations
are not given as matrices, but as a set of Householder vectors v, where each
vector has at most b nonzero elements: U(v)

β = I− τvvT .
The work from (2) can run perfectly in parallel, because each eigenvector

can be transformed independently. This fact has been used for the first paral-
lelization approach, where the k eigenvectors are distributed uniformly across
the p processes. For the second approach [48] the k eigenvectors are seen as a
matrix of size n × k, which is distributed in a 2D blocked manner across a 2D
processor grid with pr rows and pc columns. Each process transforms its local
part of the matrix. In the following the costs of the two approaches will be
analyzed and compared to each other. According to the data distribution, the
approaches will be called 1D- and 2D-parallelization.

For the 1D-approach each process transforms k/p eigenvectors. Thus the
computational costs are of order 2kn2/p. Additionally every process needs all
the Householder vectors from the reduction step, leading to a communication
volume of n2/2 words per process. Beside the distribution of Householder vec-
tors no further synchronization is necessary.

For the 2D-approach each process needs only a fraction of the Householder
transformations, because only the local part of the eigenvectors has to be trans-
formed. This reduces the costs for the distribution of Householder vectors to
n2/pr words and guarantees better scalability than the 1D-parallelization. Of
course we have to follow the order of the transformations from Fig. 2. Thus an
additional synchronization between vertically neighboring processes is needed.
After each of the n/b sweeps, a block of size b×(k/pc) has to be exchanged. This
leads to a communication amount of 2kn/pc words per process. A downside of
the 2D-parallelization is its poor load balancing. The lower blocks of the matrix
are affected by much more Householder transformations than the upper blocks
(see Fig. 2). This leads to load imbalances by a factor of 2 and a computation
amount of 4kn2/p for the lowermost processes.

We resolved these load imbalances with a dynamic adaptation of the parallel
data layout (Fig. 3). After each sweep, the b uppermost rows are removed from
the matrix and the data distribution is adapted accordingly. To avoid memory
imbalances, the removed rows have to be distributed uniformly to the whole
processor grid. This results in additional communication costs of size kn/pc for
the topmost processes, but the load balancing for computations and distribution
of Householder vectors more than compensates for this. Table 2 summarizes the
costs of the different parallelization approaches.

Figure 4 shows the strong scalability of the tridiagonal-to-banded back trans-
formation for the Poly27069 and Pt67990 problems on the BlueGene/P and the
Intel Nehalem cluster. For the Pt67990 problem, both parallelization strategies
perform well, because most time is spent in computations. For the Poly27069
problem, however, the 1D parallelization does not scale beyond 1 024 cores on
the BlueGene/P and much less than ideal beyond 256 cores on the Intel Ne-
halem cluster. The scalability of the 1D parallelization is limited in two ways.
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p0,0 p0,1 p0,2

p1,2p1,1p1,0

p2,0 p2,1 p2,2

⇒
p0,0 p0,1 p0,2

p1,0 p1,1 p1,2

p2,0 p2,1 p2,2

Figure 3: Dynamic adaptation of the 2D data layout.

Table 2: Comparison of different parallelization approaches for the back transformation of
eigenvectors (costs per process).

computation[flops] communication[#words]
1D 2kn2/p n2/2

2D without load balancing 4kn2/p n2/pr + 2kn/pc
2D 2kn2/p n2/2pr + 3kn/pc

First, the cost for the distribution of Householder vectors is constant and does
not decrease with p; see Tab. 2. Second, the work can be parallelized at most on
k processes. The different variants of the algorithm (WY, non-WY) and their
behavior will be described in the next subsection.

2.3. Non-WY approaches for blocking Householder transformations
The back transformation of eigenvectors can be performed using WY trans-

formations or variants thereof; cf. e.g. [37, 38]. Here nb Householder trans-
formations are combined to a blocked Householder transformation, which is
represented by matrices W and Y (Fig. 5). While the application of blocked

 1

 10

 64  128  256  512  1024 2048 4096 8192

tim
e 

[s
]

#cores

Poly27069

WY, 1D
non−WY, 1D

WY, 2D
non−WY, 2D

 100

 1000

 128  256  512  1024  2048  4096  8192

tim
e 

[s
]

#cores

Pt67990

WY, 1D
non−WY, 1D

WY, 2D
non−WY, 2D

Figure 4: Strong scalability of the tridiagonal-to-banded back transformation of eigenvectors
for Poly27069 and Pt67990 (bandwidth b = 64). Blue lines: Intel cluster, red lines: Blue-
Gene/P. The WY, 1D times for Poly27069 on BlueGene/P are above the plotting area.
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b

nb

b + nb − 1

Y W

Figure 5: Nonzero structure of the matrices W and Y during the back transformation of
eigenvectors.

Householder transformations is very efficient due to the use of BLAS-3 routines,
it also creates a lot of computational overhead compared to the non-blocked ap-
plication of the transformations. Each Householder vector has b nonzero entries.
Thus, the non-blocked application of nb such Householder transformations to k
eigenvectors requires 4kbnb flops. Due to the fact that the nonzero entries are
shifted in each Householder vector, the matrices W and Y are not of size b×nb
but (b+ nb − 1)× nb (see Fig. 5), bringing the flop count for the application of
the WY transformations from 4kbnb to 4k(b+ nb − 1)nb.

To overcome this overhead without losing the cache efficiency of BLAS-3
operations, we implemented our own optimized kernel routines [49]. We used a
widespread optimization technique, called cache blocking [50], which rearranges
the execution order of instructions within an algorithm such that the working
set fits into the cache and the number of cache misses is minimized. This means
that not all k eigenvectors are transformed simultaneously, but only a subset of
kb eigenvectors. The number kb should be set such that, first, the working set
of b × kb words fits into the (L1-)cache and, second, kb + 2 words (a vector of
length kb and one element of the current Householder vector and eigenvector)
fit into the registers to reduce the data transfer to the caches. Together with
some other optimization techniques such as loop unrolling, the optimized kernel
routines achieve very good performance.

Optimized kernels were implemented for the PowerPC 450 (BlueGene/P)
and for x86 processors. Figures 4 and 6 compare the runtime of the WY and
non-WY approach for the banded-to-tridiagonal back transformation of eigen-
vectors. The comparison of the different approaches (1D WY, 1D non-WY, 2D
WY, 2D non-WY) reveals some platform and problem size dependence in detail,
but the overall trends are clear. (i) The current 1D or 2D non-WY implemen-
tations almost always outperform the WY approaches, in particular for short
Householder vectors (small b). (ii) There is presently a cross-over between our
1D and 2D non-WY approaches as the number of cores increases, which can be
understood because the 1D approach must stop scaling as the number of cores
approaches the number of needed eigenvectors. The distribution of Householder
vectors also becomes increasingly expensive in the 1D approach. (iii) Only for
the smaller Poly27069 problem on the Intel cluster, there is an unexpected cross-
over to the 2D WY version above 256 cores. This indicates that some further
optimization can be done for the non-WY case on this platform. We speculate
that part of the reason is different behavior of overlapping communication with
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Figure 6: Runtime of the tridiagonal-to-banded back transformation for Poly27069 and
Pt67990 using different intermediate bandwidths b.

computation (MPI Isend/MPI Irecv) on the two machines.

3. Partial eigensystems of symmetric tridiagonal matrices

The current release 1.8.0 of the ScaLAPACK library [36] provides three
different methods for computing eigenvalues and eigenvectors of a symmetric
tridiagonal matrix: xSTEQR2, the implicit QL/QR method [51]; PxSTEBZ and
PxSTEIN, a combination of bisection and inverse iteration (B & I ) [52, 53]; and
PxSTEDC, the divide-and-conquer (D & C ) method [54, 55, 56]. LAPACK 3.2.2
[34] and release 3.2 of the PLAPACK library [57] also provide the new MRRR
algorithm [58, 17], which will be included in a future ScaLAPACK release as
well [59].

B & I is able to compute a subset of k eigenpairs at reduced cost, but for
clustered eigenvalues this method may take O(k2n) operations or/and lose or-
thogonality. The MRRR algorithm also can compute subsets (at cost O(kn)),
but the current implementations in rare cases fail to attain satisfying orthogo-
nality; recent research towards improving its robustness is described in [60, 61].
Compared with these two methods, QR/QL and D & C produce very good eigen-
systems, but both are designed to compute either all or no eigenvectors. In the
“all eigenvectors” case, D & C typically is much faster than QR/QL, at the
cost of 2n2 additional workspace. Therefore, in practice D & C is often used to
compute all eigenvectors, even if only a subset of them is needed.

In the following we will briefly review the D & C algorithm and show how it
can be modified to compute a subset of the eigenvectors at reduced cost.

3.1. Outline of the divide-and-conquer algorithm
To determine the eigendecomposition T = QΛQT of a symmetric tridiagonal

matrix T ∈ Rn×n, D & C proceeds as follows.
Split the tridiagonal matrix into two half-sized submatrices:

T =
(

T1

T2

)
+ ρwwT , (3)
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where T1 and T2 are of size n1 ≈ n/2 and n2 = n− n1, resp., and w ∈ Rn has
nonzeros only at positions n1 and n1 + 1.

Solve subproblems, i.e., call the D & C routine recursively to compute the
eigendecompositions T1 = Q1Λ1QT

1 and T2 = Q2Λ2QT
2 . If the subproblems

are “small enough” then QR/QL may be used instead, which terminates the
recursion. Note that by (3) we have

T = Qsub(Λsub + ρzzT )QsubT , (4)

where Qsub = diag(Q1,Q2), Λsub = diag(Λ1,Λ2), and z = QsubTw. Thus
the next steps are aimed at computing the eigendecomposition for a rank-one
perturbed diagonal matrix, Λsub + ρzzT = Q̂ΛQ̂T .

Deflate. If some components zi of z are (almost) zero then the correspond-
ing (λsub

i ,qT
sub
i ) are also (within small error bounds) eigenpairs of T. Similarly,

if two eigenvalues in Λsub are identical (or close) then a zero (or small entry) in
z can be generated by applying a sequence of plane rotations, thus again leading
to the first case. Assume that d eigenpairs can be computed cheaply in this way
and that these are permuted to the end, that is, PTRT z = (zTn ,0)T , where
RT is the product of all rotations, PT is the permutation, and zn contains the
components that cannot be made zero. Then (4) reduces to

T = QsubRP
(

Λsub
n + ρznzTn

Λsub
d

)
(QsubRP)T , (5)

that is, the size of the rank-one perturbed diagonal eigenproblem is reduced by
d (“deflation”). Note that Λsub

d ∈ Rd×d contains the deflated eigenvalues λsub
i

corresponding to a zero in PTRT z, whereas Λsub
n contains the n−d non-deflated

eigenvalues.
Solve the secular equation. The eigenvalues λi of the matrix Λsub

n +ρznzTn
are given by the solutions of the secular equation

f(λ) = 1 + ρ

n−d∑
k=1

ζ2
k

`k − λ
= 0, (6)

where ζk and `k denote the kth component of zn and the kth diagonal entry
in Λsub

n , respectively. In theory, the corresponding eigenvectors are given by
diagonal scalings q̂Ti = (Λsub

n −λiI)−1zn, but they must be computed in another
way to ensure orthogonality.

Propagate eigenvectors. According to (5), the eigenvectors of T are given
by

Q = QsubRPQ̂ =
(

Q1

Q2

)[
RP

(
Q̂n

Id

)]
.

To improve the efficiency of this computation, the matrix in square brackets

is further permuted as
(

V11 V12 0 V14

0 V22 V23 V24

)
, where the first and third

block columns contain the eigenvectors from T1 (from T2, resp.) that were not
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involved in any rotation, the fourth block column contains the deflated eigenvec-
tors, which need no further processing, and the second block column comprises
the rest. Then the update actually involves two matrix–matrix products

Q1 · (V11,V12) and Q2 · (V22,V23). (7)

Two factors contribute to the mostly excellent performance of the D & C
method: The majority of the arithmetic operations takes place in heavily opti-
mized matrix–matrix products, and deflation often leads to a significant reduc-
tion of the complexity as compared to the O(n3) worst case.

The recursive calls of the D & C algorithm correspond to a binary call tree.
The LAPACK and ScaLAPACK implementations avoid recursion by traversing
this tree in a breadth-first bottom-up order, i.e., by first splitting the matrix
into m = 2µ small subblocks, which are treated directly, then merging the
eigensystems of m/2 pairs of these, then m/4 pairs of the double-size blocks,
and so on. The final step merges two eigensystems of size-n/2 blocks. The
LAPACK implementation precedes the whole procedure with a check for irre-
ducibility (calling D & C for each irreducible block), whereas the ScaLAPACK
implementation skips this step.

3.2. Computing a subset of the eigenvectors with D & C
As pointed out above, a significant portion of the operations is done in

matrix–matrix products. Profiling reveals that the final two products (7) at the
root of the recursion tree can account for up to 70% of the total time, unless
extreme deflation takes place. In that case the matrix products contribute only
a few percent to the total time.

If only a subset of the eigenvectors is required then only these must be prop-
agated in the two products. This can be accomplished in two ways. Either only
the wanted vectors are included in (V11,V12) and (V22,V23), thus reducing
the size of the matrix products, or unwanted vectors are set to zero before the
multiplication. The latter approach reduces memory traffic, but it only works
with zero-aware xGEMM implementations.

Note that the splitting into irreducible blocks, as done in the LAPACK rou-
tine xSTEDC, requires an additional preprocessing step. First, we must determine
which eigenpairs are required from each block (e.g., eigenpairs 10 : 50 of the
whole matrix may correspond to eigenpairs 3 : 18 of the first block, eigenpairs
5 : 13 of the second, and eigenpairs 4 : 19 of the third block). This functionality
is provided by the routine xLARXI from our new MRRR implementation [60, 61].
Then the modified D & C algorithm is called for each irreducible block with the
respective sub-subset.

Figure 7 shows that this modification yields considerable savings in the serial
algorithm unless extreme deflation takes place. Similar speedups can be achieved
with the parallel implementation; see Tab. 3. If the matrix is large enough and
not too few eigenvectors are sought then the method also scales well up to large
numbers of processors; see Tab. 4.
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Table 3: Time (in seconds) for computing partial eigensystems with D & C.

128-CPU Intel cluster 1024-CPU BlueGene/P
n = 27 069 n = 67 990 n = 27 069 n = 67 990

1 eigenvector 7.0 78.5 7.3 69.2
20% eigenvectors 7.6 81.1 7.7 70.0
40% eigenvectors 10.3 100.0 9.3 79.4
60% eigenvectors 13.5 138.6 10.9 102.1
80% eigenvectors 16.4 184.7 12.7 128.8
all eigenvectors 19.4 223.9 14.3 149.1
Poly27069 (≈ 13%) 7.0 7.3
Pt67990 (≈ 64%) 148.5 105.1

Since at least 30% of D & C’s work is spent outside the two top-level matrix–
matrix multiplications, at most threefold speed-up can be achieved this way.
Thus it is natural to ask if subsets can also lead to savings at deeper recursion
levels. Unfortunately this seems not to be the case because the secular equation
(6) involves all non-deflated eigenvalues, and these are independent from the
subset.

4. Conclusions

We have presented improvements for two stages in the computation of eigen-
systems of symmetric matrices.

For the banded-to-tridiagonal back transformation of the eigenvectors, which
is necessary if a two-step tridiagonalization has been used, a dynamic 2D data
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Table 4: Time (in seconds) for computing partial eigensystems with D & C on a BlueGene/P.

512 CPUs 1024 CPUs 2048 CPUs
Poly27069 13.5 7.3 5.7
Pt67990 201.4 105.1 62.4

layout reduces the communication volume (as compared to a 1D layout) with-
out incurring significant load imbalance (as would be the case with a static
2D layout). In addition, explicit cache blocking can reduce the computational
overhead for the blocked application of the Householder transformations, as
compared to WY-based techniques. Combined, these two approaches can yield
significant improvements for the parallel efficiency, in particular for large num-
bers of processor cores, as well as for the per-processor utilization, and they
enable further large savings by using a two-step reduction to tridiagonal form.

The solution of the tridiagonal eigenproblem has been addressed, too. The
popular divide-and-conquer tridiagonal eigensolver features high speed and ac-
curacy, but it is designed to compute either all or no eigenvectors. We have
presented a modification that allows to compute partial eigensystems at reduced
cost, on serial and parallel machines.

Figure 8 summarizes our findings and improvements. As can be seen, the
vendor-optimized ScaLAPACK implementations (ESSL or MKL) always stop
scaling, even for the very large Pt67990 problem. Our present two-step imple-
mentation is clearly more efficient than even our optimized one-step implemen-
tation [41] for both problems on the Intel cluster. Only on the BlueGene/P, and
for the large problem Pt67990, does the one-step implementation remain com-
petitive, due to the large ratio of needed eigenvectors to matrix size, k/n ≈ 64%.
This indicates that the one-step tridiagonalization would be more beneficial if
all eigenpairs were needed on BlueGene/P, as expected due to the higher opera-
tions count of the two-step approach, but remarkably, the same is not necessarily
true on Intel/Infiniband.

For the measurements in Fig. 8 we used an intermediate bandwidth b = 64
on both machines. An optimal choice of b for the whole algorithm (reduction
and back transformation) depends on the matrix size n, the number of desired
eigenvectors k, the number of processes p, and last but not least on the used
hardware. A larger b allows BLAS routines to operate near peak performance
and decreases the number of messages sent, but it also increases the runtime
of the reduction from banded to tridiagonal form. Experience has shown that
b ∼ 50 is a good choice; see also Fig. 6. The choice of an optimal parameter set
will be the subject of further research.

While our research is driven by demands arising in electronic structure the-
ory, the techniques described in this paper are general and applicable to any
field where the solution of large symmetric eigenproblems is required.

15



 10

 100

 64  128  256  512  1024  2048  4096  8192

tim
e 

[s
]

#cores

Poly27069

Intel−cluster: ScaLAPACK
one−step
two−step

BlueGene/P: ScaLAPACK
one−step
two−step

 100

 1000

 128  256  512  1024  2048  4096  8192

tim
e 

[s
]

#cores

Pt67990

Intel−cluster: ScaLAPACK
one−step
two−step

BlueGene/P: ScaLAPACK
one−step
two−step

Figure 8: Overall runtime of the symmetric eigenvalue problem. The ScaLAPACK implemen-
tation pdsyevd is compared to the implementation presented in [41] (one-step) and the two-step
approach, presented in this paper. The one-step implementation as well as the two-step ap-
proach make use of the improved divide-and-conquer algorithm. For the tridiagonal-to-banded
back transformation in each case the fastest implementation was used; see Fig. 4.

References

[1] W. Kohn, L. Sham, Self-consistent equations including exchange and cor-
relation effects, Phys. Rev. 140 (1965) A1133–A1138.

[2] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Ad-
vanced Electronic Structure Theory, Dover, 1996.

[3] M. Rohlfing, S. G. Louie, Electron-hole excitations in semiconductors and
insulators, Phys. Rev. Lett. 81 (1998) 2312–2315.

[4] M. Casida, All-electron local and gradient-corrected density-functional cal-
culations of Nan dipole polarizabilities for n = 1–6, in: P. Chong (Ed.),
Recent Advances in Density Functional Methods, Part I, World Scientific,
Singapore, 1995, p. 155.

[5] J. M. Perez-Jorda, W. Yang, An algorithm for 3d numerical integration
that scales linearly with the size of the molecule, Chem. Phys. Lett. 241
(1995) 469–476.

[6] R. Stratmann, G. Scuseria, M. Frisch, Achieving linear scaling in exchange-
correlation density functional quadratures, Chem. Phys. Lett. 257 (1996)
213–223.

[7] M. Challacombe, E. Schwegler, Linear scaling computation of the Fock
matrix, J. Chem. Phys. 106 (1997) 5526–5536.

[8] C. Fonseca Guerra, J. Snijders, G. te Velde, E. Baerends, Towards an order-
N DFT method, Theor. Chem. Acc. 99 (1998) 391–403.

[9] C. Ochsenfeld, C. A. White, M. Head-Gordon, Linear and sublinear scaling
formation of Hartree-Fock-type exchange matrices, J. Chem. Phys. 109
(1998) 1663–1669.

16



[10] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys.
71 (1999) 1085–1123.

[11] V. Havu, V. Blum, P. Havu, M. Scheffler, Efficient O(N) integration for
all-electron electronic structure calculation using numeric basis functions,
J. Comp. Phys. 228 (2009) 8367–8379.

[12] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon,
D. Sanchez-Portal, The SIESTA method for ab initio order-N materials
simulation, J. Phys.: Condens. Matter 14 (2002) 2745–2779.

[13] M. J. Rayson, P. R. Briddon, Rapid iterative method for electronic-
structure eigenproblems using localised basis functions, Comp. Phys. Com-
mun. 178 (2008) 128–134.

[14] M. J. Rayson, P. R. Briddon, Highly efficient method for Kohn-Sham den-
sity functional calculations of 500–10000 atom systems, Phys. Rev. B 80
(2009) 205104–1–11.

[15] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter,
M. Scheffler, Ab initio molecular simulations with numeric atom-centered
orbitals, Comp. Phys. Comm. 180 (2009) 2175–2196.

[16] P. Blaha, H. Hofstätter, O. Koch, R. Laskowski, K. Schwarz, Iterative diag-
onalization in augmented plane wave based methods in electronic structure
calculations, J. Comp. Phys. 229 (2010) 453–460.

[17] P. Bientinesi, I. S. Dhillon, R. A. van de Geijn, A parallel eigensolver for
dense symmetric matrices based on multiple relatively robust representa-
tions, SIAM J. Sci. Comput. 27 (1) (2005) 43–66.

[18] W. N. Gansterer, J. Zottl, Parallelization of divide-and-conquer eigenvector
accumulation, in: J. C. Cunha, P. D. Medeiros (Eds.), Euro-Par 2005,
Springer, Berlin, 2005, pp. 847–856.

[19] Y. Zhou, Y. Saad, M. L. Tiago, J. R. Chelikowsky, Parallel self-consistent-
field calculations via Chebyshev-filtered subspace acceleration, Phys. Rev.
E 74 (2006) 066704–1–8.

[20] Y. Bai, R. C. Ward, Parallel block tridiagonalization of real symmetric
matrices, J. Parallel Distrib. Comput. 68 (2008) 703–715.

[21] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems,
Phys. Rev. B 79 (2009) 115112–1–6.

[22] J.-L. Fattebert, Accelerated block preconditioned gradient method for large
scale wave functions calculations in density functional theory, J. Comp.
Phys. 229 (2010) 441–452.

17



[23] M. J. Rayson, Rapid filtration algorithm to construct a minimal basis on
the fly from a primitive Gaussian basis, Comp. Phys. Commun. 181 (2010)
1051–1056.

[24] D. Bowler, T. Miyazaki, M. Gillan, Recent progress in linear scaling ab
initio electronic structure techniques, J. Phys.: Condens. Matter 14 (2002)
2781–2799.

[25] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, Introducing
ONETEP: Linear-scaling density functional simulations on parallel com-
puters, J. Chem. Phys. 122 (2005) 084119.

[26] C. J. Garcia-Cervera, J. Lu, Y. Xuan, W. E, Linear-scaling subspace-
iteration algorithm with optimally localized nonorthogonal wave functions
for Kohn-Sham density functional theory, Phys. Rev. B 79 (2009) 115110–
1–13.

[27] D. Bowler, T. Miyazaki, Calculations for millions of atoms with density
functional theory: linear scaling shows its potential, J. Phys.: Condens.
Matter 22 (2010) 074207.

[28] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices, J. Com-
put. Phys. 17 (1975) 87–94.

[29] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally op-
timal block preconditioned conjugate gradient method, SIAM J. Sci. Com-
put. 23 (2001) 517–541.

[30] F. Bottin, S. Leroux, A. Knyazev, G. Zerah, Large-scale ab initio calcu-
lations based on three levels of parallelization, Comp. Mat. Sci. 42 (2008)
329–336.

[31] D. M. Wood, A. Zunger, A new method for diagonalising large matrices,
J. Phys. A: Math. Gen. 18 (1985) 1343–1359.
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