PARALLEL SOLUTION OF SPARSE LINEAR LEAST SQUARES PROBLEMS
ON DISTRIBUTED-MEMORY MULTIPROCESSORS *

CHUNGUANG SUN f

Abstract. This paper studies the solution of large-scale sparse linear least squares problems on distributed-
memory multiprocessors. The method of corrected semi-normal equations is considered. New block-oriented parallel
algorithms are developed for solving the related sparse triangular systems. The arithmetic and communication com-
plexities of the new algorithms applied to regular grid problems are analyzed. The proposed parallel sparse triangular
solution algorithms together with a block-oriented parallel sparse QR factorization algorithm result in a highly effi-
cient block-oriented approach to the parallel solution of sparse linear least squares problems on distributed-memory
multiprocessors. Performance of the block-oriented approach is demonstrated empirically through an implementation
on an IBM Scalable POWERparallel system SP2. The largest problem solved has over two million rows and more
than a quarter million columns. The execution speed for the numerical factorization of this problem achieves over
3.7 gigaflops per second on an IBM SP2 machine with 128 processors.

Key words. parallel algorithms, sparse matrix, orthogonal factorization, multifrontal method,
least squares problems, triangular solution, distributed-memory multiprocessors

1. Introduction. The numerical solution of large and sparse linear least squares problems
1 min | Az — b}

lies at the heart of many challenging computational problems frequently arising in geodetic survey,
photogrammmetry, tomography, structural analysis, surface fitting, numerical optimization, etc.
Let A be an M x N matrix with full column rank. The QR factorization method [7] for solving (1)
first computes the QR factorization

2) A:Q(?).

Then the solution to (1) is obtained by solving the triangular system Rz = ¢, where ¢ is the first N
components of Q'b. The matrix R is referred to as the upper triangular factor of A. This method
is numerically backward stable. However, the orthogonal matrix @) needs to be retained if right
hand sides are not yet available when A is factorized. If A is large, it is often too expensive to store
Q@ in the main memory.

The method of normal equations is to solve AtAz = Atp. This method is simple but exhibits
potential numerical instability because of the loss of information in forming A!A explicitly and the
fact that the condition number of A*A is the square of that of A.

To avoid the explicit formation of A*A, the semi-normal equations R!Rz = A'b can be used
to handle new right hand sides without storing Q. Bjorck [2] has shown that the method of semi-
normal equations(SNE) is numerically unstable and proposed that a correction step or an iterative
refinement step be added to the SNE method as follows:

r—b— Az,
(3) R'RAz = Alr,
z—z+ Az,

* This work was supported in part by the Cornell Theory Center which receives funding from members of its
Corporate Research Institute, the National Science Foundation (NSF), the Advanced Research Projects Agency
(ARPA), the National Institutes of Health (NIH), New York State, and IBM corporation.

t Advanced Computing Research Institute, Cornell Theory Center, Cornell University, Ithaca, NY 14853-
3801(e-mail:csun@cs.cornell.edu, phone:607-254-8863, fax:607-254-8888).

1

Bjorck [2] has shown that this new method, the method of corrected semi-normal equations(CSNE),
is in general as accurate as the QR factorization method. However, it is not always backward stable
and may not be accurate for problems with widely different row norms. The numerical stability
of the method of normal equations and the SNE method is far less satisfactory than that of the
CSNE method.

In this paper we propose a new block-oriented approach to the parallel solution of sparse lin-
ear least squares problems on distributed-memory multiprocessors. Our approach is based on the
CSNE method. Major tasks involved are sparse QR factorization, sparse triangular solution and
sparse matrix-vector multiplication. The sparse QR factorization is computed by a block-oriented
parallel multifrontal algorithm recently introduced in [19]. New block-oriented parallel multifrontal
algorithms are presented for solving the related sparse triangular systems. The proposed parallel
sparse triangular solution algorithms use efficient parallel dense triangular solvers as their numer-
ical kernels. The storage scheme for R in the parallel sparse triangular solution is exactly the
same as that in the parallel sparse QR factorization. Performance of the new parallel sparse tri-
angular solution algorithms applied to regular grid problems is analyzed and their arithmetic and
communication complexities are presented.

The parallel algorithms for sparse triangular solution and sparse matrix-vector multiplication
together with a parallel sparse QR factorization algorithm proposed in [19] result in a highly
efficient block-oriented approach to the parallel solution of sparse linear least squares problems on
distributed-memory multiprocessors. Since the QR factorization method for solving linear least
squares problems involves only QR factorization and triangular solution, the parallel algorithms
presented in this paper can be obviously used to implement the QR factorization method in parallel
as well.

In §2, multifrontal sparse QR factorization is reviewed. New parallel sparse triangular solution
algorithms are proposed in §3. Block-oriented parallel dense triangular solvers are described in §4.
Complexity results for regular grid problems are presented in §5. Experimental results obtained on
an IBM SP2 machine are discussed in §6. Finally, concluding remarks are contained in §7.

2. Parallel multifrontal sparse QR factorization. Typically, the first task in a direct
method for solving sparse linear least squares problems is to compute a sparse QR factorization.
The multifrontal method has proved to be effective for sparse QR factorization [6, 9,12, 14]. Parallel
implementations of multifrontal sparse QR factorization have been discussed in [3, 15, 19]. Sparse
QR factorization involves the following steps:

1. Find a permutation matrix P such that AP has a sparse upper triangular factor R.
2. Determine the symbolic structure of R.

3. Perform numerical factorization—i.e., compute the numerical values of the nonzeros of R.

Step 1 and step 2 constitute the symbolic phase of the sparse QR factorization, and step 3
is the corresponding numeric phase. Assume that the columns of A have been permuted by P
determined in step 1. Since A has full column rank, A*A is symmetric and positive definite. Let
LL! be the Cholesky factorization of A*A. Then L! is equal to the upper triangular factor of A,
apart from possible sign differences in the rows. The elimination tree [13] of R is defined to be the
structure with N nodes {1,2,---, N} such that node j is the parent of node ¢ if and only if

j=min{k >1i | rj #0}.

Note that a node in the elimination tree corresponds to a row in R. The reordering and symbolic
factorization algorithms described in [5] can be applied to A*A to accomplish step 1 and step 2
stated above.

Let R; denote the structure of row j of R—i.e., the set of column indices of nonzeros in row
j of R. A supernode is defined to be a maximal set of contiguous rows {é,i+ 1,---,j} in R such
that R; = {l} UR;y1 and [is the only child of [+ 1 in the elimination tree which is postordered
fori <1 <j.

We illustrate the main ideas of multifrontal sparse QR factorization by a model problem.
Consider a k x k regular grid with (£ — 1)? small squares. Associated with each square is a set
of four equations involving the four variables at the corners of the square. The assembly of these
equations results in a sparse overdetermined system of equations Az = b, where A is a 4(k —1)? by
k? matrix. This model problem is motivated by the finite element method. A 3 x 3 regular grid with
nested dissection ordering is shown in Fig. 1. The sparsity structures of A and its triangular factor
R corresponding to the 3 x 3 grid are shown in Fig. 2. The elimination tree and the supernodal

elimination tree are illustrated in Fig. 3, where 1, 2, -- -, 7 represent the supernodes of R.
7\ />
(—(—
2) Q) 4 >
(—(—

O—0O—0

Fig. 1. A 3 x 3 regular grid with nested dissection ordering

In general, a supernode consists of a set of contiguous rows in R. Let S = {i,i+1,---,j} be a
supernode consisting of rows ¢,2+1,---,j of R. The supernode S is associated with an n x n upper
triangular matrix Fg called the frontal matriz of S, where n = |R;|. The first |S| =j — i+ 1 rows
of Fg are rows 4,2+ 1,---,j of R and are referred to as the factor rows of S. The upper trapezoidal
matrix formed by the factor rows is referred to as the factor matriz of S. The upper triangular
matrix Ug formed by the non-factor rows of Fg is referred to as the update matriz of S. Let Ag
denote the submatrix consisting of all rows of A whose first nonzeros are in columns ¢,¢ +1,---,j
with zero columns removed.

For the example discussed above, let F; and U; be the frontal matrix and the update matrix
of supernode i for 1 < i < 7. Consider how F3 is computed. The matrix Fy is formed as below:

ail a1z a7 ai18 i1 T3 Tz Ti18
a a a a U U U
(4) Ay = 21 0623 0427 ag | _ Q1F; = Qq 23 U27 U28 ,
a31 a33 az7 38 uz7 Uu3g
Q41 Q43 Q47 048 U48

where @)1 is an orthogonal matrix. The first row of Fj is the first row of R. The matrix Fo
is similarly obtained. Let Uj denote the extension of U; according to the sparsity structure of
F3—i.e.,

u23 u27 uzg 0
= ug7y ugg 0O
0

MM M M =

MM M M

34 5 6 7 8 9 2 3 4 5 6
X X x| [x X X
X X X X X
X X X p'e p'e
X X X b'e X X
p'e X X X X
X X X X X
X X X p'e
X X X
p'e X X X L
p'e X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X

Fia. 2. Sparsity structures of a sparse matriz A and its upper triangular factor R

-J

3 6
Ele

1 2 4

F1G. 3. The elimination tree and the supernodal elimination tree of R in Fig.2

T < B T B T T S B O)

MM

HMoM MK KM

The matrix Us can be similarly defined. The frontal matrix F3 is formed as follows:

Uy
(6) Us =Q3<};3),
As

where Qg is an orthogonal matrix and Ag is the extension of Ag according to the sparsity structure
of F3. Note that Ag is actually empty in this example.

In summary, a multifrontal sparse QR factorization is decomposed into a set of computational
tasks based on the supernodal elimination tree of R. A task is to form the frontal matrix of a
supernode and obtain a set of rows of R associated with the supernode. Computation starts with
the leaves of the tree and progresses toward the root of the tree. Disjoints subtrees can be processed
independently. A serial algorithm for multifrontal sparse QR factorization is illustrated in Fig. 4.

for each supernode S in a topological ordering do
let the children of S be X,Y,---,Z.

Ux
Uy

(7) - | =as (s) ,
o
4s

where (g is an orthogonal matrix.
end for

Fic. 4. A serial multifrontal QR factorization algorithm

In a parallel setting, the computational tasks are mapped onto node processors by the pro-
portional mapping scheme [16]. Assume four processors {uo, f1, p2, 3} are used for solving the
problem discussed above. Then the task of forming F% is partitioned among the four processors.
Computation of Fg is partitioned among ug and p;. Computation of Fg is partitioned among uo
and ps3. The frontal matrices Fy, Fa, Fy and Fy are computed by uq, g1, o and us, respectively.

If a task associated with a supernode S is entirely mapped to a processor u, then the frontal
matrix Fyg is entirely allocated to p. If a task associated with a supernode S is partitioned among
a set of p processors, then the frontal matrix Fg is partitioned among the set of processors by the
equal-row partioning scheme or the equal-volume partitioning scheme introduced in [19]. Briefly,
the rows of Fg are partitioned into £ > p blocks such that every block consists of a set of contiguous
rows of Fg. When the equal-row partioning scheme is used, every block contains n/k rows of Fg.
When the equal-volume partitioning scheme is used, every block contains approximately |Fs|/k
numerical values of Flg.

The symbolic phase of the sparse QR factorization involves graph-theoretic computations which
are difficult to be parallelized. Efficient and practical parallel algorithms for the symbolic phase
are not yet available. Fortunately, the symbolic phase usually takes a small portion of the overall
execution time. Therefore, the symbolic phase is performed in a serial manner. In contrast, the
numeric phase dominates the execution time for solving a sparse linear least squares problem and
must be processed in parallel. Our parallel implementation of the numeric phase is based on a

5

block-oriented parallel multifrontal sparse QR factorization algorithm proposed in [19]. At the
heart of our parallel sparse QR factorization is the parallel implementation of the numerical kernel
(7) in Fig. 4, which is described in detail in [19].

3. Parallel multifrontal sparse triangular solution. In this section we describe a new
parallel multifrontal algorithm for solving the sparse triangular systems R'Rz = ¢, a crucial step
for the CSNE method. A sparse forward substitution or sparse back substitution is decomposed
into a sequence of solutions of dense trapezoidal systems. The overall sparse triangular solution is
accomplished by processing all dense trapezoidal systems in a multifrontal framework. The main
advantages of the multifrontal method such as data locality and dense matrix computations are
fully exploited in the sparse triangular solution. The storage scheme for R in the parallel sparse
triangular solution is exactly the same as that in the parallel sparse QR factorization. No data
redistribution is needed.

Let S denote a supernode consisting of rows 41,42, - -, i, of R, where¢; 41 = ¢;+1for1 < j < m.
Let Sq = {i1,- -, tm,im+1," - ,in} denote the nonzero column indices of row i; of R in increasing
order. Let S¢ = {i1,,im} and Sy = {im41,"-,in}. The variables associated with Sy and S,
are referred to as the factor variables and the update variables of S, respectively.

An index vector is defined as a vector of integers in increasing order. Clearly, S,, Sy and Sy
defined above are index vectors. A sparse vector is represented as a dense vector and an index
vector. While the dense vector contains the numerical values of the non-zero entries of the sparse
vector, the index vector contains the indices of the corresponding non-zero entries. We use [val,ind|
to denote a sparse vector, where val is the dense vector and ind is the corresponding index vector.
Let I = {i1,---,%a} and J = {j1,---,jg} be two index vectors and I C J. The scatter of a sparse
vector [v,I] to another sparse vector [w, J] is defined as

(8) [w, J] — [w, J] & [v,1],

where wp, = wp, +vg, if i = jp for 1 < k < a. The other elements of w are not changed. The gather
of a sparse vector [w, J] to another sparse vector [v, I] is defined as

(9) [v, 1] — [v,I] < [w, J],

where vy, = wp if i = jp for 1 < k < a.

3.1. Sparse forward substitution. Assume that supernode S is defined as above. The
lower trapezoidal system associated with S is written as T¢z = d, where T is the factor matrix of
S, z is a vector of length m to be determined, and d is a vector of length n. Partition T" and d as

T=(T; T,) and d= < Zf>,

where T is an m X m upper triangular matrix and dy contains the first m components of vector d.
The vector dy is initialized with values of the right hand side vector c—i.e., d; = ¢;, for 1 < j < m.
The vector d, is initialized to zero. If S is a leaf in the supernodal elimination tree, the system
Ttz = d is solved as follows:

(10) chz =ds and d, = d, — T} 2.

The resulting vector d, represents the effects on the update variables of S by solving the factor
variables of S. The vector d, is called the effect vector of S and is denoted by e(S). If S is an
interior supernode in the supernodal elimination tree, the vector d needs to be updated by the

6

effect vectors from all children of S. Let C be a child of S. The update on the vector d by e(C)
can be described by the scatter operation defined in (8):

[d,Sa] — [d, Sa] @ [e(C), Cu].

After d has been updated by effect vectors from all children of S, the associated trapezoidal system
Ttz = d is solved as in (10). The effect vector e(S) = d,, represents the accumulated effects on the
update variables of S by solving all factor variables in the subtree rooted at S.

Let proc(S) be the set of processors among which the frontal matrix of S is partitioned. We
assume that one processor in proc(S) is responsible for scattering the effect vectors of the children
of S into the right hand side vector of the lower trapezoidal system associated with S and this
processor is denoted as scatter(S). We also assume that one processor in proc(S) stores e(S)
after the lower trapezoidal system associated with S is solved and this processor is denoted as
store_e(S). The parallel multifrontal sparse forward substitution algorithm is presented in Fig. 5,
where N' = {1,2,---, N} and parent(S) is the parent of S.

1 for each supernode S in a topological ordering do

2 [d¢,Sf] — [dg, Sf] < [¢,N], du = 0;

3 if proc(S) = {1} then

4 for each child C of S do [d,S,] < [d,S.] ® [e(C),Cul;
5 solve Ttz = d;

6 if S is not a root and u # scatter(parent(S)) then

7 send e(S) to scatter(parent(S));

8 else if u € proc(S) then

9 if p = scatter(S) then

10 for each child C of S do

11 if y # store_e(C) then receive e(C);

12 [d, Sa] < [d, Sa] & [e(C), Cul;

13 end for

14 end if

15 solve T%z = d in parallel;

16 if y = store_e(S) and S is not a root and u # scatter(parent(S)) then
17 send e(S) to scatter(parent(S));

18 end if

19 end for

F1G. 5. A parallel multifrontal sparse forward substitution algorithm on a processor .

3.2. Sparse back substitution. The upper trapezoidal system associated with supernode S
is described as Ty = z, where T is the factor matrix of S, y is a vector of length n, and 2 is the
solution vector to the lower trapezoidal system of S computed in the sparse forward substitution
phase. Partition 7" and y as

7

where T is an m X m upper triangular matrix and y; contains the first m components of vector
y. If S is not a root, the vector y, is determined from the solution vector to the upper trapezoidal
system associated with the parent of S. This is accomplished by the gather operation defined in (9):

(Y, Sul — [Yus Sul < [y,],

where J = parent(S) and y; is the solution to the upper trapezoidal system associated with J.

We assume that one processor in proc(S) stores the solution vector to the upper trapezoidal
system of S and this processor is denoted as store_s(S). We also assume that one processor in
proc(S) is responsible for gathering solution components corresponding to the update variables of
the supernode S from the solution vector to the upper trapezoidal system of the parent of S and
this processor is denoted as gather(.S). The parallel multifrontal sparse back substitution algorithm
is described in Fig. 6.

1 for each supernode S in the reverse order of a topological ordering do
2 if proc(S) = {1} then

3 if S is not a root then

4 if p # store_s(J) then receive yy, where J = parent(S);
5 [yu, Sﬂ-] - [y‘LH S‘u] < [yJa Ja];

6 end if

7 solve Ty = z;

8 else if u € proc(S) then

9 if u = gather(S) then

10 if S is not a root then

11 if y # store_s(J) then receive yy, where J = parent(S);
12 [Yus Su] — [Yu, Su] < [y1, Jal;

13 end if

14 end if

15 solve T'y = z in parallel;

16 if u = store_s(S) then

17 for each child C of S do

18 if 4 # gather(C) then send y to gather(C);

19 end if

20 end if

21 end for

Fi1G. 6. A parallel multifrontal sparse back substitution algorithm on a processor j.

4. Block-oriented parallel dense triangular solution algorithms. A number of par-
allel algorithms have been designed for solving dense triangular systems of linear equations on
distributed-memory multiprocessors [1, 4, 8, 10, 11, 17]. Most of the previous works on parallel
triangular solution have assumed that a triangular matrix is distributed to processors by single
columns or rows.

A crucial step in the parallel implementation of the CSNE method is to solve RtRz = ¢. In the
parallel multifrontal method described in §3, the solution of Ry = ¢ or Rz = y is decomposed into
a number of solutions of dense triangular systems. As shown in Fig. 5 and Fig. 6, the performance

8

of the parallel sparse triangular solution is determined by the parallel dense triangular solvers used
for accomplishing line 15 in Fig. 5 and line 15 in Fig. 6. In our approach, a triangular matrix
is distributed to a set of processors by blocks of columns or rows. This block-oriented data-to-
processor mapping is used in our parallel sparse QR factorization and is fixed prior to the parallel
sparse triangular solution phase.

In this section, we propose new parallel algorithms for solving dense triangular systems. We
demonstrate that our block-oriented parallel triangular solvers achieve significant improvement
in performance over the conventional non-block approach. We apply our block-oriented parallel
triangular solvers to the multifrontal solution of R*Rz = c and obtain a highly efficient parallel
implementation of the CSNE method for solving sparse linear least squares problems.

4.1. Parallel solution of dense lower triangular systems. Let L be an n x n lower
triangular matrix. Assume that X and B are vectors of length n. Consider the parallel solution of
LX = B on a set of p processors {pq, p1,- -, bp—1}. We partition LX = B as follows:

Lo,o Xo By
Lip Ina X1 By

: C- : - N
Lm 0 Lm,l e Lm,m Xm Bm

’

where L; ; (i > j) is an h; X h; rectangular block, and L; ; is an h; X h; lower triangular block. The
blocks X; and B; are vectors of length h;. Note that n = > ;~h;.

As fixed by our parallel sparse QR factorization [19], a dense lower triangular system LX = B
arising in solving the sparse lower triangular system R'y = c is partitioned into blocks of columns.

Specifically, the lower triangular matrix L is partitioned as L = [Ly«o Lx«1 ... Lsm], where
S
0
Lii=
" L
L Lm,l .

for 0 <4 < m. The block of columns L, ; and vector B; are assigned to the same processor which
is denoted by mapl[i]. The block mapping vector map is available on every participating processor.
A block-oriented parallel algorithm for solving LX = B is shown in Fig. 7, where myblocks is a set
of blocks assigned to a processor, and fan_in(V, mapl[i]) assigns the sum W = 3>, V' to mapli].

Two strategies for partitioning a triangular matrix on p processors are used in our parallel sparse
QR factorization. One is the equal-row partitioning scheme in which an nxn lower triangular matrix
is partitioned into k blocks each of which contains s = n/k columns. On the IBM SP2 machine,
s = [2n/(7p)] produces optimal performance for the parallel sparse QR factorization.

Another strategy is the equal-volume partitioning scheme in which an n x n lower triangular
matrix is partitioned into % blocks and the i** block is an p; x v; lower trapezoidal block, where

k—1 Vk—i—Vk—i-1
11 ; 4| ——n and v & n.
(11) P v N

On the IBM SP2 machine, £k = n/[2n/(7p)] produces optimal performance for the parallel sparse
QR factorization.

for : =0 tom do
V =0
for j € myblocks, j < i do
V=V+L;;Xj;
W = fan_in(V, mapli]);
if ¢ in myblocks then
Xi=L;}(Bi—=W);

end for

Fia. 7. A block-oriented parallel dense forward substitution algorithm

Performance results of our parallel lower triangular solver with equal-row partitioning scheme
are shown in Fig. 8. Since a block wrap mapping is used in the parallel sparse QR factorization, the
same block wrap mapping is used here—i.e., map[i] = p;, where j = 7 mod p. Block sizes equal to
1,2,---,50 are examined. The special case s = 1 gives the worst performance. For fixed p and n,
the running time initially decreases rapidly as the block size increases. Once the best performance
is achieved, the running time remains relatively constant as the block size increases. Hence it is
not necessary to determine the optimal block size exactly.

0.9

0.8 n=3000: __ _ E
| n=2000: __
! n=1000: ._._

Running Times in Seconds
o o o o o
w B (6] » ~
T T T
Il Il Il

o
o

0.1

Block Size

Fi1G. 8. Performance of a parallel dense lower triangular solver on an IBM SP2(p = 16)

For p = 16 and n = 1000, 2000, 3000, the block sizes used in the parallel sparse QR factorization
are 18,36 and 54, respectively. They are in the range of block sizes which give optimal or nearly
optimal performance for our parallel dense lower triangular solver. The same pattern is observed for
other values of p and n. In other words, the block partitions which produce the optimal performance
for the parallel sparse QR factorization also produce the optimal or nearly optimal performance
for the block-oriented dense lower triangular solver. Comparison with the cyclic algorithm [10] is
shown in Table 1, where “time” is the execution time and “mflops” is the number of mega flops

10

executed per second.

The above discussions on the parallel lower triangular solver with equal-row partitioning scheme
also apply to the parallel lower triangular solver with equal-volume partitioning scheme. Details
on the equal-volume partitioning scheme are omitted.

TABLE 1
Performance comparison of two lower triangular solvers on an IBM SP2(p=16)

Cyeclic Block

n time mflops | s time mflops
1000 | 0.077 12.994 | 18 0.016 64.078
2000 | 0.132 30.200 | 36 0.031 129.136
3000 | 0.181 49.713 | 54 0.053 171.269

We now analyze the complexity of the parallel lower triangular solver. Consider an n x n lower
triangular matrix which is partitioned into k blocks with block size s = n/k. For simplicity, we
assume that n is a multiple of k. Each step of the algorithm requires no more than [i/p] products
of s x s matrix and s x 1 vector and solution of an s x s lower triangular system. Therefore, the
algorithm requires no more than

k-1 . k-1 .
Z([3]252 +5%) = 257 Z |'3'| + ks?
=0 P i=1 P

floating-point operations. Let k = ¢p + r, where ¢ and r are non-negative integers with 0 < r < p.
It has been shown in [17] that

k-1 .

7 1

2= —(k®+kp—2k+pr+2r —2p—r?).
gupw 2p(7 p p — 1r°)

Since n = ks and s < n/p, it can be easily derived that the number of arithmetic operations
required by the algorithm is bounded above by 4n?/p.

Each step of the algorithm requires a fan-in operation. The number of floating-point numbers
communicated by a processor is bounded above by k(p —1)s = n(p — 1).

4.2. Parallel solution of dense upper triangular systems. Let U be an n x n upper
triangular matrix. Assume that X and B are vectors of length n. Consider the parallel solution of
UX = B on a set of p processors {pq, p1,--.,up—1}. We partition UX = B as follows:

Uoo Uox -+ Ugm Xo By
Ui -+ Uim X1 | | B
Um,m X‘m B‘m

where U, ; (i < j) is an n; X n; rectangular block and U; ; is an n; x n; upper triangular block. The
blocks X; and B; are vectors of length n;.

Again, as fixed by our parallel sparse QR factorization [19], a dense upper triangular system
UX = B arising in solving the sparse upper triangular system Rz = y is partitioned into blocks of

11

rows. Specifically, the upper triangular matrix U is partitioned as

UO,*
Ul,*
U= .)
Um %
where Ujx = [0 ...0 Uj; ... U] for 0 < i < m. The block of rows Uy, and vector B; are

assigned to the processor map[i]. A block-oriented parallel algorithm for solving UX = B is shown
in Fig. 9, where fan_out(Xj;, map[j]) broadcasts the vector X; to other processors.

for j =m to 0 step —1 do
if j € myblocks then
X; =U;}'Bj;
fan_out(X;, map(j]);
for i € myblocks, i < j do
B; = B; — Ui’ij;
end for

F1G. 9. A block-oriented parallel dense back substitution algorithm

Performance results of our parallel upper triangular solver with equal-row partitioning scheme
are shown in Fig. 10. As in the lower triangular solver, a block wrap mapping is used. Block
sizes equal to 1,2,---,50 are examined. Discussions and conclusions on the parallel dense upper
triangular solver are the same as those on the parallel dense lower triangular solver, and they are
omitted. Comparison with the cyclic algorithm [10] is shown in Table 2. It can be easily shown
that the arithmetic and communication complexities for the upper triangular solver are the same
as those for the lower triangular solver.

TABLE 2
Performance comparison of two upper triangular solvers on an IBM SP2(p=16)

Cyeclic Block

n time mflops | s time mflops
1000 | 0.082 12.154 | 18 0.009 114.352
2000 | 0.135 29.656 | 36 0.021 190.849
3000 | 0.194 46.444 | 54 0.032 280.444

5. Analysis of regular grid problems. The complexity analysis of our parallel sparse QR
factorization algorithm on regular grid problem is provided in [19]. In this section, we present the
arithmetic and communication complexities of the parallel sparse triangular algorithms described
in §3 on regular grid problem.

Consider the supernodal elimination tree corresponding to a k£ X k regular grid with nested
dissection ordering, where & = 2! — 1 and [is a positive integer. Let 7; = 2/=9 — 1. The charac-
terization of a heavest path in the supernodal elimination tree is given in Table 3, where n; is the
size of the frontal matrix on the heavest path at level ¢, m; is the number of factor rows in the

12

0.5

0451, n=3000:]
|

0.4—" n=2000: -
‘ n=1000: . _._

o

w

a
T

L

o
w
T

Il

Running Times in Seconds
o R
N [6)]
T
Il

o
e
ol

0.1

Block Size

FiG. 10. Performance of a parallel dense upper triangular solver on an IBM SP2(p = 16)

TABLE 3
Characterization of a heaviest path

level 2 n; m; Vi

1 0 70 D
2 T1+70 | T1 p/2
3 T1+70 | T1 p/4
4 60 +4 | T p/8
(j>2)|5m+4 | 75 p/4

3) | 7r+6| 1 | 2p/4

frontal matrix and p; is the number of processors assigned to a supernode at level . The root is
considered to be at level 1. The total number of levels is 2/ — 1. Assume that the total number of
processors p = 4%(d > 3). The number of processors assigned to a supernode at level i is p/2"~! for
1 <1 < 2d. A subtree rooted at a supernode at level 2d is entirely mapped to one processor.

Let p denote the ratio of the time for transmitting one floating-point number from one processor
to another processor to the time for one floating-point operation. Then the arithmetic and com-
munication complexities of the sparse forward substitution are Ef;l w; and E?i;l ¢;, respectively,
where

w; < 2n?/pi and ¢; < (p; — 1)n;p + 2(n; — my)p.

The term 2(n; — m;)p in ¢; represents the possible cost for communicating two effect vectors. The
overall complexity results are given in Table 2. Notice that the complexity results of the sparse
back substitution are the same as those of the sparse forward substitution.

6. Experimental results. To complete the parallel implementation of the CSNE method,
Ath and A'(b— Az) must be formed in parallel. The algorithm for computing A*(b— Az) is dictated
by the storage scheme for A. In our implementation, the matrix A is distributed among processors
by rows. If the j** row of R is mapped to processor y, then all rows from A whose first nonzeros
are in column j are mapped to processor u. If the i** row of A is assigned to processor u, the

13

TABLE 4
Arithmetic and communication complexities

Arithmetic Communication
Forward Substitution | 995162 — 1685 + O(k) | %kpp+ O(kp)
Back Substitution 99’“2—1;’52 - 168% + O(k) | 2Bkpp+ O(kp)

corresponding component b; of the right hand side vector b is also assigned to processor u. Let A,
denote the submatrix consisting of all rows of A assigned to processor x4 and b, the vector consisting
of all components of b assigned to processor .

We assume that there are p processors in the system which are numbered 0,1,---,p — 1. The
solution z computed in the previous iteration is available to all processors. Processor u computes
ry = by, — Aux, where r, is the portion of the residual vector r stored on processor u. Since
Alp = Eﬁ:{l} ALT,L, the product A*r can be obtained by a global summation after processor u forms
Alr, locally for 0 < pu < p. The product A’b = Zf;(l) AlLb, can be similarly computed.

Our parallel algorithms have been tested on an IBM SP2 machine for a collection of large-scale
structured and unstructured problems. We report our experimental results for regular grid prob-
lems, problems arising from particle methods for modelling turbulent combustion and an unstruc-
tured problem RAEFSKY3. The sparse least squares problems for modelling turbulent combustion
correspond to three-dimensional k& x k x k grids. There are a number of particles associated with
each cubic element. A particle corresponds to an equation involving the eight variables at the cor-
ners of the cubic element. Assume that a cubic element contains eight particles. The assembly of
the equations corresponding to all particles results in a sparse overdetermined system of equations
Az = b, where A is an 8(k — 1)3 by k3 sparse matrix. The regular grid problems and the three-
dimensional grid problems are ordered by nested dissection ordering. The problem RAEFSKY3
is one of the large sparse matrices maintained by Tim Davis and can be obtained by anonymous
ftp from ftp.cis.ufl.edu. It is unsymmetric and has general sparsity structure. The problem
RAEFSKY3 is ordered by minimum degree ordering.

TABLE 5
Characteristics of the test problems

Problem M N | Al |R| Megaflops
RAEFSKY3 | 21,200 | 21,200 | 1,488,768 | 12,175,976 30,217
GRID300 | 3,57,604 | 90,000 | 1,430,416 | 3,734,104 1,655
GRID500 996,004 | 250,000 | 3,984,016 | 11,709,081 7,530
CUBE27 140,608 | 19,683 | 1,124,864 | 4,665,657 8,029
CUBEA40 474,552 | 64,000 | 3,796,416 | 24,626,969 83,889
CUBES50 941,192 | 125,000 | 7,529,536 | 62,819,416 | 322,646
CUBEG60 1,643,032 | 216,000 | 13,144,256 | 133,958,505 954,870
CUBE65 | 2,097,152 | 274,625 | 16,777,216 | 186,600,885 | 1,547,438

Our experiment is to solve these sparse linear least squares problems by the CSNE method.
The characteristics of the test problems are shown in Table 5, where M is the number of rows, N
the number of columns, |A| the number of nonzeros in matrix A, |R| the number of nonzeros in
factor R. “GRIDE” represents a k x k grid. “CUBEE” represents a three-dimensional k£ x k X k
grid. “Megaflops” is the actual number of megaflops performed in the multifrontal sparse QR
factorization of A.

14

TABLE 6

Running times in seconds of the parallel algorithms on an IBM SP2

problem p | qrtime | mflops | fe_time | bs_time | mv_time | gs_time | speed_up
4 | 140.688 166 0.339 0.283 0.055 0.030
RAEFSKY3 | 8 83.264 | 314 0.206 0.166 0.030 0.036
16 49.561 576 0.137 0.115 0.017 0.041
32 29.321 | 1031 0.114 0.111 0.010 0.063
1 44.152 37 0.990 0.836 0.209 0.0 1.00
2 22.232 74 0.512 0.435 0.115 0.071 1.99
GRID300 4 11.390 145 0.273 0.230 0.058 0.128 3.88
8 6.465 256 0.152 0.132 0.029 0.135 6.47
16 3.778 | 438 0.104 0.086 0.029 0.170 11.69
32 2.191 755 0.097 0.061 0.020 0.195 20.15
4 43.052 175 0.761 0.603 0.170 0.339
GRID500 8 25.099 300 0.424 0.373 0.093 0.360
16 13.862 543 0.266 0.210 0.069 0.398
32 7.764 | 970 0.184 0.147 0.050 0.473
1 | 145.048 55 0.447 0.386 0.136 0.0 1.00
2 73.013 110 0.231 0.198 0.064 0.015 1.99
CUBE27 4 38.591 208 0.125 0.105 0.035 0.027 3.76
8 19.910 | 403 0.072 0.062 0.018 0.033 7.29
16 12.572 639 0.052 0.043 0.010 0.040 11.54
32 7.137 | 1125 0.042 0.041 0.006 0.044 20.32
8 | 211.053 397 0.325 0.269 0.055 0.104
CUBEA40 16 | 122.984 | 682 0.196 0.164 0.034 0.119
32 68.699 | 1221 0.134 0.121 0.018 0.131
64 39.611 | 2118 0.119 0.124 0.012 0.143
32 | 255.945 | 1261 0.304 0.262 0.038 0.380
CUBE50 64 | 149.961 | 2152 0.234 0.254 0.024 0.286
128 | 99.758 | 3234 0.268 0.594 0.025 0.713
CUBEG60 64 | 424.921 | 2247 0.402 0.371 0.039 1.041
128 | 255.275 | 3740 0.455 0.457 0.029 2.379
CUBESG65 128 | 415.517 | 3724 0.757 0.812 0.039 2.693

15

All programs are written in C and no assembler code is used. Double-precision floating-point
arithmetic is employed. A flop is either a multiplicative or an additive operation. The number of
flops performed by a processor is obtained by counting the actual number of flops performed by
that processor.

The running times on an IBM SP2 machine are shown in Table 6. The “qr_time”, “fe_time”,
“bs_time”, “mv_time” are the running times in seconds for numerical factorization, forward substitu-
tion, back substitution, and the local portion of the matrix-vector product A*(b— Az), respectively.
The “gs_time” is the time spent on global summation for computing the matrix-vector product
At(b — Az). The last column represents the speed-ups for those problems which are small enough
to be run on a single processor. The SP2 nodes used in our experiments are “thin” nodes which
are roughly equivalent to RS/6000 model 390. A thin node has 66.7 MHz clock speed, 64 Kbytes
data cache, 64 bit memory bus and 128 Mbytes of memory space.

A running time is obtained by measuring the time spent on each processor and taking the
maximum time spent on a processor. Due to insufficient storage space on node processors, some
test problems can not be run on small number of processors. The running time for a problem
on one processor is the time spent by the best serial algorithm we have for that problem on one
processor.

The performance reults shown in Table 6 are obtained with the equal-volume partitioning
scheme. The performance of the equal-row partitioning scheme is slightly worse than that of the
equal-volume partitioning scheme. The efficiency of the overall sparse triangular solution including
both forward substitution and back substitution is demonstrated by the fact that the triangu-
lar solution time is a very small fraction of the execution time of the highly efficient numerical
factorization phase.

The numerical accuracy of the CSNE method is illustrated in Table 7. The numerical values
of our test matrices are randomly generated values in (-1,1). The true solution z is given as
z; = 2.0+ (i — 1)/1000.0 for (1 < ¢ < N) and the right hand side b is set to Az. In Table 7,
6x = x — %, where Z is the computed solution. The four rows of results for each problem represent
the solution of the semi-normal equations and results of three iterative refinement steps. In practice,
maximal accuracy is often achieved within 1-3 iterative refinement steps [14].

TABLE 7
Numerical accuracy

problem | [léz|x | [[6z]2/[lz]l2 | [62[loo
1.6723e-09 | 5.278le-16 | 2.9843e-13

GRID300 | 1.1723e-10 | 6.6784e-17 | 4.2633e-14
3.6702e-11 | 3.5425e-17 | 2.8422e-14
1.8918e-11 | 2.5067e-17 | 2.8422e-14
1.4873e-10 | 8.9103e-16 | 9.5923e-14

CUBE27 | 6.4135e-12 | 6.7688e-17 | 7.1054e-15
1.3531e-12 | 2.9442e-17 | 3.5527e-15
3.6526e-13 | 1.4910e-17 | 3.5527e-15

7. Concluding remarks. We have described an efficient block-oriented approach to the par-
allel solution of sparse linear least squares problems on distributed-memory multiprocessors. Our
approach is based on the method of corrected semi-normal equations. The required parallel sparse
QR factorization is discussed in [19]. Central to our approach are highly efficient block-oriented
parallel multifrontal algorithms for solving the related sparse triangular systems. The idea of solv-

16

ing sparse triangular systems in a multifrontal manner is also considered in the context of solving
systems of sparse linear equations [18]. The parallel sparse QR factorization algorithm [19] and the
parallel sparse back substitution algorithm described in section 3 can also be used to implement the
QR factorization method [7] for solving sparse linear least squares problems as discussed in [20].

Acknowledgements. I would like to thank Professor Thomas F. Coleman for many discus-
sions relating to this work and for his helpful comments on the manuscript.

REFERENCES

[1] R. H. BISSELING AND J. G. G. VAN DE VORST, Parallel triangular system solving on a mesh network of
transputers, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 787-799.

[2] A. BIORCK, Stability analysis of the method of seminormal equations for linear least squares problems, Linear
Algebra Appl., 88/89 (1987), pp. 31-48.

[3] E. CHU AND J. A. GEORGE, Sparse orthogonal decomposition on a hypercube multiprocessor, SIAM J. Mat.
Anal. Appl,, 11 (1990), pp. 453-465.

[4] S. C. EisenstaT, M. T. HEATH, C. S. HENKEL, AND C. H. ROMINE, Modified cyclic algorithms for solving
triangular systems on distributed-memory multiprocessors, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 589—
600.

[6] J. A. GEORGE AND J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall,
Englewood Cliffs, NJ, 1981.

6] , Householder reflections versus Givens rotations in sparse orthogonal decomposition, Linear Algebra and
its Appl., 88/89 (1987), pp. 223-238.

[7] G. GoLUB, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), pp. 206-216.

[8] M. T. HEATH AND C. H. ROMINE, Parallel solution of triangular systems on distributed-memory multiprocessors,
SIAM J. Sci. Stat. Comput., 9 (1988), pp. 558-588.

[9] J. G. Lewis, D. J. PiercE, AND D. K. WaH, Multifrontal Householder QR factorization, Tech. Report ECA-
TR-127, Boeing Computer Services, Seattle, WA, November 1989.

[10] G. L1 aND T. F. CoLEMAN, A parallel triangular solver for a hypercube multiprocessor, STAM J. Sci. Stat.
Comput., 9 (1988), pp. 485-502.

, A new method for solving triangular systems on distributed-memory message-passing multiprocessors,
SIAM J. Sci. Stat. Comput., 10 (1989), pp. 382-396.

[12] J. W. H. Liu, On general row merging schemes for sparse Givens transformations, SIAM J. Sci. Stat. Comput.,
7 (1986), pp. 1190-1211.

[13] ———, The role of elimination trees in sparse factorization, SIAM J. Mat. Anal. Appl., 11 (1990), pp. 134-172.

[14] P. Marstowms, Sparse QR Factorization with Applications to Linear Least Squares Problems, PhD thesis,
Link6ping University, Sweden, 1994.

[15] P. E. PLASSMANN, Sparse Jacobian estimation and factorization on a multiprocessor, in Large-Scale Numerical
Optimization, T. F. Coleman and Y. Li, eds., STAM, Philadelphia, 1990, pp. 152-179.

[16] A. PorHEN AND C. SUN, A mapping algorithm for parallel sparse Cholesky factorization, SIAM J. Sci. Comput.,
14 (1993), pp. 1253-1257.

[17] C. H. ROMINE AND J. M. ORTEGA, Parallel solution of triangular systems of equations, Parallel Computing, 6
(1988), pp. 109-114.

[18] C. SuN, Efficient parallel solutions of large sparse SPD systems on distributed-memory multiprocessors, Tech.
Report CTC92TR102, Advanced Computing Research Institute, Center for Theory and Simulation in Sci-
ence and Engineering, Cornell University, Ithaca, NY, Aug. 1992.

[19] ——, Parallel sparse orthogonal factorization on distributed-memory multiprocessors, Tech. Report CTC93
TR162, Advanced Computing Research Institute, Center for Theory and Simulation in Science and En-
gineering, Cornell University, Ithaca, NY, Dec. 1993. (Revised, To appear in STAM Journal on Scientific
Computing).

[20] ———, Parallel multifrontal solution of sparse linear least squares problems on distributed-memory multiproces-
sors, Tech. Report CTC94TR185, Advanced Computing Research Institute, Center for Theory and Simu-
lation in Science and Engineering, Cornell University, Ithaca, NY, July 1994.

[11]

17

