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A b s t r a c t .  We consider a type of recurrence equations called "Simple 
Indexed Recurrences" (SIR) wherein ordinary recurrences of the form 
X[i] = op i (X[ i -  1],X[i]) (i = 1 . . . n )  are extended to 
X[g(i)] = opi(X[f(i)],X[g(i)]), such that  op~ is an associative bi- 
nary operation, f , g  : { 1 . . . n }  ~-~ { 1 . . . m }  and g is distinct. 1 This 
extends our capabilties for parallelizing loops of the form: for i ---- 1 
to n { X[i] = o p i ( X [ i -  1],X[i]) } to the form: for i ---- 1 to n { 
X[g(i)] = op~(X[f(i)],X[9(i)]) }. An efficient solution is presented for 
the special case where we know how to compute the inverse of op~ oper- 
ator. The algorithm requires O(log n) steps with O(n/log n) processors. 
Furthermore, we present a practical and a more improved version of the 
non-optimal algorithm for SIR presented in [1] which uses repeated iter- 
ations of pointer jumping. A sequence of experiments was performed to 
test the effect of synchronous and asynchronous message-passing execu- 
tions of the algorithm for p < <  n processors. This algorithm computes 
the final values of X 0 in ~ �9 logp steps and n �9 logp work, with p proces- 
sors. The experiments show that  pointer jumping requires O(n) work in 
most practical cases of SIR loops, thus forming a more practical solution. 

1 I n t r o d u c t i o n  

O r d i n a r y  recurrence equa t ions  of the  fo rm X~ = o p i ( X i - l , X i )  i = 1 . . . n  can 
be genera l ized  to wha t  we refer to as Indexed  Recurrence (IR) equa t ions .  In  
I R  equat ions ,  genera l  indexing  funct ions  of the  form Xg(o = opi (X/ ( i ) ,Xg( i ) )  
rep lace  the  i, i - 1  indexing  of the  o rd ina ry  recurrences .  Efficient pa ra l l e l  so lu t ions  
to  such equa t ions  can be used to  para l le l ize  sequent ia l  loops  of the  fo rm:  

for i = 1 to n { X[g(i)] = opi(X[f(i)],X[g(i)]) } 

if  the  fol lowing condi t ions  are met :  

1. opi(x, y) is any  segment  of  code t h a t  is equivalent  to  a b i n a r y  assoc ia t ive  
ope ra to r  and  m a y  be  dependen t  on i. 

2. the  index func t ions  f , g  : {1..n} ~ {1. .m} do not  include references to  
e lements  of the  X ~  array.  

1 This paper  is a continuation of the work on IR equations presented in [1]. 
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3. the index function g is distinct, i.e., for every indexes i , j  if i = j then 
g(i) : g(j). 

In practice, such solutions can be used to parallelize sequential loops within 
given source code segments. 

2 A n  E f f i c i e n t  S I R  A l g o r i t h m  f o r  t h e  C a s e  W h e r e  t h e  

I n v e r s e  o f  opi  is  K n o w n  

In this section we describe an efficient parallel algorithm for S I R  loops, providing 
we know how to compute the inverse operation op{ 1. The algorithm requires 
O(logn) steps with O(n/logn) processors. 

The first step in the algorithm is to translate the S I R  loop into its upside 
down tree representation T, in which every vertex i (1 < i < n) represents the 
g(i) index and every edge e : {i, j}  represents the dependency opi(Xg(j), Xg(i) 
where g(j) = f(i) and j < i. For example consider the following upside-down 
tree representation of a S I R  loop: 

X[l..n] initializ,4 by A[I]... A[n] 

X[l] := A[I] X[4] : =  X[3]' X[4] 
X[2I := XD] " x[2l X[M := x[3l" X[~] 
X[a] := XD]" X[3] X[6] := X[3]" X[6] 

A S I R  Loop for i ~ 1 . . , 6 A n  U p s i d e - d o w n  T r e e  R e p r e s e n t a t i o n  of  t h e  l o o p  

We then apply the Euler Tour circuit on T in order to compute all the prefixes 
of the vertices in T. An Euler Tour in a graph is a path that  traverses each 
edge exactly once and returns to its starting point. The Euler tour circuit which 
operates on a tree assumes that the tree is directed and that  it is represented 
by an Adjacency List. In the directed tree version TD of T, each undirected 
edge {i, j )  in T has two directed copies - one for ( i , j )  and one for (j, i). For 
example, consider the directed version of the tree for the above example, and its 
Adjacency List representation: 

1 : (1,  3) --* (1,  2) --4" N d  
2 : (2,  I )  --+ /Vii 
3 : (3, 1) -~ (3, 4) ~ (3, 5) ~ (3, 6) --* ~v~z 
4 : (4,  3) --~ N i t  

5 : ( s , 3 ) ~  N i t  
6 : (6,  3) --.)- N d  

T D - T h e  D i r e c t e d  V e r s i o n  of  T A d j a c e n c y  L i s t  R e p r e s e n t a t i o n  of  T D 

Our main concern when coming to construct the adjacency list of To, is finding 
the list of all the children of each vertex i in TD efficiently; i.e., finding all vertices 
j < i which satisfy that g(j) = f(i). Sorting all the pairs < f(1) ,  g(1) > , . . . ,  < 
f(n), g(n) > using f(i) as the sorting key, will automatically group together all 
vertices which have the same parent. The  sorting process can be done efficiently 
using the Integer Sort algorithm [3] which operates on keys in the range of [1..n]. 

After the adjacency list of To is formed, we can construct the Euler tour of 
TD in a single step according to the following rule: 

Next(u, v) if Next(u, v) • Nil 
EtourLink(v, u) = AdjList(u) Otherwise 
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by allocating a processor to each pair of edges (v, u), (u, v) in TD. 
Once the Euler tour of To is constructed, in the form of a linked list, we can 

compute  the prefixes of all the vertices of To,  using the efficient parallel prefix 
algori thm on the linked list [2], after initializing all the edges of the tree with 
the following weights: 

- The weight of each forward edge < f ( i ) i y ( i )  > in To is initialized by Ag(i), 
where A is the array of initial values of the X array of S I R .  

- The weight of each backward edge < g(i), f ( i )  > is initialized by the inverse 
value Ag(~). 

% A i, 

E u l e r  T o u r  of  T D w i t h  i n i t i a l  weights 

X [ 1 ]  ---- A[1]  
X [ 2 ]  = A [ 1 ] ,  A [ 2 ]  
X [ 3 ]  ----- A [ 1 ] .  AI2]/A[2] �9 A[3]  
X [ 4 ]  = A[1]  . A [ 2 ] / A [ 2 ]  . A [ 3 ] "  A[4]  
X [ 5 ]  = A[1]  . A [ 2 ] / A [ 2 ]  . A[3]  - A [ 4 ] / A [ 4 ]  �9 A[5]  
X [ 6 ]  ----- A[1]  �9 A [ 2 ] / A [ 2 ]  . A[3]  - A [ 4 ] / A [ 4 ]  �9 A [ 5 ] / A [ 5 ]  . A[6]  

T h e  P r e f i x e s  for  e a c h  v e r t e x  

3 P a r a l l e l  S o l u t i o n  f o r  S I R  b y  U s i n g  P o i n t e r  J u m p i n g  

Consider for example the SIR problem A'[2i] := A'[i + 1]-A'[2i]; (for i = 1, 2..n) 
where g(i) = 2i and f ( i )  = i+1. The final values of each element A'[i] is a product  
of a varying number  of items. We refer to this sequence of multiplications of every 
element i in A'[] as the t r a c e  of A'[i]. In general the trace of each element A'[g(i)] 
satisfies that  for all i = 1 . . . n :  A'[g(i)] = A[ f ( j k  )] (~ . . . �9 A [ f ( j l  )] (~ A[g( i)] such 
that:  

- j l = i .  

- for t = 2 . . .  k the indices jt satisfy that jt < jr-1 and g(j,) = f ( j t -1) .  
- jk is the last index for which g(Jd = f (J~-0 ,  i.e., there is no 1 <__ jk+t < jk such 

that g(jk+~) = f(jk).  

The above rule suggests a simple method for comput ing W[g(i)] in parallel. 
Let A-t[g(i)] denote the sub-trace with t + 1 r ightmost  elements in the trace 
of A'[g(i)], i.e., A-t[g(i)] = A[ f ( j k - t ) ]  @ . . .  | A[f(i)] G A[g(i)], and now con- 
sider the c o n c a t e n a t i o n  (or m u l t i p l i c a t i o n )  of two "successive" sub-traces: 
A-(tl+t2)[g(i)] = A - t l  [g(j)] | A -t2 [g(i)] where g(j) = f ( j k - t 2 )  and A[f ( jk - t2)]  
is the last element in A -t2[g(i)]. 

The proposed algorithm (as shown in [1]) is a simple greedy algori thm tha t  
keeps iterating until all traces are completed. In each i teration all possible con- 
catenations of successive sub-traces are computed in parallel where the con- 
catenation operation of sub-traces A - t t  [g(j)], A -t~ [g(j)] can be implemented as 
follows: 

1. The value of a sub-trace d-t[g(i)] is stored in its array element A[g(i)]. 
2. A pointer Next[g(i)] points to the sub-trace A-t~[g(j)] to be concatenated to 

A-~2[g(i)] (to form A -(tl+t2) [g(i)]). Hence, A[Next[g(i)]] contains the value of the 
sub-trace A -tl  [g(j)]. 
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Following is the code of an improved and a more practical version of the al- 
gorithm for which we ran our experiments with p < <  n processors. The new 
algorithm improves the above algorithm in the following points: 

- It works with compressed array of size n (the number of loop iterations) 
instead of the original array size, which is of size m > n, by mapping every 
A'[9(i)] element to an auxiliary array X[i]. 

- The index function f(i) is transformed to a decreasing function which never 
refers to future indexes of X~ .  This reduces the total number of iterations 
required by the algorithm from an order of logn to logp, improving the 
execution time to p logp. Suppose each processor computes ~ traces and 
uses a sequence of passes wherein it calculates the traces sequentially one 
after another. Since f 0  always points backwards to earlier elements in the 
input array, then after each step i we already have the final values of the 
f i r s t  2 i elements, requiring a total of logp steps in order to complete the 
entire array of size n. The same argument however, does not hold for the 
case where fO can refer to future elements in the array. 

Input: I n i t i a l i z e d  Arrays A [ 1 . . m ] ,  g [ 1 . . m ] ,  f [ l . . r n ] ,  @. ( w h e r e  (9 is  a b i n a r y  a s s o c i a t i v e  o p e t - a t o r )  

Output: Array X [ 1 . . n ]  ~here X [ , ]  r i l l  k01d the .a lue  of A[g[il] 
at the end of the I I  loop. 

I n i t i a l i z e  A,xi l la ry  Arrays X [ 1 . . n ] ,  G [ 1 . . m ] ,  Next[1..n] to zero. 

f o r a l l  t E { 1 . . n }  do in para l l e l  
Gig[ i ] ]  :• i;  ( T h e  a u x l l a r y  a r r a y  G r e p r e s e n t s  t h e  i n v e r s e  o f  g, i . e .  G[ t ]  _= 9 - - 1 ( t ) )  

e~d p a r a l l e l - f o r  

forall i E {l,.n} do ia para l l e l  
u := G[/ ' [ i ] ] ;  (The i t e r a t i o n  w h e r e  A / [ , f ( t ) ]  w a s  m o d i f i e d  b y  t h e  l o o p ) .  
i f  (u > ~ or u = O) { ( T h e  t r a c e  o f  A t [ g ( t ) ]  i s  o f  s i z e  t w o . )  

x [ , ]  :=  A[ I [ , ] ]  (9 A[g[ , ] ] ;  ( |  . . . .  A ' [ 9 ( * ) ]  = A [ f ( , ) ]  (9 A[g(i)].) 
N e x t [ t l  := 0; 

} ~l.e { 
i f  (f[U] ~ f[t] or f[u] = O) { (The trace of At[f(,)] is of size three,) 

X[i] :=  A [ / [ u l ]  �9 A i r [ i l l  (9 A[g[i]]; 
Ne~t[i] :=  0; 

} else  { ( T h e  t . . . . .  f A / [ g ( , ) ]  i s  o f  , i z e  g r e a t e r  t h a n  t h  . . . .  ) 
x[i] :=  A [ I [ i l ]  6) Aig[i]]; 
Next[,] := l[u]; 

} 
} 

end parallel-for 

I n i t i a l i z a t i o n  S t e g e  

for  t = 1 to  l o g  n do ( T h e  a l g o r i t h m  p e r f o r m s ,  a t  m o s t ,  l og  n i t e r a t i o n s )  u D d a t l n g )  
f 0 r a l l  i ~ { (2  ~ - 1  + 1 ) . . n }  do in p a r a l l e l  

i f  (Next[i] > 0) then { ( A p p l y  t h e  e o n c a t e n a t l o n  o p e r a t i o n  f o l l o w e d  b y  t h e  p o i n t e r  
X b ]  :=  X [ N e x t I ' ] ]  e x b ] ;  

} N e x t [ i ]  :m Next[next[t]]; 

T h e  c o d e  for  t h e  t e r a t i o n  p h a ~ e s  

4 E x p e r i m e n t a l  R e s u l t s  f o r  M e s s a g e  P a s s i n g  S y n c  a n d  

A s y n c  S I R  

For the message-passing version of SIR we assume that the initial values A[1..rn] 
are partitioned between the processors, with each processor holding ~ elements. 
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Thus the first step is for each processor to fetch the O(~) elements of A[] that  
it will use during the initialization stage. Each processor will sort the requested 
elements according to their processor destination, and then fetch them using p 
"big-messages" (i.e., using message packaging). Two variants of this algorithm 
have been tested: 

S y n c  SIR:  where all processors compute one iteration of the main loop syn- 
chronously. 

A s y n e  S I R ( k ) :  where each processor performs 1 iterations of the main-loop 
before passing the control to the next processor. The number l is chosen 
randomly (every time) from the range 1 . . . k ,  where k is the parameter  of 
the algorithm. Thus, by choosing different values of k we can change the 
amount of asynchronous deviation of the execution. 

We simulated different nmnbers of processors, p = 4, 8, 16, 32, 6"1,128,256,512, 1024 
with n -- 500,000. The simulation of the algorithm was made on a sequential 
machine, since this allowed us an exact and simple measure of the total  size of 
generated messages (communication), the work (in units of C instructions ) and 
the execution time (also in units of C instructions). All diagrams contain an 
artificial curve (e.g., f(p) -~ ~ .  log n) for comparison. We first chose to test a 
SIR loop where g(i) = i and f(i) = i - 1, as this maximizes the length of each 
trace and consequently the expected work. For Sync SIR,  we already know the 
results: execution time approximately ~ -logp, work n.  logp, total  of p. logp big 

messages and communication (total number of data  items that  have been sent) 
o fp .  logp. The results of the execution time in fig. 1 verify this computat ion and 
show that increasing k cost of Async SIR(k)  can reduce the speedups signifi- 
cantly. Another observation regarding Async SIR(k)  is that  for a relatively small 
number of processors the impact of k is much larger than with a large number of 
processors. According to fig. 1,the difference between the various Async SIR(k)  
results, becomes constant (independent on p) for values greater than 32. This 
is because of the relatively small number of A[]% elements that  are allocated to 
each processor (.~ ~ p). The same results are obtained for the work of the algo- 
ri thms as described in fig. 1. The communication and number of big messages 
is exactly p .  logp, as expected. These experiments were repeated for a random 
setting f(i) = random(1. . .n) .  In general, we hoped to reach optimal perfor- 
mances of execution time ~ and work O(n). The execution time has improved, 
and sync S I R  (see fig. 2) is now between ~ and ~ .  logp. In addition, the effect 
of k in Async SIR(k) on the execution time is reduced, and for k = 1, 5, x/P 

�9 logn. In particular, we can see we get an execution time that  is less than ~- 
that  the work (fig. 2) behaves like O(n) rather than n logp. The communication 
(fig. 2) is below n. Unlike the case f(i) --- i, the effect of k in Async SIR(k)  on 
the communication is negligible (all the results for k = 1, 5, v ~  are the same). 
In addition, asynchronous execution seems to improve the communication com- 
pared to syne SIR.  An asynchronous execution might, for example, cause the 
middle processor to advance its Next[i] pointers before other processors started 
to work. This might reduce the communication that  would have occured between 
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Fig. 1. Execution time and Work for f(~) : i - 1, 

these processors if the middle processor hadn't advanced its pointers. The total 
number of messages was not affected by the random setting and (as is described 
in fig. 2) is around plogp.  

fJ 
!,/ 

4 ~64 i~H 2~6 i,l O~SO~ ~ 

~ 2CI46 

A~y,,~ ~ ~ l ~  ~ T .  " - - ~  ~ - ~  

/ /  

Fig. 2. Execution time, Work, Comm. and big-messages for f ( i )  = random(1..n). 
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