
Parallel Solutions of Simple Indexed Recurrence
Equations

Yosi Ben-Asher 1 and G a d y Habe r 2

1 D e p . of Math. and CS. HaifaUnivers i ty 31905 Haifa, Israel,
yosi@mathcs.haifa.ac.il

2 IBM Science and Technology, H~fa, Israel,
haber@haifasc3.vnet.ibm.com

A b s t r a c t . We consider a type of recurrence equations called "Simple
Indexed Recurrences" (SIR) wherein ordinary recurrences of the form
X[i] = op i (X[i - 1],X[i]) (i = 1 . . . n) are extended to
X[g(i)] = opi(X[f(i)],X[g(i)]), such that op~ is an associative bi-
nary operation, f , g : { 1 . . . n } ~-~ { 1 . . . m } and g is distinct. 1 This
extends our capabilties for parallelizing loops of the form: for i ---- 1
to n { X[i] = o p i (X [i - 1],X[i]) } to the form: for i ---- 1 to n {
X[g(i)] = op~(X[f(i)],X[9(i)]) }. An efficient solution is presented for
the special case where we know how to compute the inverse of op~ oper-
ator. The algorithm requires O(log n) steps with O(n/log n) processors.
Furthermore, we present a practical and a more improved version of the
non-optimal algorithm for SIR presented in [1] which uses repeated iter-
ations of pointer jumping. A sequence of experiments was performed to
test the effect of synchronous and asynchronous message-passing execu-
tions of the algorithm for p < < n processors. This algorithm computes
the final values of X 0 in ~ �9 logp steps and n �9 logp work, with p proces-
sors. The experiments show that pointer jumping requires O(n) work in
most practical cases of SIR loops, thus forming a more practical solution.

1 I n t r o d u c t i o n

O r d i n a r y recurrence equa t ions of the fo rm X~ = o p i (X i - l , X i) i = 1 . . . n can
be genera l ized to wha t we refer to as Indexed Recurrence (IR) equa t ions . In
I R equat ions , genera l indexing funct ions of the form Xg(o = opi (X/ (i) ,Xg(i))
rep lace the i, i - 1 indexing of the o rd ina ry recurrences . Efficient pa ra l l e l so lu t ions
to such equa t ions can be used to para l le l ize sequent ia l loops of the fo rm:

for i = 1 to n { X[g(i)] = opi(X[f(i)],X[g(i)]) }

if the fol lowing condi t ions are met :

1. opi(x, y) is any segment of code t h a t is equivalent to a b i n a r y assoc ia t ive
ope ra to r and m a y be dependen t on i.

2. the index func t ions f , g : {1..n} ~ {1. .m} do not include references to
e lements of the X ~ array.

1 This paper is a continuation of the work on IR equations presented in [1].

9 3 4

3. the index function g is distinct, i.e., for every indexes i , j if i = j then
g(i) : g(j).

In practice, such solutions can be used to parallelize sequential loops within
given source code segments.

2 A n E f f i c i e n t S I R A l g o r i t h m f o r t h e C a s e W h e r e t h e

I n v e r s e o f opi is K n o w n

In this section we describe an efficient parallel algorithm for S I R loops, providing
we know how to compute the inverse operation op{ 1. The algorithm requires
O(logn) steps with O(n/logn) processors.

The first step in the algorithm is to translate the S I R loop into its upside
down tree representation T, in which every vertex i (1 < i < n) represents the
g(i) index and every edge e : {i, j} represents the dependency opi(Xg(j), Xg(i)
where g(j) = f(i) and j < i. For example consider the following upside-down
tree representation of a S I R loop:

X[l..n] initializ,4 by A[I]... A[n]

X[l] := A[I] X[4] : = X[3]' X[4]
X[2I := XD] " x[2l X[M := x[3l" X[~]
X[a] := XD]" X[3] X[6] := X[3]" X[6]

A S I R Loop for i ~ 1 . . , 6 A n U p s i d e - d o w n T r e e R e p r e s e n t a t i o n of t h e l o o p

We then apply the Euler Tour circuit on T in order to compute all the prefixes
of the vertices in T. An Euler Tour in a graph is a path that traverses each
edge exactly once and returns to its starting point. The Euler tour circuit which
operates on a tree assumes that the tree is directed and that it is represented
by an Adjacency List. In the directed tree version TD of T, each undirected
edge {i, j) in T has two directed copies - one for (i , j) and one for (j, i). For
example, consider the directed version of the tree for the above example, and its
Adjacency List representation:

1 : (1, 3) --* (1, 2) --4" N d
2 : (2, I) --+ /Vii
3 : (3, 1) -~ (3, 4) ~ (3, 5) ~ (3, 6) --* ~v~z
4 : (4, 3) --~ N i t

5 : (s , 3) ~ N i t
6 : (6, 3) --.)- N d

T D - T h e D i r e c t e d V e r s i o n of T A d j a c e n c y L i s t R e p r e s e n t a t i o n of T D

Our main concern when coming to construct the adjacency list of To, is finding
the list of all the children of each vertex i in TD efficiently; i.e., finding all vertices
j < i which satisfy that g(j) = f(i). Sorting all the pairs < f(1) , g(1) > , . . . , <
f(n), g(n) > using f(i) as the sorting key, will automatically group together all
vertices which have the same parent. The sorting process can be done efficiently
using the Integer Sort algorithm [3] which operates on keys in the range of [1..n].

After the adjacency list of To is formed, we can construct the Euler tour of
TD in a single step according to the following rule:

Next(u, v) if Next(u, v) • Nil
EtourLink(v, u) = AdjList(u) Otherwise

935

by allocating a processor to each pair of edges (v, u), (u, v) in TD.
Once the Euler tour of To is constructed, in the form of a linked list, we can

compute the prefixes of all the vertices of To, using the efficient parallel prefix
algori thm on the linked list [2], after initializing all the edges of the tree with
the following weights:

- The weight of each forward edge < f (i) i y (i) > in To is initialized by Ag(i),
where A is the array of initial values of the X array of S I R .

- The weight of each backward edge < g(i), f (i) > is initialized by the inverse
value Ag(~).

% A i,

E u l e r T o u r of T D w i t h i n i t i a l weights

X [1] ---- A[1]
X [2] = A [1] , A [2]
X [3] ----- A [1] . AI2]/A[2] �9 A[3]
X [4] = A[1] . A [2] / A [2] . A [3] " A[4]
X [5] = A[1] . A [2] / A [2] . A[3] - A [4] / A [4] �9 A[5]
X [6] ----- A[1] �9 A [2] / A [2] . A[3] - A [4] / A [4] �9 A [5] / A [5] . A[6]

T h e P r e f i x e s for e a c h v e r t e x

3 P a r a l l e l S o l u t i o n f o r S I R b y U s i n g P o i n t e r J u m p i n g

Consider for example the SIR problem A'[2i] := A'[i + 1]-A'[2i]; (for i = 1, 2..n)
where g(i) = 2i and f (i) = i+1. The final values of each element A'[i] is a product
of a varying number of items. We refer to this sequence of multiplications of every
element i in A'[] as the t r a c e of A'[i]. In general the trace of each element A'[g(i)]
satisfies that for all i = 1 . . . n : A'[g(i)] = A[f (j k)] (~ . . . �9 A [f (j l)] (~ A[g(i)] such
that:

- j l = i .

- for t = 2 . . . k the indices jt satisfy that jt < jr-1 and g(j,) = f (j t -1) .
- jk is the last index for which g(Jd = f (J~-0 , i.e., there is no 1 <__ jk+t < jk such

that g(jk+~) = f(jk).

The above rule suggests a simple method for comput ing W[g(i)] in parallel.
Let A-t[g(i)] denote the sub-trace with t + 1 r ightmost elements in the trace
of A'[g(i)], i.e., A-t[g(i)] = A[f (j k - t)] @ . . . | A[f(i)] G A[g(i)], and now con-
sider the c o n c a t e n a t i o n (or m u l t i p l i c a t i o n) of two "successive" sub-traces:
A-(tl+t2)[g(i)] = A - t l [g(j)] | A -t2 [g(i)] where g(j) = f (j k - t 2) and A[f (jk - t2)]
is the last element in A -t2[g(i)].

The proposed algorithm (as shown in [1]) is a simple greedy algori thm tha t
keeps iterating until all traces are completed. In each i teration all possible con-
catenations of successive sub-traces are computed in parallel where the con-
catenation operation of sub-traces A - t t [g(j)], A -t~ [g(j)] can be implemented as
follows:

1. The value of a sub-trace d-t[g(i)] is stored in its array element A[g(i)].
2. A pointer Next[g(i)] points to the sub-trace A-t~[g(j)] to be concatenated to

A-~2[g(i)] (to form A -(tl+t2) [g(i)]). Hence, A[Next[g(i)]] contains the value of the
sub-trace A -tl [g(j)].

936

Following is the code of an improved and a more practical version of the al-
gorithm for which we ran our experiments with p < < n processors. The new
algorithm improves the above algorithm in the following points:

- It works with compressed array of size n (the number of loop iterations)
instead of the original array size, which is of size m > n, by mapping every
A'[9(i)] element to an auxiliary array X[i].

- The index function f(i) is transformed to a decreasing function which never
refers to future indexes of X~ . This reduces the total number of iterations
required by the algorithm from an order of logn to logp, improving the
execution time to p logp. Suppose each processor computes ~ traces and
uses a sequence of passes wherein it calculates the traces sequentially one
after another. Since f 0 always points backwards to earlier elements in the
input array, then after each step i we already have the final values of the
f i r s t 2 i elements, requiring a total of logp steps in order to complete the
entire array of size n. The same argument however, does not hold for the
case where fO can refer to future elements in the array.

Input: I n i t i a l i z e d Arrays A [1 . . m] , g [1 . . m] , f [l . . r n] , @. (w h e r e (9 is a b i n a r y a s s o c i a t i v e o p e t - a t o r)

Output: Array X [1 . . n] ~here X [,] r i l l k01d the .a lue of A[g[il]
at the end of the I I loop.

I n i t i a l i z e A,xi l la ry Arrays X [1 . . n] , G [1 . . m] , Next[1..n] to zero.

f o r a l l t E { 1 . . n } do in para l l e l
Gig[i]] :• i; (T h e a u x l l a r y a r r a y G r e p r e s e n t s t h e i n v e r s e o f g, i . e . G[t] _= 9 - - 1 (t))

e~d p a r a l l e l - f o r

forall i E {l,.n} do ia para l l e l
u := G[/ ' [i]] ; (The i t e r a t i o n w h e r e A / [, f (t)] w a s m o d i f i e d b y t h e l o o p) .
i f (u > ~ or u = O) { (T h e t r a c e o f A t [g (t)] i s o f s i z e t w o .)

x [,] := A[I [,]] (9 A[g[,]] ; (| A ' [9 (*)] = A [f (,)] (9 A[g(i)].)
N e x t [t l := 0;

} ~l.e {
i f (f[U] ~ f[t] or f[u] = O) { (The trace of At[f(,)] is of size three,)

X[i] := A [/ [u l] �9 A i r [i l l (9 A[g[i]];
Ne~t[i] := 0;

} else { (T h e t f A / [g (,)] i s o f , i z e g r e a t e r t h a n t h )
x[i] := A [I [i l] 6) Aig[i]];
Next[,] := l[u];

}
}

end parallel-for

I n i t i a l i z a t i o n S t e g e

for t = 1 to l o g n do (T h e a l g o r i t h m p e r f o r m s , a t m o s t , l og n i t e r a t i o n s) u D d a t l n g)
f 0 r a l l i ~ { (2 ~ - 1 + 1) . . n } do in p a r a l l e l

i f (Next[i] > 0) then { (A p p l y t h e e o n c a t e n a t l o n o p e r a t i o n f o l l o w e d b y t h e p o i n t e r
X b] := X [N e x t I ']] e x b] ;

} N e x t [i] :m Next[next[t]];

T h e c o d e for t h e t e r a t i o n p h a ~ e s

4 E x p e r i m e n t a l R e s u l t s f o r M e s s a g e P a s s i n g S y n c a n d

A s y n c S I R

For the message-passing version of SIR we assume that the initial values A[1..rn]
are partitioned between the processors, with each processor holding ~ elements.

937

Thus the first step is for each processor to fetch the O(~) elements of A[] that
it will use during the initialization stage. Each processor will sort the requested
elements according to their processor destination, and then fetch them using p
"big-messages" (i.e., using message packaging). Two variants of this algorithm
have been tested:

S y n c SIR: where all processors compute one iteration of the main loop syn-
chronously.

A s y n e S I R (k) : where each processor performs 1 iterations of the main-loop
before passing the control to the next processor. The number l is chosen
randomly (every time) from the range 1 . . . k , where k is the parameter of
the algorithm. Thus, by choosing different values of k we can change the
amount of asynchronous deviation of the execution.

We simulated different nmnbers of processors, p = 4, 8, 16, 32, 6"1,128,256,512, 1024
with n -- 500,000. The simulation of the algorithm was made on a sequential
machine, since this allowed us an exact and simple measure of the total size of
generated messages (communication), the work (in units of C instructions) and
the execution time (also in units of C instructions). All diagrams contain an
artificial curve (e.g., f(p) -~ ~ . log n) for comparison. We first chose to test a
SIR loop where g(i) = i and f(i) = i - 1, as this maximizes the length of each
trace and consequently the expected work. For Sync SIR, we already know the
results: execution time approximately ~ -logp, work n. logp, total of p. logp big

messages and communication (total number of data items that have been sent)
o fp . logp. The results of the execution time in fig. 1 verify this computat ion and
show that increasing k cost of Async SIR(k) can reduce the speedups signifi-
cantly. Another observation regarding Async SIR(k) is that for a relatively small
number of processors the impact of k is much larger than with a large number of
processors. According to fig. 1,the difference between the various Async SIR(k)
results, becomes constant (independent on p) for values greater than 32. This
is because of the relatively small number of A[]% elements that are allocated to
each processor (.~ ~ p). The same results are obtained for the work of the algo-
ri thms as described in fig. 1. The communication and number of big messages
is exactly p . logp, as expected. These experiments were repeated for a random
setting f(i) = random(1. . .n) . In general, we hoped to reach optimal perfor-
mances of execution time ~ and work O(n). The execution time has improved,
and sync S I R (see fig. 2) is now between ~ and ~ . logp. In addition, the effect
of k in Async SIR(k) on the execution time is reduced, and for k = 1, 5, x/P

�9 logn. In particular, we can see we get an execution time that is less than ~-
that the work (fig. 2) behaves like O(n) rather than n logp. The communication
(fig. 2) is below n. Unlike the case f(i) --- i, the effect of k in Async SIR(k) on
the communication is negligible (all the results for k = 1, 5, v ~ are the same).
In addition, asynchronous execution seems to improve the communication com-
pared to syne SIR. An asynchronous execution might, for example, cause the
middle processor to advance its Next[i] pointers before other processors started
to work. This might reduce the communication that would have occured between

9 3 8

\

. < ii: .

Fig. 1. Execution time and Work for f(~) : i - 1,

these processors if the middle processor hadn't advanced its pointers. The total
number of messages was not affected by the random setting and (as is described
in fig. 2) is around plogp.

fJ
!,/

4 ~64 i~H 2~6 i,l O~SO~ ~

~ 2CI46

A~y,,~ ~ ~ l ~ ~ T . " - - ~ ~ - ~

/ /

Fig. 2. Execution time, Work, Comm. and big-messages for f (i) = random(1..n).

References

1. Y. Ben-Asher and G. H~ber. Parallel solutions of indexed recurrence equations. In
In Proceedings of the IPPS'97 con/erence, Geneva, /997.

939

2. L. Rudolph Kruskal C. P. and M. Snir. The power of parallel prefix. IEEE Trans-
actions on Computers, 34(C):965-968, 1985.

3. S. Rajasekaran, S. Sen. On parallel integer sorting. Technical Report To appear in
ACTA INFORMATICA, Department of Computer Science, Duke University, 1987.

