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Parallel Space Decomposition of the Mesh

Adaptive Direct Search Algorithm ∗

Charles Audet † J.E. Dennis Jr. ‡ Sébastien Le Digabel §

7th November 2007

Abstract

This paper describes a Parallel Space Decomposition (PSD) technique for the Mesh

Adaptive Direct Search (MADS) algorithm. MADS extends Generalized Pattern Search

for constrained nonsmooth optimization problems. The objective here is to solve larger

problems more efficiently. The new method (PSD-MADS) is an asynchronous parallel

algorithm in which the processes solve problems over subsets of variables. The conver-

gence analysis based on the Clarke calculus is essentially the same as for the MADS

algorithm. A practical implementation is described and some numerical results on prob-

lems with up to 500 variables illustrate advantages and limitations of PSD-MADS.
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1 Introduction

The paper considers optimization problems of the form

min
x∈Ω

f(x) , (P)

where the objective function f : Ω ⊂ R
n → R∪{∞}. The feasible regionΩ is assumed

to satisfy a nonsmooth constraint qualification, and we only assume the presence of an

oracle to tell whether or not a given x ∈ R
n is feasible. We are concerned primarily with

cases where f(x) or the oracle are given by black-box computer simulations, which are
assumed to evaluate in finite time. This is common in engineering design. Indeed, the

reason we allow f(x) to take on the value∞ is that for many such problems, no value of
f(x) is returned even for x ∈ Ω because of the internal workings of the simulation used
to drive the design. See [1, 3, 10, 13, 21, 27, 32, 42].

There are other useful derivative-free direct search methods designed for problems

similar to P . These include the Nelder-Mead simplex [43], the DIRECT algorithm [20,
24, 30], the frame based methods [16, 44], the Generalized Pattern Search (GPS) [7,

14, 49], the Asynchronous Parallel Pattern Search (APPS) approach [25, 29, 33, 35,

36], and the Mesh Adaptive Direct Search (MADS) [2, 8]. Related is the implicit filter

method [31], though it does use a coarse difference gradient approximation. The reader

may consult [31, 34, 39] for a survey of some of these direct search methods.

Using these methods to solve expensive problems with more than a few dozen vari-

ables may be impractical since they may need a large number of costly black-box eval-

uations. One possible approach is to use parallelization. Dennis and Wu [18] reviewed

different parallel methods for continuous optimization and concluded that a combina-

tion of GPS and the Parallel Variable Distribution (PVD) of Ferris and Mangasarian [19]

should be considered.

PVD is an evolution of the block-Jacobi technique of [11] which optimizes in parallel

a series of reduced subproblems on subspaces of the original variables of P . The present
paper is based on the remark of Dennis and Wu. Dennis and Torczon [17] described

a first parallel version of GPS, which evaluates the black-box evaluations in parallel

and synchronizes at each iteration to compare solutions and update the current iterates.

The Asynchronous Parallel Pattern Search, APPS [25, 33], removes this synchronization

barrier. In APPS, each process explores the space of variables using its own set of

directions and does not wait for the other processes to terminate. APPS is expected to

be more efficient than the synchronous version of [17], especially if the black-boxes

have heterogeneous behavior that depends on the point where they are evaluated. A

convergence analysis is presented in [36] for the smooth case.

Our work applies a decomposition of the variables of P based on the block-Jacobi
technique of [11] that inspired the PVD method of [19]. This allows a natural parallel

application of MADS to smaller subproblems, in an asynchronous way. The new al-
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gorithm, called PSD-MADS, can be interpreted as a particular instance of MADS, thus

inheriting the main results of the MADS convergence analysis.

The paper is divided as follows: Section 2 gives an overview of the Parallel Space

Decomposition and MADS methods. Section 3 presents the new asynchronous parallel

algorithm, PSD-MADS, and Section 4 shows that main convergence results of MADS

are maintained by showing that the entire PSD-MADS algorithm may be interpreted as

a specific MADS instance. An implementation of PSD-MADS is described in Section 5,

with some numerical results on problems with a number of variables ranging from 20

to 500. Finally, Section 6 gives some conclusions and proposes possible extensions of

PSD-MADS.

2 Relevant literature

This section presents an overview of parallel space decomposition methods, and the

Mesh Adaptive Direct Search algorithm. MADS, its convergence analysis and its LT-

MADS implementation are described in detail, since Sections 4 and 5 depends on them.

2.1 Parallel space decomposition methods

Parallel space decomposition methods decompose P into a finite number of smaller
dimension subproblems, which can be solved in parallel with one process assigned to

each subproblem.

Define N = {1, 2, ..., n} where n is the number of variables of the optimization
problem P , and Q = {1, 2, ..., q} where q is the number of available processes. Each
process p ∈ Qworks on a nonempty subsetNp ⊆ N of the variables. The other variables
are fixed, based on the incumbent solution x∗ ∈ Ω, the current best known solution.
More precisely, process p ∈ Q works on the optimization subproblem

min
x∈Ωp(x∗)

f(x) (Pp(x
∗))

withΩp(x
∗) =

{

x ∈ Ω : xi = x∗
i ∀i ∈ Np

}

andNp = N \Np. The subproblem Pp(x
∗)

contains np = |Np| free variables, indexed by Np. In Section 5 we propose a strategy to

build the subsetsNp.

The block-Jacobi method in [11] is an iterative two-steps algorithm and may be de-

scribed in a very general way as follows. At each iteration, the first step, the paral-

lelization, consists in solving the subproblems in parallel, and the second step, the syn-

chronization, gathers the subproblems solutions and construct the next iterate. Similar

methods are described in [26, 41, 50].

A variant of the method was introduced by Ferris and Mangasarian [19], as the Paral-

lel Variable Distribution (PVD) for a differentiable objective function f with continuous
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partial derivatives. In order to solve the subproblems more efficiently, the PVD method

allows a priori fixed variables to change in a limited fashion, along directions typically

based on∇f . These variables are denoted as “forget-me-not” terms.
The convergence analysis in [19] requires that subproblems be solved to optimality.

In the unconstrained case, if∇f exists and is Lipschitz, then the accumulation points of
the generated sequences are stationary points. In addition, if f is assumed to be convex,
the convergence rate is shown to be linear. When Ω is nonempty, closed, convex, block-
separable, and the functions defining it are also continuously differentiable, convergence

results are still available. When there are general constraints, Ferris and Mangasarian

recommend transforming the problem into unconstrained problems via penalty functions

or exploiting possible block-separable constraints.

These are parallel synchronous algorithms because the synchronization step waits for

all the processes to end. The conclusion of [19] is that an asynchronous version of the

algorithm would increase efficiency. This is done in [40] for unconstrained problems,

where the synchronization step is dropped at the expense of the convergence analysis.

Extensions of the PVD method are given in [45, 46, 47] with similar convergence

results to those in [19] under less restrictive conditions. For example, subproblems do not

need to be solved to complete optimality, as for example when one Newton-like iteration

is used. A convergence analysis for the constrained case is given with either block

separability or convexity assumptions on the structure of Ω. These are not reasonable
assumptions for our target class of engineering design problems.

In the above references, no practical and generic strategy is given concerning the

choice of the subproblems variables (sets Np). However, the sets do need to form a

partition of N , and they are fixed throughout the entire process. In the parallel space
decomposition [22] the subspaces can be chosen differently at each iteration.

In Fukushima [23], the PVD method is extended to a more general framework for

unconstrained problems. The sets of subproblems variables are not fixed through the

iterations, are not required to form a partition of N , but they must span N . In particular,
an overlapping of the subproblems variables is allowed. Some experiments with such

methods are given in [51].

More recently, the MoVars algorithm [12] combines the GPS method with the syn-

chronous PVD framework (including the “forget-me-not” terms from [19]) on fixed sub-

sets Np, but there is no convergence analysis.

In most of the references of this section, f is assumed to be at least differentiable, and
constraints, if they are considered, are block-separable or convex. These assumptions are

not reasonable for the problems of interest to us, and thus, our convergence analysis does

not rely on the analysis of [19] or its extensions. Rather, by incorporating MADS with

its weaker hypotheses, we will inherit the MADS convergence analysis. It will also

give us greater flexibility concerning the choice of the subsets Np, the way we handle

constraints, the amount of work we must devote to the subproblems, and the lack of

necessity for a synchronization step.
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2.2 Mesh Adaptive Direct Search (MADS)

We now summarize the MADS algorithm [8] for problem P , which extends the Gener-
alized Pattern Search (GPS) algorithm for linearly constrained optimization [14, 49].

The constraints defining Ω are handled by the extreme barrier approach, as in [8, 37,
38]. This means that trial points outside Ω are simply rejected by setting their objective
function value to +∞. Of course, this requires that the user provide a feasible initial
point x0 ∈ Ω. We make the standard assumption that all the trial points generated by the
algorithm lie in a compact set.

MADS is an iterative algorithm where the black-box functions are evaluated at some

trial points that are either accepted as new iterates because they are feasible and decrease

the objective, or they are rejected.

All trial points generated by these algorithms are constructed to lie on a mesh

M(∆) =
⋃

x∈V

{

x + ∆Dz : z ∈ N
nD

}

⊂ R
n (1)

where the set V , called the cache, is a data structure memorizing all previously evaluated

points so that no double evaluations occur, ∆ ∈ R
+ represents a mesh size parameter,

and D is a n × nD matrix representing a fixed finite set of nD directions in R
n. More

precisely,D is called the set of mesh directions and is chosen so thatD = GZ, where G
is a non-singular n×nmatrix, and Z a n×nD integer matrix. The definition given by (1)

differs slightly from the one in [8]. There the mesh was indexed by the iteration number

instead of being parameterized by ∆. The reason for this difference is that our parallel
algorithm will be working simultaneously on different size meshes originally generated

at different iterations. Note also that in order to simplify the notation, the mesh size

parameter∆ used here is the equivalent of ∆m in [8].

Each iteration is divided into three steps, the search, the poll, and an update step

determining the success of the iteration and producing the next iterate. The search and

poll are treated specially in that the poll need not be carried out at an iteration if the

search finds a better point. At each iteration, the algorithm attempts to generate an

improved incumbent solution on the current mesh M(∆k), where ∆k is the mesh size

parameter at iteration k. The search step is very flexible and allows for trial points
anywhere on the mesh. The way of generating these points is free of any rules, as long

as they remain on the current meshM(∆k) and that the search terminates in finite time.
Some search strategies can be tailored for a specific application, while others are generic,

such as the use of Latin Hypercube sampling [48], or Variable Neighborhood Search [4].

In summary, if one wants to define a new MADS algorithm with its specific search, all

that needs to be done to ensure convergence is to show that the search requires finite time

and generates a finite number of trial points lying on the mesh.

The poll step explores the mesh M(∆k) near the current iterate xk and its rules

ensure theoretical convergence of the algorithm. The way of choosing the directions
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used to generate the poll points is the difference between GPS and MADS. In GPS, the

normalized set of potential poll directions must be chosen from a finite set that is fixed

across all iterations. In MADS, the directions may be chosen to be asymptotically dense

in the unit sphere, which allows better coverage. We use the terminology of [16, 44]

and say that at iteration k, the set of trial poll points is called the frame Pk. The set of

directions used to construct Pk is denotedDk, and it is not a subset of D.
In the last step of the kth iteration, the mesh size parameter is updated according to

∆k+1 ← τωk∆k, where τ > 1 is a fixed rational number and ωk an integer that depends

on the success of the iteration. When no improvement is made, the iteration is said to

fail, and ωk is taken to be an integer in the interval [ω
−;−1] with ω− ≤ −1, forcing the

next trial poll points to be closer to the current iterate. When a new best iterate is found,

the iteration is said to succeed, and ∆k is possibly increased with ωk in [0; ω+], with the
integer ω+ ≥ 0. In the LTMADS implementation of [8], τ is fixed to 4, ω− = −1, and
ω+ = 1.
A high level description of the algorithm is summarized in Figure 1. We encourage

the reader to consult [8] for a complete description.

MADS

[0] Initializations
x0 ∈ Ω, ∆0 > 0, k ← 0

[1] Poll and search steps
objective: find a y ∈M(∆k) ∩Ω such that f(y) < f(xk)

Search step (optional)

evaluate the functions on a finite number

of points ofM(∆k)
Poll step (optional if the search step succeeded)

compute ndir MADS directions di ∈ R
n

evaluate the functions on the MADS frame

Pk = {xk + ∆kdi : i = 1, ..., ndir} ⊆M(∆k)

[2] Updates
xk+1 ← y (iteration success) or xk (iteration failure)

∆k+1 ← τωk∆k (reduced if iteration fails)

k ← k + 1
goto [1]

Figure 1: High level description of the MADS Algorithm. The directions di are positive

integer combinations of the columns of D. The search or poll steps can be stopped
before all evaluations are terminated (opportunistic strategy).
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2.3 MADS convergence analysis

We will summarize the main convergence results for MADS given in [8]. These results

assume that constraints are treated by the extreme barrier approach, and they constitute a

hierarchical series of results relying on the Clarke calculus [15] for nonsmooth functions.

The main theorem is that under a local Lipschitz assumption on f , and under the
assumption that the set of all normalized poll directions is dense in the unit sphere, the

algorithm produces a Clarke stationary point. More precisely, MADS generates a point

x̂ ∈ Ω at which the Clarke generalized directional derivatives of f in all the directions
in the Clarke tangent cone at x̂ are non negative. The only assumptions needed are that
f is Lipschitz near x̂ and the constraint qualification that the hypertangent cone of Ω at
x̂ is nonempty. A corollary to this result in the unconstrained case is that if f is strictly
differentiable near x̂, then∇f(x̂) = 0.
The convergence result that requires the least assumptions on f and Ω, the zero’th

order result, is that MADS generates a limit point x̂, which is the limit of mesh local
minimizers on meshes that get infinitely fine. The notion of local optimality is with

respect to the current poll set, defined using a positive spanning set of directions. More

formally, MADS generates a convergent subsequence of iterates {xk}k∈K ⊂ Ω such that
xk → x̂, and f(xk) ≤ f(xk + ∆kdk) for all directions dk in a positive spanning set DK ,

and ‖∆kdk‖ → 0.
The price to pay for our new capability to handle a large number of variables is that

this last convergence result will be lost. We will consider a MADS algorithm whose

poll set contains a single element instead of being built using a positive spanning set of

directions. We will refer to this as a single-pollMADS algorithm, and it still retains the

property of generating asymptotically dense polling directions.

The next section discusses the LTMADS implementation of the MADS algorithm.

LTMADS uses positive bases to construct the poll sets. It is stated that the union of

theses normalized directions forms a dense set because if one looks closely at the proof

in [8], one sees that it is the subset of single-poll normalized MADS directions that

grows dense in the unit sphere. Thus, with the assumption of local Lipschitz continuity

the main convergence result guaranteeing a Clarke stationary point holds.

2.4 The LTMADS implementation of MADS

The search and poll steps need to satisfy certain conditions for the convergence results

to hold. In particular, one of these conditions is that the total set of normalized poll

directions used by the algorithm is dense in the unit sphere. In [8] there is a practical

way of accomplishing this with through the LTMADS implementation of MADS.

LTMADS fixes τ to 4 and the set of mesh directions D = [−In In] where In rep-

resents the n × n identity matrix. The mesh is based on the nonnegative integer value
ℓ = − log4(∆k), ∆k = 4−ℓ, and directions are constructed randomly using a lower tri-

7



angular matrix. One of these directions is a special case and fixed just once for each

value of ℓ. This direction, called b(ℓ), has one coordinate set to ±2ℓ so that poll points

are within
√

∆k of the poll center xk in the ℓ∞ norm.
The result stated in [6, 8] is that with probability one, the series of normalized direc-

tions b(ℓ) grows dense in the unit sphere. In LTMADS, the direction b(ℓ) is augmented at
each iteration with other directions to form a positive spanning set of polling directions.

We can, as explained in the preceding section, construct a single-poll MADS algorithm

with dense polling directions using only the b(ℓ) directions, but the zero’th order con-
vergence result of MADS is lost. Also, because we are not polling at each iteration

in a positive spanning set of directions, the mesh size might drop too quickly with this

single-poll version of MADS, and so the search step is of extra importance. This is the

key to the PSD-MADS algorithm described in the next section: one process executes a

single-poll MADS algorithm, while the work of the other processes may be interpreted

as a search step.

3 Parallel Space Decomposition of MADS

This section describes the combination of MADS with a parallel space decomposition

method. The resulting algorithm is called PSD-MADS. It is an asynchronous parallel

algorithm where a master process decides on the subsets Np ⊆ N and assigns the re-
sulting optimization subproblems Pp(x

∗) to slaves. The slaves apply MADS to attempt
to improve the incumbent solution x∗. No synchronization step is performed. When a

slave completes its assigned task, the master assigns a new subproblem with a possible

new Np and x∗.

3.1 General description of PSD-MADS

While PSD-MADS is an asynchronous parallel algorithm, the notion of iteration is kept,

and corresponds to two successive calls by the master to one special slave, called the

pollster slave, described more precisely in Section 3.2. The pollster slave executes a

single-poll MADS algorithm on the entire problem P , while the other slaves, called the
regular slaves, work on the subproblems Pp(x

∗).
Each subproblem Pp(x

∗) is a subproblem of P with a reduced number of variables
indexed by the set Np. When an optimization process terminates, the slave communi-

cates its progress to the master. If it has found an improved solution, then that becomes

the new incumbent solution. The slave immediately starts work on a new subproblem

assigned by the master. There is no need to synchronize all the slaves.

With several MADS instances executing in parallel, it is necessary to define different

mesh size parameters: first,∆p
j corresponds to the meshM(∆p

j ) used at iteration j of the
MADS algorithm performed by a regular slave sp. This mesh size parameter is denoted

8
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differently for the pollster slave, with ∆1
k (notice the same iteration counter k used both

for the pollster slave and PSD-MADS). ∆1
k is called the pollster mesh size parameter at

iteration k of PSD-MADS. Finally, an additional mesh size parameter,∆M
k , is called the

master mesh size parameter. The meshM(∆M
k ) is never used explicitly, but it is useful

to compare the two other meshes. At iteration k of PSD-MADS, and at iteration j of the
MADS algorithm performed on a subproblem Pp(x

∗) by a regular slave sp for p ∈ Qreg,

the PSD-MADS construction ensures that

∆1
k ≤ ∆M

k ≤ ∆p
j . (2)

Inequalities (2) are formally proved in the convergence analysis of Section 4, where

PSD-MADS is interpreted as a valid single-poll MADS instance performed by the poll-

ster slave. An additional hypothesis on the different meshes M(∆M
k ), M(∆1

k), and
M(∆p

j ) is necessary:

Hypothesis 3.1 If two mesh size parameters ∆ and ∆′ satisfy ∆ = τω∆′ where ω ∈ N,

then M(∆) ⊆M(∆′).

This assumption holds for the PSD-MADS implementation given in Section 5.

The q processes are partitioned into a master, q−2 slaves, and a cache server (process
number q − 1), which memorizes all points that have been evaluated. The q − 2 slaves
include the pollster slave (process number 1) and q − 3 regular slaves. The notation sp

with p ∈ Q \ {q − 1, q} is used to identify the q − 2 processes assigned as slaves, and
Qreg = {2, 3, ..., q − 2} is the set of indices of the q − 3 regular slaves. The qth and last
process is used as the master, which defines the lower dimensional subproblems Pp(x

∗)
and communicates them to the slaves.

An advantage of applying the parallel space decompositionmethod toMADS instead

of another optimization method is that most of the conditions necessary for convergence

in other parallel space decomposition methods mentioned in Section 2.1 can be relaxed:

• f and the functions defining Ω need not be differentiable, and there are no con-
ditions on the constraints other than requiring a feasible initial point x0 ∈ Ω, and
a nonempty hypertangent cone at a limit point. Constraints are easily handled by

the extreme barrier approach;

• There is no synchronization step [19]. Each process takes the current best solution
as its starting point without waiting for another process to terminate;

• The choice of setsNp, p ∈ Qreg ∪{1}, is completely flexible and dynamic. More-
over, sets Np do not have to define a partition of the variables, and some variables

can belong to more than one set. An example for a practical strategy deciding the

sets Np is given in Section 5.
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This new algorithm is not a particular case of the method in [23], which generalizes

many parallel variable decomposition methods, since general constraints are allowed,

and f is not assumed to be smooth. PSD-MADS is also different from the recent MoVars
algorithm [12], which does require Np to partition the variables, because it provides

a convergence analysis, dynamically changes the sets Np, and it is an asynchronous

parallel method. The next sections describe precisely the role of each process.

3.2 The pollster slave s1, on M(∆1
k)

The pollster slave s1 has a special role; its set of variables is always fixed toN1 = N , so
that it works on the original problem P . Due to its greater impact on the algorithm and
to distinguish s1 from the other slaves, we call it the pollster slave, or simply the pollster.

To reduce the expected high number of evaluations done by all the pollster instances,

a single-poll MADS algorithm is used (the poll directions are reduced to a single ele-

ment), with the conditions that the union of all the normalized directions used throughout

the algorithm are dense in the unit sphere, and that the norms of those directions is in the

proper relation with the mesh size parameter.

Moreover, the pollster is limited to only one MADS iteration, with no search step

and one poll step. It follows that at most one function evaluation will be performed (zero

function evaluation if the unique poll trial point is in the cache), and the pollster mesh

size parameter∆1
k will not be updated (this is done by the master).

The notationMADS(pollster) or MADS(s1) refer to the single-poll MADS algorithm

performed by the pollster. MADS(pollster) is defined so that its mesh size parameter∆1
k

cannot be larger than the master mesh size ∆M
k at iteration k of PSD-MADS.

The pollster pseudocode is shown in Figure 2. The pollster mesh size is updated by

the master. The best obtained solution is described by xp, which is sent to the master.

The convergence analysis in Section 4 is based on the pollster, and on the fact that

consecutive runs of MADS(s1) form a valid single-poll MADS instance on P .

Pollster (p = 1)
given the master data (pollster mesh size∆1

k, starting point x0)

solve problem P: MADS(pollster)
– terminate after a single evaluation

send optimization data to master (pollster solution xp)

Figure 2: Pseudocode for pollster slave. MADS(pollster) considers all n variables with
the single-poll direction b(ℓ), and terminates after one iteration.
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3.3 The regular slaves s2 to sq−2, on M(∆p
j)

The regular slaves sp, p ∈ Qreg, work on subsets Np of N , and use positive spanning
sets of directions. The MADS algorithm working on problem Pp(x

∗) and performed by
slave sp is designated by MADS(sp).

SubproblemPp(x
∗) is defined as a |Np| variable problem since all the variables inN\

Np are fixed. Trial points generated by MADS(sp) are then inR
n, with some coordinates

fixed. The values of these fixed coordinates are directly taken from the starting point for

MADS(sp), i.e., x
∗, the incumbent solution. The user supplies a parameter, bbemax > 0,

that indicates the maximum allowed number of black-box calls for the application of

MADS to the optimization of a subproblem.

The pseudocode for the regular slaves is shown in Figure 3. MADS(sp) generates

trial points on meshes of sizes ∆p
j , where j is the iteration counter of the subproblem

algorithm. The initial mesh size ∆p
0 for MADS(sp) is set by the master. The value of

the parameter∆p
min also is supplied by the master, and equals ∆

M
k , where k is the PSD-

MADS iteration at which MADS(sp) started. Finally, we impose that no mesh size for

MADS(sp), p ∈ Qreg, exceeds the PSD-MADS initial mesh size,∆
user
0 , provided by the

user. MADS(sp) terminates if bbemax evaluations are made, or if a minimal mesh size

∆p
min is reached. The final mesh size (∆stop), and the best solution found (xp), are sent

to the master.

The union of all regular slaves MADS(sp) instances is interpreted as a search step

for the total problem single-poll MADS algorithm. This is important to the convergence

analysis in Section 4.

Slave sp (p ∈ Qreg)

given the master data

(

initial and minimum mesh sizes ∆p
0, ∆

p
min

starting solution x0, set of variables Np

)

solve subproblem Pp(x
∗): MADS(sp)

– terminate when ∆p
j < ∆p

min or after bbemax function evaluations

send optimization data to master
(

final mesh size∆stop, slave solution xp

)

Figure 3: Pseudocode for slaves processes. Does not include pollster slave, which is

specifically described in Figure 2.

3.4 The cache server ((q − 1)th process)

The cache server is a specialized process that simply memorizes all evaluated points.

Each time a process generates a trial point, the cache server is interrogated in case this
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point has already been evaluated, to avoid unnecessary expensive functions evaluations.

The cache server allows the global availability of any improvement made by any slave.

This is interpreted in Section 5 as a search step (the cache search) by the regular slaves

on their subproblems.

3.5 The master (qth process)

The master process coordinates the work of the q − 2 slaves. It waits for slave results,
updates data, and assigns work to slaves. It only evaluates the black-box functions at the

starting point x0.

The master process provides the master mesh size∆M
k at iteration k of PSD-MADS,

which is the link between the mesh sizes ∆1
k and ∆p

j on which the different MADS(sp),

p ∈ Qreg work. The initial master mesh size ∆M
0 = ∆user

0 is set by the user.

The master process updates the pollster mesh size∆1
k, after a pollster instance termi-

nates. If no improvement is made by any slave s1 to sq−1 during iteration k, the iteration
is a failure and the pollster mesh size is reduced. If the iteration succeeds, then the poll-

ster mesh size is increased. In all cases, the pollster mesh size is smaller than the master

mesh size (2). The value of the pollster mesh size is also kept less than or equal to∆user
0 .

For all regular slaves s2 to sq−1, the minimal mesh size ∆p
min is set to the current

value of ∆M
k . This, as explained in more detail in the convergence analysis, leads to

the fact that at iteration k of PSD-MADS, no regular slave can generate trial points on
meshes finer than M(∆M

k ), and that all the slaves work in fact on the pollster mesh of
size ∆1

k.

The master process pseudocode is described in Figure 4, and the pollster mesh size

update is detailed in Figure 5. The pseudocode for the master process implies that when

the master mesh size is updated, it is always possible to find an integer αk ∈ [0; w+]
such that ταk∆1

k ≤ minp∈Qreg ∆p
min. The next proposition shows that αk = 0 is always

a candidate.

Proposition 3.2 At iteration k of the PSD-MADS algorithm, there exists a nonnegative

integer αk such that ταk∆1
k ≤ minp∈Qreg ∆p

min.

Proof. At iteration 0, ∆1
0 = ∆M

0 = ∆user
0 = minp∈Qreg ∆p

min so α0 = 0, and therefore it
exists. Then ∆M

1 = ∆user
0 and minp∈Qreg ∆p

min at iteration 1 is equal to ∆user
0 . Figure 5

ensures that∆1
1 is bounded above by ∆user

0 , and therefore α1 = 0 is a possible value.
Suppose, by way of induction, that for some k ≥ 2, the proposition is true at iteration

k − 1. It follows that ∆M
k = ταk−1∆1

k−1 ≤ minp∈Qreg , and as it corresponds to new

values for∆p
min, p ∈ Qreg, the new smaller possible value ofminp∈Qreg ∆p

min at iteration

k remains ∆M
k . The largest value that ∆

1
k may take is also ∆M

k , which shows αk = 0
validates the result.

This proof allows all values of αk to be zero, but in practice, non-zero values are
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Master

[0] initializations
x∗ ← x0 ∈ Ω, ∆1

0 ← ∆M
0 ← ∆user

0 > 0, k ← 0
start MADS(pollster) with (∆user

0 , x0)

for all (p ∈ Qreg)

construct the set of indices Np and set ∆
p
min ← ∆M

0

start MADS(sp) with (∆
user
0 , ∆p

min, x0, Np)

[1] iterations
given values from a slave sp (∆stop, xp)

if
(

f(xp) < f(x∗)
)

(success)

x∗ ← xp

if (p = 1)
(

pollster,∆stop corresponds to ∆1
k

)

∆M
k+1 ← ταk∆1

k ≤ min
p∈Qreg

∆p
min with αk ∈ [0; ω+], ω+ ∈ N

∆1
k+1 ← τωk∆1

k (detailed in Figure 5)

k ← k + 1
start MADS(pollster) with (∆1

k, x
∗)

else (regular slave)

construct Np

∆p
min ← ∆M

k

∆p
0 ← τγ∆stop with γ ∈ Z and so that∆M

k ≤ ∆p
0 ≤ ∆user

0

start MADS(sp) with (∆
p
0,∆

p
min, x

∗, Np)

goto [1]

Figure 4: Pseudocode for master process. ∆M
k and ∆1

k are the master and pollster mesh

sizes at iteration k, and ∆stop the last mesh size of a slave sp. If p = 1, ∆stop = ∆1
k ≤

∆M
k , and else ∆stop ≥ ∆M

k . The master evaluates the black-boxes just once for x0.

pollster mesh size update ∆1
k+1
← τωk∆1

k

if (iteration success)

ωk = αk ∈ [0; ω+], ω+ ≥ 0
(

∆1
k+1 ← ∆M

k+1

)

(

pollster mesh size increase, ∆1
k+1 ≥ ∆1

k

)

else

ωk ∈ [ω−;−1], ω− ≤ −1
(

pollster mesh size decrease, ∆1
k+1 < ∆1

k

)

Figure 5: Update of the next pollster mesh size∆1
k+1. In any case, the pollster mesh size

verifies ∆1
k ≤ ∆M

k .
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likely. For example, if iteration 1 failed and ∆1
1 = ∆user

0 , then the following mesh

updates are possible: ∆M
2 ← ∆user

0 (α1 = 0) and ∆1
2 ← ∆user

0 /4. minp∈Qreg ∆p
min is

still equal to ∆user
0 at iteration 2, and so α2 can be either 0 or 1.

4 Convergence analysis of PSD-MADS

It is shown here that the entire algorithm may be interpreted as a single-poll MADS

algorithm applied to the original problem P and that conditions are met so that the main
convergence results from [8] hold. These conditions are that the regular slaves generate

a finite number of trial points lying on the the pollster mesh, and that all these trial points

can be interpreted as a search step with the pollster slave providing the poll step. This is

detailed in Figure 6, and we refer to it as the apparent pollster algorithm. This algorithm

is another way of interpreting the PSD-MADS algorithm described by the pseudocodes

in Figures 2, 3, 4, and 5. Iteration k of the apparent pollster algorithm corresponds to
the iteration k of PSD-MADS (used by the master process), and the notions of iteration
success and failure remain the same.

Apparent pollster algorithm

[0] Initializations
x0 ∈ Ω, ∆M

0 ← ∆1
0 ← ∆user

0 > 0, k ← 0

[1] Poll and search steps
Search step (by other slaves, opportunistic)

ask cache server for xs ∈M(∆M
k ) ⊆M(∆1

k)
Single-poll step

construct and evaluate Pk = {xpoll} ⊆M(∆1
k)

[2] Updates
determine type of success of iteration k

∆1
k+1 ← τωk∆1

k

(

cannot be larger than ∆M
k+1

)

xk+1 ← (xs or xpoll or xk)

k ← k + 1
goto [1]

Figure 6: Detailed pseudocode of the apparent pollster algorithm, the algorithm from the

point of view of the pollster slave. At every moment, a finite number ofM(∆1
k) points

are evaluated in parallel by other slaves. These evaluations are considered within the

opportunistic search step. ∆M
k is updated by the master after the poll step.

The convergence analysis in this section proves that the apparent pollster algorithm

is a single-poll MADS algorithm with the following components:
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• A search step performed by regular slaves s2, s3, ..., sq−2 on mesh coarseness

larger than or equal to∆M
k ;

• A poll step at iteration k (the same k used by the master process in Figure 4)
performed by one call to the pollster slave s1 on a mesh of size ∆1

k ≤ ∆M
k ;

• A mesh update performed by the master process with ∆1
k+1 ← τωk∆1

k and the

integer ωk ∈
{

[0; ω+] iteration success

[ω−;−1] iteration failure.

The master mesh size parameter ∆M
k at iteration k is the link described by inequal-

ities (2) between the mesh size of MADS(pollster) and the different mesh sizes of

MADS(sp). It is updated by the master with the MADS(pollster) mesh (via∆stop = ∆1
k),

in such a way that, at every iteration k of the apparent pollster algorithm, ∆1
k satisfies

∆1
k ≤ ∆M

k . This ∆M
k updated by the master in the apparent pollster algorithm occurs

when the mesh size ∆1
k is updated, and while its value does not change during the poll

step, it can possibly be updated during the search step since that is performed in parallel.

This possible change of the ∆M
k value within the search step of the apparent pollster

algorithm is governed by the fact that∆M
k cannot be exceeded by any regular slave mesh

size (∆M
k ≤ minp∈Qreg ∆p

min).

To show that the apparent pollster algorithm is a valid single-poll MADS algorithm

applied to the original problem P , and that the convergence conditions of [8] hold, the
search trial points, whose evaluations are performed at any time in parallel by the other

slaves, must remain finite in number and on the current pollster mesh at iteration k, ∆1
k.

This will be shown via the following propositions.

Proposition 4.1 The mesh size parameter at iteration j of the MADS algorithm per-

formed by a slave sp, p ∈ Qreg, on a subproblem Pp(x
∗), satisfies ∆p

j = τ−ηj∆user
0

for some integer ηj ≥ 0. This can be extended to the pollster slave at iteration k with

∆1
k = τ−ηk∆user

0 .

Proof. We first show that the proposition is true for the first optimization subproblem

solved by a regular slave sp, p ∈ Qreg. The initial mesh size parameter used for this

MADS instance is ∆user
0 , and with the standard MADS mesh update rules, at iteration

j, ∆p
j = τωj−1∆p

j−1 =... = τ
Pj−1

i=0 ωi∆user
0 . Then ηj = −∑j−1

i=0 ωi ≥ 0 because no mesh
size can be larger than∆user

0 .

Suppose now that the proposition is true for the rth MADS instance performed by
sp. In particular, the last mesh size parameter of this instance can be written ∆stop =
τ−ηstop∆user

0 where ηstop is a nonnegative integer. From the algorithm described in Fig-

ure 4, the first mesh size parameter of the (r + 1)th MADS instance performed by sp is

∆p
0 = τγ∆stop with γ ∈ Z. Then at iteration j of the (r+1)th instance,∆p

j = τ
Pj−1

i=0 ωi∆p
0
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and ηj = −
∑j−1

i=0 ωi − γ + ηstop ≥ 0 because ∆p
j ≤ ∆user

0 . The proposition can be

extended to the pollster slave with the same induction proof on k.

Proposition 4.2 At iteration k of PSD-MADS, and at iteration j of the MADS algorithm

performed by sp (p ∈ Qreg) on a subproblem Pp(x
∗), there exists a nonnegative integer

βj such that ∆p
j = τβj∆M

k .

Proof. From the algorithm in Figure 4, the master mesh size parameter, at iteration

k of PSD-MADS, can be written ∆M
k = ταk−1∆1

k−1 with αk−1 ∈ N, and ∆1
k−1 =

τ−ηk−1∆user
0 , with ηk−1 ∈ N, from Proposition 4.1. From the same proposition, the mesh

size parameter at iteration j of MADS(sp), p ∈ Qreg, can be written ∆p
j = τ−ηj∆user

0 ,

ηj ∈ N. Then ∆p
j = τβj∆M

k with βj = ηk−1 − ηj − αk−1. The minimal mesh size

parameter ∆p
min considered by MADS(sp) corresponds to ∆M

i where i ≤ k is an ante-
rior iteration of PSD-MADS. The current value of ∆M

k was chosen to be smaller than

minp∈Qreg ∆p
min ≤ ∆M

i . Then, ∆
M
k ≤ ∆M

i ≤ ∆p
j and βj is a nonnegative integer.

An immediate corollary, with Hypothesis 3.1, is that at iterations k of PSD-MADS
and j of MADS(sp), p ∈ Qreg,M(∆p

j ) ⊆M(∆M
k ).

Proposition 4.3 At iteration k of PSD-MADS, every trial point generated by the MADS

algorithm performed by sp, p ∈ Qreg, on any subproblem Pp(x
∗), lies on the pollster

mesh M(∆1
k).

Proof. From the algorithm in Figure 4, the pollster and master mesh size parameters

at iteration k of PSD-MADS are linked with ∆M
k = ταk∆1

k, αk ∈ N. With Hypothe-

sis 3.1 and Proposition 4.2, at iteration j of MADS(sp),M(∆p
j ) ⊆ M(∆M

k ) ⊆ M(∆1
k),

meaning that all trial points of MADS(sp), already lying onM(∆p
j ), lie onM(∆1

k).

This series of propositions ensures that all the trial points of the search step of the

apparent pollster at iteration k, performed in parallel by regular slaves, lie on the cur-
rent pollster mesh ∆1

k. In addition, their number remains finite as the time between two

iterations, corresponding to a single-point poll, is finite (with the hypothesis that black-

boxes evaluate, or are terminated to return ∞, in finite time). The PSD-MADS algo-
rithm, viewed from the perspective of the pollster slave, thus executes a valid single-poll

MADS search, and the main convergence results of [8] remain valid. Let x̂ be the limit
of a subsequence of PSD-MADS incumbents at unsuccessful iterations, then

• If f is Lipschitz near x̂ ∈ Ω, then the Clarke derivative satisfies f ◦(x̂; v) ≥ 0 for
all v ∈ T H

Ω (x̂), the hypertangent cone to Ω at x̂;

• In the unconstrained case and if f is strictly differentiable at x̂, ∇f(x̂) = 0.
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As mentioned in Section 2.3, the fact that the single-poll version of MADS is used

sacrifices the zero’th order result of [8], i.e., x̂ cannot be said to to be the limit of local
optima on meshes that get infinitely fine.

5 A practical implementation of PSD-MADS

This section proposes a practical implementation of the PSD-MADS algorithm described

in Section 3 based on the LTMADS implementation proposed in [8] and summarized in

Section 2.4. An illustrative example and some numerical tests complete the implemen-

tation description.

5.1 PSD-MADS implementation

Verification of Hypothesis 3.1

The above convergence analysis relies on Hypothesis 3.1. An easy way to satisfy this

hypothesis is to simply choose τ to be an integer. Indeed, consider the mesh point
x ∈ M(∆), and mesh size ∆ ∈ R. From the mesh definition (1), x can be written as
y + ∆

∑nD

i=1 zidi where y belongs to V , the set of currently evaluated points, and the zi

are nonnegative integers. Now, if ∆′ = τω∆ where ω ∈ N and 1 ≤ τ ∈ N, then x can
be rewritten as x = y + ∆′

∑nD

i=1 τωzidi. It follows that, τ
ωzi ∈ N, i = 1, 2, ..., nD, and

therefore x ∈M(∆′). We have shown thatM(∆) ⊆M(∆′) and thus, Hypothesis 3.1 is
satisfied. In the proposed PSD-MADS implementation, the same LTMADS fixed value

of τ = 4 is used.

Directions used by the pollster

The LTMADS direction b(ℓ) is used in the single-poll MADS algorithm executed by
the pollster slave. The union of normalized directions b(ℓ), ℓ = 1, 2, ..., is dense in the
unit sphere with probability one, and MADS(pollster) with the b(ℓ) direction respects
the conditions for a valid single-poll MADS algorithm.

Sets Np of subproblems variables

We take the sets Np, p ∈ Qreg, to be randomly generated by the master using an uni-

form distribution before each subproblem parameters are sent to a regular slave pro-

cess. In order to keep an easy parametrization of this PSD-MADS implementation,

the number of variables for each subproblem is fixed throughout the entire algorithm,

|N2| = |N3| = ... = |Nq| = ns, where ns is a parameter chosen by the user (recall
that for the pollster, N1 = N). Furthermore, when MADS(sp), p ∈ Qreg, succeeds in
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improving the incumbent, the same setNp is kept for the next run performed by the slave

sp.

Mesh update rules

The mesh directions of definition (1) are the standard LTMADS 2n directions, D =
[−In In]. The following mesh size parameter updates are in accordance with the LT-
MADS mesh update rules:

• Regular slaves mesh size ∆p
j (at iteration j of MADS(sp), p ∈ Qreg): after an

iteration fails, the mesh size is updated with∆p
j+1 ← ∆p

j/4 (ωj = −1 in Figure 1).
If a poll step is successful, ∆p

j+1 ← 4∆p
j (ωj = 1). In the next search step, if a

successful point is found in the cache server, set ∆p
j+1 ← 4∆cache where ∆cache is

the mesh size used to generate this point. Equation (3) summarizes these updates:

∆p
j+1 ←







min{∆user
0 , 4∆p

j} poll success

min{∆user
0 , 4∆cache} cache search success

∆p
j/4 iteration failure.

(3)

If ∆p
j+1 < ∆p

min, or if the number of new function evaluations exceeds bbemax,

MADS(sp) terminates and communicates ∆stop = ∆p
j to the master. The next

optimization performed by this slave will start with an initial mesh size parameter

∆p
0 equal to 4γ∆stop, with γ = 1 if at least one success was achieved since the
beginning of the current optimization (even by another slave), or else γ = −1.
However, this may lead to a value smaller than ∆p

min = ∆M
k , and in this case, set

∆p
0 ← ∆M

k .

The ∆p
0 choice for the next MADS(sp) is summarized by:

∆p
0 (next MADS(sp))←

{

min{∆user
0 , 4∆stop} success

max{∆M
k , ∆stop/4} else.

(4)

• Master mesh size ∆M
k at iteration k of PSD-MADS: the update of the master

mesh size is performed by the master after a pollster instance terminates. ∆M
k+1

is bounded below by the mesh size parameter of the terminated pollster, ∆1
k, and

above by the minimum of all ∆p
min values currently used by regular slaves. These

∆p
min values correspond to previous master mesh sizes.

It would be possible to choose the parameter αk in Figure 4 at each update so that

∆M
k+1 is fixed to ∆user

0 , with αk equal to the ηk from Proposition 4.1. However,

such a strategy would not be efficient as regular slaves would always generate trial

points on the same meshM(∆user
0 ). The master mesh size has then to be reduced

somehow through the PSD-MADS evolution. However, it should not be reduced
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too rapidly, or the algorithm would progress slowly, or even terminate prematurely

in practice.

We propose the following strategy: from Figure 4, ∆M
k is updated by ∆M

k+1 ←
4αk∆1

k with αk ∈ N, and from Proposition 4.1, ∆1
k = 4−ηk∆user

0 with some

ηk ∈ N. If iteration k succeeded, set αk = ηk = log4 (∆user
0 /∆1

k) (maximal
∆M

k increase), and else, αk = ηk−⌊(ηk +1)/3⌋ (attenuated∆M
k increase). In both

cases, if∆M
k+1 is greater than at least one of the regular slaves mesh size∆

p
min, then

∆M
k+1 is set to the least ∆

p
min values. This can be summarized by the following:

∆M
k+1 ←







min
{

∆user
0 , min

p∈Qreg

∆p
min

}

iteration success

min
{

4−⌊(ηk+1)/3⌋∆user
0 , min

p∈Qreg

∆p
min

}

iteration failure.
(5)

For example, if ∆user
0 = ∆p

min = 1 for each p ∈ Qreg and if the pollster instance

fails with a pollster mesh size of ∆1
k = 1/16, then the master mesh size ∆M

k+1 is

set to 1/4 (ηk = 2, αk = 1; this is what happens at time t = t3 in the example
described in Section 5.2) .

• Pollster mesh size ∆1
k at iteration k of PSD-MADS: in the case of an iteration

success, ∆1
k+1 is set to∆M

k+1 (ωk = αk ∈ N), or else ∆1
k+1 = ∆1

k/4 (ωk = −1):

∆1
k+1 ←

{

∆M
k+1 = min

{

∆user
0 , min

p∈Qreg

∆p
min

}

iteration success

∆1
k/4 iteration failure.

(6)

MADS parameters for MADS(sp), p ∈ Qreg

The regular slaves p ∈ Qreg solveMADS(sp) using the standardMADS 2|Np| directions.
All polls are opportunistic, meaning that a subproblem optimization terminates as soon

as a better point is found. The one point dynamic search strategy of [8] is also performed:

it consists, after a successful poll step, in evaluating, within a single-point search, the

black-box functions at a mesh point located further along the same successful direction.

In addition to the poll and the one-point dynamic search, MADS(sp) performs a spe-

cialized search step, which simply consists in querying the cache server for the best

available feasible point. This special search step generates no additional function evalu-

ation and allows every regular slave to know the best points eventually obtained by other

slaves. Note that this search step has no obligation to give a point lying on the current

mesh of MADS(sp), but this does not influence the convergence analysis as it is based

on the pollster s1, and as the point given by this search must come from another slave,

thus lying onM(∆M
k ).
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Practical termination criteria

The regular slaves p ∈ Qreg terminate MADS(sp) as soon as the mesh size parameter∆
p
j

drops below∆p
min = ∆M

k (where k is the PSD-MADS iteration at which MADS(sp) was

started), or after a finite number of bbemax black-box function evaluations are made. The

PSD-MADS algorithm is stopped after an overall limit of bbeglobal
max black-box evaluations

is reached.

The PSD-MADS implementation described above is illustrated in the next section,

where an example of a few steps is presented (Figure 7).

5.2 A detailed PSD-MADS illustrative example

We consider a problem with n = 4 variables and q = 5 processes (one pollster, two regu-
lar slaves, one master, and one cache). The two regular slaves have a limit of bbemax = 2
evaluations, and their sets of variables are of cardinality ns = 2. The initial (and maxi-
mal) mesh size value is∆user

0 = 1.
The progress of the four processes over time from iteration k = 4 to the end of k = 6

is illustrated in Figure 7. The cache server is not represented in the figure. The grayed

rectangles illustrate the black-box evaluations and their widths represent their different

running times to return a value. Arrows represent communications between processes.

The time t1 corresponds to the beginning of iteration k = 5. The incumbent solution
at the start of iteration k = 5 is x∗ = [10 10 10 10]T with f(x∗) = 10 and the current
master mesh size is ∆M

5 = 1. This information appears in the figure in the master’s
section.

The notation yi is used for the ith poll trial point of one instance of MADS(sp),

p ∈ {1, 2, 3} solved by a slave. The pollster evaluates the black-boxes at time t1 at the

poll point y1 = [10.0625 10 10 10]T with pollster mesh size ∆1
5 = 1/16.

At t2, slave s3 terminates and communicates to the master: the incumbent is not

modified. The stopping criteria ∆p
min value of slave s3 is set to the current master mesh

size value∆M
5 . The coordinates of the regular slave trial points marked by stars indicate

that these coordinates are fixed to the ones of the poll center. For example, the two trial

poll points of slave s3 at time t2 and t3 are [10∗ 11 10 10∗]T and [10∗ 10 11 10∗]T with
poll center x0 = x∗ = [10 10 10 10]T , N2 = {2, 3}, and with a mesh size parameter
∆3

0 = 1.
At time t3, the pollster returns information to the master, and iteration 5 is declared

to have failed. The master mesh size is set to ∆M
6 = 1/4, with η5 = 2 and α5 = 1,

according to (5) (attenuated master mesh size increase). Also, the pollster mesh size is

reduced to ∆1
6 = ∆1

5/4 = 1/64 (6).
At t4, the slave s2 improves the current incumbent solution, and the mesh size is

increased: ∆2
1 ← 1 = ∆user

0 (3). Since MADS(s2) is opportunistic, it begins a new
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stop (2 ev.) stop (2 ev.)

y1=[10; 10; 9.984375; 10]T y1=[10; 10; 9; 9.75]T

iteration success

y2=[10∗ ; 10∗; 8; 10]Tcache

search
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Figure 7: A PSD-MADS illustrative example.

iteration with a cache search.

At t5, slave s3 terminates and communicates to the master: the incumbent is not

modified. MADS(s3) starts with N3 = {2, 4},∆3
0 = 1, and ∆3

min = 1/4, because a new
incumbent was produced by s2 since s3 last communicated with the master (“success”

in equation (4)).

At time t6, the pollster returns information to the master, and iteration 6 is de-
clared to be successful. The maximal increase is performed for ∆M

7 , which is set to

minQreg ∆p
min = 1/4 (5), and ∆1

7 ← ∆M
7 .

Finally, at t7, since MADS(s2) was successful, the new instance of MADS(s2) keeps

the same free variables N2 = {3, 4}.

5.3 Numerical experiments

The PSD-MADS implementation described in Section 5 is tested here, on two different

problems. The implementation of MADS used to optimize subproblems is the research
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version of the NOMAD C++ code [5]. The parallel master/slaves paradigm is achieved

with MPI with q = 6 or 14 processes.
PSD-MADS is compared to three other parallel algorithms, on the same number

q of processes: first, the pGPS method described in [17], which corresponds to the
unmodified GPS method where evaluation are made in parallel. Then pMADS, which is

the trivial adaptation of pGPS that uses MADS instead of GPS. pGPS and pMADS are

both synchronous parallel algorithms. The third method is APPS version 5.0 [25, 33],

the only available GPS asynchronous parallel algorithm.

The first problem (referred as Problem A) considered for the tests is the G2 example

from [28]. It has been chosen for its difficulty and for its variable size: our tests involve

n = 20, 50, 250 and 500 variables. Problem A is written as follows:

min
x∈R

n
f(x) = −

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

cos4 xi − 2
n
∏

i=1

cos2 xi

√

n
∑

i=1

ix2
i

∣

∣

∣

∣

∣

∣

∣

∣

s.t.



















−
n
∏

i=1

xi + 0.75 ≤ 0

n
∑

i=1

xi − 7.5n ≤ 0

0 ≤ xi ≤ 10, i = 1, 2, ..., n.

The problem is treated as a black-box one, and an upper limit of 100n function evalua-
tions is imposed. The feasible starting point for all methods is the center of the bound

constrained domain x0 = [5 5 ... 5]T ∈ Ω. The best known value from [28], for n = 20,
is f(x) = −0.803619. In [28], various genetic algorithms gave good solutions, after
several hundred thousand of evaluations. Here, after a maximum of 2000 evaluations,

PSD-MADS achieved f(x) ≃ −0.76.
The second test problem (Problem B) was designed for the MoVars algorithm [12].

It has n = 60 variables and one constraint with two different versions: G ≥ 250, or
G ≥ 500 (see [12] for a more complete description). An infeasible starting point is
provided in [12], but cannot be used in the present work since constraints are treated

with the extreme barrier approach. The feasible starting points considered here for the

two versions of Problem B have been obtained by minimizing the constraint violation

max{0, (250 − G)2} or max{0, (500 − G)2}, from the starting point of [12], with the
pMADS algorithm. These optimizations required 3 evaluations for G ≥ 250, with the
resulting feasible point x0 giving f(x0) = 3678.35 and 74 evaluations for G ≥ 500,
and f(x0) = 3014. These evaluations costs are considered in Figure 9. The feasible
starting points, our source code for Problem B, and our best points are available on

the website www.gerad.ca/Charles.Audet. Our results for Problem B are not

compared with the MoVars algorithm results because numerical values are not given
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in [12]. The best solutions found gave f(x) = 13.565 forG ≥ 250, and f(x) = 245.866
for G ≥ 500.
The various results of this section are measured considering two quantities: z rep-

resents the best value of the objective function of problem P , and bbe, the total number
of black-box evaluations. One evaluation is counted for the calls to both the objective f
and constraints of Ω.
The most representative cost of a black-box algorithm is the number of black-box

evaluations. For the same reason, no speedup curves are given and q is kept constant
for each problem (q = 14 for Problem A and q = 6 for Problem B). The PSD-MADS
method was not conceived in order to reduce the time to obtain a solution. Instead, we

seek to obtain better solutions than a non-decomposing algorithm for problems with a

large number of variables (20 ≤ n ≤ 500).
For all our tests, the termination criteria is the maximum total number of black-box

evaluations, which is bbeglobal
max = 100n for Problem A and bbeglobal

max = 3000 for Problem B
(as in [12]).

The initial (and maximal) mesh size parameter is ∆user
0 = 2 for Problem A. For

Problem B, due to scaling reasons, the value of ∆user
0 differs for each variable and is

set to be 0.2 times the range of the variables (i.e ∆user
0 = 0.3 for the 15 first variables,

0.35 for the next 30 variables, and 0.44 for the last 15 variables). These values has been
decided empirically to give good results with standardMADS and APPS runs. The linear

nature of the second constraint of Problem A is exploited by APPS. Since PSD-MADS

and pMADS involve randomness in the polling directions, 30 runs are made for each test

Parallel execution of pGPS and APPS can affect their determinism. However, this effect

was ignored and one run was performed for each test.

To measure the quality of the solutions found, the best (zbest), worst (zworst), and
average (zavg) values of z after the 100n evaluations, are reported. Another measure is
Savg, representing the area between a curve z v.s bbe and the line z = −0.8 for Problem A
(no run gave z < −0.8), and z = 0 for Problem B. Best runs are obtained with small
values for all these quantities.

PSD-MADS was tested on Problem A with n = 20 and 50 by varying bbemax, the

maximum number of black-box evaluations for each regular subproblem, and ns the
number of variables in each subproblem. The number of processes has been set to

q = 14, in order to fully exploit 12 processors. Good results were obtained by setting
bbemax = 10, and having the regular slaves working on small dimensional subspaces
ns = 2. These values are kept for n > 50. For Problem B, bbemax is kept to 10. The
best results have been obtained by distributing the 60 variables amongst 3 regular slaves
with q = 6 and ns = 20.
Table 1 and Figures 8 and 9 summarize the numerical results. For all instances of

Problem A, APPS outperforms pGPS, but it does not do as well as PSD-MADS. In the

three larger instances of Problem A, the worst f value produced by PSD-MADS is al-
ways better than all the other methods f values. For Problem B, pGPS outperforms
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APPS, and better results are obtained with pMADS and PSD-MADS, with a small ad-

vantage to PSD-MADS. In all the curves in Figures 8 and 9, one can notice that pMADS

is always the fastest to descend, but PSD-MADS overtakes it and produces better solu-

tions.

Algorithm

pGPS

APPS

pMADS

PSD-MADS

pGPS

APPS

pMADS

PSD-MADS

pGPS

APPS

pMADS

PSD-MADS

Problem zbest zworst zavg Savg

-0.450 -0.450 -0.450 1,010

A -0.517 -0.517 -0.517 806

n = 20 -0.775 -0.434 -0.592 670

-0.761 -0.430 -0.666 595

-0.089 -0.089 -0.089 18,322

A -0.193 -0.193 -0.193 16,980

n = 250 -0.449 -0.438 -0.444 9,703

-0.698 -0.464 -0.603 8,568

764.741 764.741 764.741 2,731,920

B 813.237 813.237 813.237 3,906,060

G ≥ 250 32.700 317.167 112.522 1,071,870

13.565 307.305 70.121 965,553

Problem zbest zworst zavg Savg

-0.279 -0.279 -0.279 3,400

A -0.461 -0.461 -0.461 2,443

n = 50 -0.498 -0.430 -0.457 1,939

-0.727 -0.528 -0.663 1,553

-0.073 -0.073 -0.073 37,395

A -0.129 -0.129 -0.129 35,816

n = 500 -0.447 -0.439 -0.443 19,380

-0.688 -0.461 -0.576 17,660

869.559 869.559 869.559 3,552,910

B 1,162.580 1,162.580 1,162.580 4,579,370

G ≥ 500 417.049 948.768 662.841 2,892,140

245.866 731.023 463.969 2,603,480

Table 1: Numerical Result for Problems A and B: zbest, zworst and zavg give information
on the 30 runs performed for each PSD-MADS test series, and Savg gives a measure of
the area below the curves in Figures 8 and 9. Best values appear in bold.

6 Discussion and possible extensions

This paper introduced PSD-MADS, a new parallel space decomposition technique with

less restrictive conditions on the functions to be optimized than usual PSD methods. A

convergence analysis is given based on the Clarke calculus and the MADS convergence

analysis. A practical implementation is described, with a small number of parameters

(bbemax and ns), and very encouraging results have been obtained on a difficult problem
from the literature, with up to 500 variables.

We presented a first basic implementation of PSD-MADS. An obvious extension is

a strategy to decide on the sets of variables in the subproblems, which is done randomly

for these tests. Of course, it is not clear how to do this in general or we would have done

it here. However, for some application, the user may have special knowledge that would

help in this task. For example, the user might put similarly scaled variables in the same

subproblem.

It would also be interesting to incorporate the PVD idea of the “forget-me-not” terms,

and allow some basic changes in the subproblems for fixed variables. A third possibility

would be to perform some additional search steps in the slave subspaces. Another pos-

sible extension would be to reintroduce the synchronization step of the original block-

Jacobi method, but without the parallel barrier. This “recomposition” step could be

performed in parallel by one of the regular slaves, from a pool of successful points, in
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Figure 8: ProblemA: graphs of the objective function value v.s the number of evaluations

for all test results. PSD-MADS and pMADS plots correspond to average values of the

30 runs performed for each test.
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Figure 9: Problem B: graphs of the objective function value v.s the number of evaluations

for all test results. PSD-MADS and pMADS plots correspond to average values of the

30 runs performed for each test.

order to create a problem similar to the one in [19]. Finally, constraints of Ω could be
treated with the progressive barrier [9], instead of the extreme barrier approach. This

would allow for infeasible iterates, including the starting point.
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