
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

PARALLEL SPARSE: Data Structure and Organization PARALLEL SPARSE: Data Structure and Organization

Mo Mu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
90-974

Mu, Mo and Rice, John R., "PARALLEL SPARSE: Data Structure and Organization" (1990). Department of
Computer Science Technical Reports. Paper 827.
https://docs.lib.purdue.edu/cstech/827

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL SPARSE:
DATA STRUCTURE AND ORGANIZATION

Mo Mu
John R. Rice

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #974
May 1990

PARALLEL SPARSE:
DATA STRUCTURE AND ORGANIZATION

MoMu
John R. Rice

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR#974
May 1990

PARALLEL SPARSE:
Data Structure and Organization

Mo Mu*
and

J.R. Rice**

Computer Sciences Department
Purdue University

Technical Report CS D-TR-974
CAPO Report CER-90- 17

May, 1990

* Work supported in part by National Science Foundation grant CCR-8619817.
** Work supported in part by the Air Force Office of Scientific Research grant, 88-0243, and the
Suategic Defense Initiative through Army Research Office contract DAAL03-86-K-0106.

PARALLEL SPARSE:
Data Structure and Organization

MoMu*
and

J.R. Rice**

Computer Sciences Department
Purdue University

Technical Report CSD-TR-974
CAPO Report CER-90-17

May, 1990

* Work supported in part by National Science Foundation grant CCR-8619817.
** Work supported in part by the Air Force Office of Scientific Research grant, 88-0243, and the
Strategic Defense Initiative through Army Research Office contract DAAL03-86-K-0106.

PARALLEL SPARSE:
Data Structure and Organization

Mo Mu * and John R. Rice*"

Computer Science Department
Purdue University

West Lafayette, IN 47907
Technical Report CSD-TR-974

CAPO Report CER-90-17
May 1990

ABSTRACT

PARALLEL SPARSE is an algorithm for the direct solution of general sparse
linear systems using Gauss elimination. It is designed for distributed memory machines
and has been implemented on the NCUBE-7, a hypercube machine with 128 processors.
The algorithm is intended to be particularly efficient for linear systems arising from
solving partial differential equations using domain decomposition with a nested dissec-
tion ordering. PARALLEL SPARSE is part of the Parallel ELLPACK system.

This report assumes the reader is familiar with the general approach of parallel
sparse and it provides detailed information on three aspects of PARALLEL SPARSE:

1. The data structures used to represent the mamx, the modifications in elim-
inating unknowns and the dependencies between processors.

2. The data structures that relate the assignment of actual hypercube processors
to computational processes.

3. The organization of the codes that run on the hypercube host and on the
hypercube nodes:

Dynamic data structures are used unlike most other sparse mamx codes. These are
more complex but provide better flexibility to handle PDE problems. Much of the
complexity seen here compared to traditional other codes is due to the fact that we han-
dle general matrices instead of only symrnemc ones.

* Work supported in part by National Science Foundation grant CCR-8619817.
** Work supported in part by the Air Force Office of Scientific Research grant. 88-0243 and the
Suategic Defense Initiative Office conuact DAAL03-86-K-0106.

PARALLEL SPARSE:
Data Structure and Organization

Mo Mu * and John R. Rice**

Computer Science Department
Purdue University

West Lafayette, IN 47907
Technical Report CSD-TR-974

CAPO Report CER-90-17
May 1990

ABSTRACT

PARALLEL SPARSE is an algorithm for the direct solution of general sparse
linear systems using Gauss elimination. It is designed for distributed memory machines
and has been implemented on the NCUBE-7, a hypercube machine with 128 processors.
The algorithm is intended to be particularly efficient for linear systems arising from
solving partial differential equations using domain decomposition with a nested dissec
tion ordering. PARALLEL SPARSE is part of the Parallel ELLPACK system.

This report assumes the reader is familiar with the general approach of parallel
sparse and it provides detailed information on three aspects of PARALLEL SPARSE:

1. The data structures used to represent the matrix, the modifications in elim
inating unknowns and the dependencies between processors.

2. The data structures that relate the assignment of actual hypercube processors
to computational processes.

3. The organization of the codes that run on the hypercube host and on the
hypercube nodes:

Dynamic data structures are used unlike most other sparse matrix codes. These are
more complex but provide better flexibility to handle POE problems. Much of the
complexity seen here compared to traditional other codes is due to the fact that we han
dle general matrices instead of only symmetric ones.

* Work supported in part by National Science Foundation grant CCR-8619817.
** Work supported in part by the Air Force Office of Scientific Research grant, 88-0243 and the
Strategic Defense Initiative Office contract DAAL03-86-K-0106.

I. rNTRODUCTION

PARALLEL SPARSE is an algorithm for the direct solution of general sparse

linear systems using Gauss elimination. It is designed for distributed memory machines

and has been implemented on the NCUBE-7, a hypercube machine with 128 processors.

The algorithm is intended to be particularly efficient for linear systems arising from

solving partial differential equations using domain decomposition with a nested dissec-

tion ordering. PARALLEL SPARSE is part of our Parallel Ellpack system [Houstis,

Rice, 19891.

There have been a lot of work on developing parallel algorithms for solving sparse

systems using Gauss elimination (e.g., [George, Heath, Liu, Ng, 19881, [Mu, Rice,

19891, [DUE, 19861). Elimination tree is a useful tool in this field. This concept is first

introduced from the algebraic point of view of the sparse structure of matrices. For a

symmetric matrix A, one determines the sparse structure of its Cholesky factor L with

A = LLT by applying symbolic factorization to A and then defines the elimination tree

of A from the structure of L with each tree node corresponding to one unknown. This

tree reflects the dependency of unknowns during elimination and therefore can be used

to exploit the parallelisms inherent in it. If A is nonsymmetric, the definition of the

elimination tree is not as natural. It uses traditional elimination trees by doing either a

symbolic Cholesky factorization on AT^ (or A +AT) for the coefficient matrix A

[George, Liu, Ng, 19881 or a modified symbolic LU factorization with "worse case"

assumptions in the fill [George and Ng, 19881. On the other hand, tree shapes affect

their potential parallelism. A good elimination tree should be balanced, wide and short.

One can improve tree shapes by reordering unknowns/equations [Liu, 19881.

A geometric (or physical) approach to develop parallel sparse solvers for solving

PDE problems is suggested in [Mu and Rice, 19891, [Mu and Rice, 1990a1, which has

several advantages over some standard algebraic approaches. By extending the conven-

tional elimination tree to a block one, it naturally allows non-symmetry in the linear

system, avoids symbolic factorization, leads to a well shaped (block) elimination tree,

and also allows people to flexibly combine various ideas in different regions according

to the local information of geometry and physics of PDEs for assignment, indexing and

algebraic solution. These ideas are developed more systematically in [Mu, Rice,

1990bl.

I. INTRODUCTION

PARALLEL SPARSE is an algorithm for the direct solution of general sparse

linear systems using Gauss elimination. It is designed for distributed memory machines

and has been implemented on the NCUBE-7, a hypercube machine with 128 processors.

The algorithm is intended to be particularly efficient for linear systems arising from

solving partial differential equations using domain decomposition with a nested dissec

tion ordering. PARALLEL SPARSE is part of our Parallel Ellpack system [Houstis,

Rice, 1989].

There have been a lot of work on developing parallel algorithms for solving sparse

systems using Gauss elimination (e.g., [George, Heath, Liu, Ng, 1988], [Mu, Rice,

1989], [Duff, 1986]). Elimination tree is a useful tool in this field. This concept is first

introduced from the algebraic point of view of the sparse structure of matrices. For a

symmetric matrix A, one determines the sparse structure of its Cholesky factor L with

A =LL T by applying symbolic factorization to A and then defines the elimination tree

of A from the structure of L with each tree node corresponding to one unknown. This

tree reflects the dependency of unknowns during elimination and therefore can be used

to exploit the parallelisms inherent in it. If A is nonsymmetric, the definition of the

elimination tree is not as natural. It uses traditional elimination trees by doing either a

symbolic Cholesky factorization on ATA (or A + AT) for the coefficient matrix A

[George, Liu, Ng, 1988] or a modified symbolic LU factorization with "worse case"

assumptions in the fill [George and Ng, 1988]. On the other hand, tree shapes affect

their potential parallelism. A good elimination tree should be balanced, wide and short.

One can improve tree shapes by reordering unknowns/equations [Liu, 1988].

A geometric (or physical) approach to develop parallel sparse solvers for solving

PDE problems is suggested in [Mu and Rice, 1989], [Mu and Rice, 1990a], which has

several advantages over some standard algebraic approaches. By extending the conven

tional elimination tree to a block one, it naturally allows non-symmetry in the linear

system, avoids symbolic factorization, leads to a well shaped (block) elimination tree,

and also allows people to flexibly combine various ideas in different regions according

to the local information of geometry and physics of PDEs for assignment, indexing and

algebraic solution. These ideas are developed more systematically in [Mu, Rice,

1990b].

II. ALGORITHM DESCRIPTION

II.a. Block Elimination Tree

The algorithm for PARALLEL SPARSE is based on the fact that the unknown

dependency during elimination can be expressed by a (binary) block elimination tree
as shown in Figure 2.1. Each node corresponds to a block of unknowns/equations. The

indexing of unknowns is bottom level to top level by blocks, i.e., if unknowns u and v

are in nodes S and T, respectively, and S is on a higher level than T is, then the index of

u is larger than that of v. The indexing of blocks on the same level and the local index-

ing within each node is essentially arbitrary.

level 4

level 3

level 2

level 1

level 0

Figure 2.1. Block elimination tree with five levels

We can always get such a block elimination tree by our geometric approach to

solving PDEs. For simplicity of exposition, we consider a PDE problem on a rectangu-

lar domain Q, the approach can be extended easily to general domains. Suppose we

have p (= 2Zd) processors available, 2d in each direction. By domain decomposition R

is divided into p subdomains Rij, i , j = 1, 2, ..., p1I2 as shown in Figure 2.2. One

puts a local grid on each subdomain Qii and discretizes the local problem whose solu-

tion Uij only depends on unknowns at grid points of aQi,, the boundary of Qij.

Initially, all interior unknowns Uij are eliminated locally as in the standard domain

decomposition approach. This step is obviously totally parallel. Then, all processors

participate in eliminating interface unknowns. To exploit more parallelism, we use

dissection in alternating directions to partition the interface set into several levels suit-

able for a hypercube machine, each level consists of several separators, groups of

unknowns which separate regions. The partition, which we call the one way nested

dissection decomposition, is shown by Figure 2.3 with circles representing the

unknowns interior to the subdomain Rij, the boxes representing the separators. For

simplicity, they are all called subdomains of this domain decomposition in the nested

- 2 -

II. ALGORITHM DESCRIPTION

II.a. Block Elimination Tree

The algorithm for PARALLEL SPARSE is based on the fact that the unknown

dependency during elimination can be expressed by a (binary) block elimination tree

as shown in Figure 2.1. Each node corresponds to a block of unknowns/equations. The

indexing of unknowns is bottom level to top level by blocks, i.e., if unknowns u and v

are in nodes S and T, respectively, and S is on a higher level than T is, then the index of

u is larger than that of v. The indexing of blocks on the same level and the local index

ing within each node is essentially arbitrary.

level 4

level 3

level 2

level 1

level 0

Figure 2.1. Block elimination tree with five levels

We can always get such a block elimination tree by our geometric approach to

solving PDEs. For simplicity of ~xposition, we consider a PDE problem on a rectangu

lar domain a, the approach can be extended easily to general domains. Suppose we

have p (= 22d
) processors available, 2d in each direction. By domain decomposition Q

is divided into p subdomains Qij, i, j = 1, 2, ..., P 112 as shown in Figure 2.2. One

puts a local grid on each subdomain aij and discretizes the local problem whose solu

tion Uij only depends on unknowns at grid points of aaij , the boundary of Qij'

Initially, all interior unknowns Uij are eliminated locally as in the standard domain

decomposition approach. This step is obviously totally parallel. Then, all processors

participate in eliminating interface unknowns. To exploit more parallelism, we use

dissection in alternating directions to partition the interface set into several levels suit

able for a hypercube machine, each level consists of several separators, groups of

unknowns which separate regions. The partition, which we call the one way nested

dissection decomposition, is shown by Figure 2.3 with circles representing the

unknowns interior to the subdomain Qij, the boxes representing the separators. For

simplicity, they are all called subdomains of this domain decomposition in the nested

dissection manner and are numbered from top level to bottom level as shown in Figure

2.3.

Figure 2.2. Domain decomposition of a rectangle for d = 2.

Q l l

Q21

Q31

a1

Figure 2.3. Partition of the subdomain interfaces in Figure 2.2 using one way nested

dissection. The circles (16-31) represent the 16 groups of interior

unknowns and the boxes represent groups of interface unknowns or

separators. All boxes of the same size are on the same level of the elimi-

nation tree.

Q12

Q22

Q32

Q42

Q13

Q23

Q33

Q43

Q14

Q24

Q34

%

- 3 -

dissection manner and are numbered from top level to bottom level as shown in Figure

2.3.

1211 1212 1213 1214

1221 1222 1223 1224

1231 1232 1233 1234

~1 1242 1243 ~

Figure 2.2. Domain decomposition of a rectangle for d = 2.

y

31 __.....;.7__---'

G
~

8@ ® ® ®
1 4 r 2 I 5 I

@ G® ® B@
....

Figure 2.3. Partition of the subdomain interfaces in Figure 2.2 using one way nested

dissection. The circles (16-31) represent the 16 groups of interior

unknowns and the boxes represent groups of interface unknowns or

separators. All boxes of the same size are on the same level of the elimi

nation tree.

This domain decomposition naturally inherits certain parallelism because the PDE

discretization process leads to a local or boundary dependence property for interfaces.

For example, if we consider the union of subdomains 16, 17, 8 as a more general sub-

domain i-2'8 then the local interior solution set U'* is uniquely determined by

unknowns on dQ'8. This relation holds similarly for groups at higher levels of the

dissection decomposition for the unknowns arising in PDE applications. This local

dependency can thus be described by a binary tree as shown in Figure 2.1 with each

tree node corresponding to a subdomain in the decomposition as shown in Figure 2.3.

Block elimination trees play a role similar to that the standard elimination tree
plays in exploiting certain parallelism. However, each node corresponds now to a block

of unknowns/equations rather than a single unknowdequation. In other words, we are

seeking the parallelism in the block sense no matter what local properties the linear sys-

tem has within each node locally. This block elimination tree has the following proper-

ties: (a) Each node corresponds to a set of unknowns from one location, local ordering

and lack of symmetry in the linear system do not affect the tree structure, (b) Eliminat-

ing the unknowns in a node only has effects on its ancestors, (c) The elimination of

nodes that are not descendants/ancestors of one another are independent of one another.

1I.b. Parallelism

There are four kinds of potential parallelism here. First, elimination steps in

independent nodes of the block elimination tree can execute simultaneously. To see

this, consider two independent nodes S and T. Property (b) says that eliminating S and

T will not affect with each other, while Property (c) means that the effects on their com-

mon ancestors, if any, are also independent. Therefore, we can independently start to

eliminate a node as soon as all of its descendants have been eliminated. We call this

the outer parallelism. Second, if there are several processors available for a single

node, we can also exploit inner parallelism within the node. This does not occur at

leaf nodes if each leaf node has only one processor as in usual cases even though it

represents a sparse subproblem. For the other nodes we apply various efficient parallel

dense solvers to exploit the inner parallelism. Third, the tasks to modify an equation to

eliminate an unknown (or simply, a modification) are independent for different equa-

tions, just as for dense matrices. Finally and fourth, modifications, even on the same

equation, due to independent descendant nodes can be performed in arbitrary order and

hence in parallel. This parallelism cannot be fully exploited for distributed memory

machines because one usually assigns each equation (and therefore the associated

modification task on it) to a single processor. But, together with the first type of paral-

lelism, it is related to the pipelining technique in the sense that one can start the

- 4 -

This domain decomposition naturally inherits certain parallelism because the PDE

discretization process leads to a local or boundary dependence property for interfaces.

For example, if we consider the union of subdomains 16, 17, 8 as a more general sub

domain Q'8 then the local interior solution set U'8 is uniquely determined by

unknowns on aQ'8. This relation holds similarly for groups at higher levels of the

dissection decomposition for the unknowns arising in POE applications. This local

dependency can thus be described by a binary tree as shown in Figure 2.1 with each

tree node corresponding to a subdomain in the decomposition as shown in Figure 2.3.

Block elimination trees play a role similar to that the standard elimination tree

plays in exploiting certain parallelism. However, each node corresponds now to a block

of unknowns/equations rather than a single unknown/equation. In other words, we are

seeking the parallelism in the block sense no matter what local properties the linear sys

tem has within each node locally. This block elimination tree has the following proper

ties: (a) Each node corresponds to a set of unknowns from one location, local ordering

and lack of symmetry in the linear system do not affect the tree structure, (b) Eliminat

ing the unknowns in a node only has effects on its ancestors, (c) The elimination of

nodes that are not descendants/ancestors of one another are independent of one another.

II.b. Parallelism

There are four kinds of potential parallelism here. First, elimination steps in

independent nodes of the block elimination tree can execute simultaneously. To see

this, consider two independent nodes S and T. Property (b) says that eliminating S and

T will not affect with each other, while Property (c) means that the effects on their com

mon ancestors, if any, are also independent. Therefore, we can independently start to

eliminate a node as soon as all of its descendants have been eliminated. We call this

the outer parallelism. Second, if there are several processors available for a single

node, we can also exploit inner parallelism within the node. This does not occur at

leaf nodes if each leaf node has only one processor as in usual cases even though it

represents a sparse subproblem. For the other nodes we apply various efficient parallel

dense solvers to exploit the inner parallelism. Third, the tasks to modify an equation to

eliminate an unknown (or simply, a modification) are independent for different equa

tions, just as for dense matrices. Finally and fourth, modifications, even on the same

equation, due to independent descendant nodes can be performed in arbitrary order and

hence in parallel. This parallelism cannot be fully exploited for distributed memory

machines because one usually assigns each equation (and therefore the associated

modification task on it) to a single processor. But, together with the first type of paral

lelism, it is related to the pipelining technique in the sense that one can start the

parallelism, it is related to the pipelining technique in the sense that one can start the

elimination in a node S without waiting for the completion of elimination in other

nodes independent of S, even though the associated modifications have been ready for

manipulation. For more details, see [Mu, Rice, 1990bI.

An algorithmic description of a (pipelining) distributed parallel sparse algorithm

for a processor P, as in the module PARALLEL SPARSE, is as follows.

for level 1 from bottom to top, do:

for each node S, with equations assigned to P, on level 1, do:

if l a , then

elim-local(S)

else

e l i m ~ l o bal(S)

elim-local(S)

endif

end of S loop

end of 1 loop

The elim - local(S) procedure has processor P participating in eliminating

unknowns in S by performing the associated modifications on equations assigned to P.

For those equations of S assigned to processor P, it also has to calculate the correspond-

ing multiplier vectors and to send them to other processors. When level l a , one usu-

ally assigns S to only one processor and on this node it is therefore a sequential sparse

solver. Otherwise, it is a sort of parallel dense solver using processors assigned to S.

The elim - global(S) procedure has processor P performing the modifications on its

equations due to eliminating unknowns in the descendants of S in the block elimination

tree which have no equations assigned to P. Therefore, the effects of elimination at

these nodes have not yet been processed by P.

II.c. Assignment

By assigning an unknown to a processor we mean assigning both the problem data

and the factorization subtask associated with this unknown. To achieve high parallel-

ism, load balancing and low communication costs we want to (a) avoid assigning

independent nodes to the same processor, and (b) assign processors to a single node so

as to have minimal communication connections. In this report, we assume a subtree-

subcube type assignment for these purposes. It is a top to bottom process. Assume

that the number of processors used is equal to that of nodes on the leaf level 0. First,

the root node of the elimination tree is assigned to the whole hypercube and then the

- 5 -

parallelism, it is related to the pipelining technique in the sense that one can start the

elimination in a node S without waiting for the completion of elimination in other

nodes independent of S, even though the associated modifications have been ready for

manipulation. For more details, see [Mu, Rice, I990b].

An algorithmic description of a (pipelining) distributed parallel sparse algorithm

for a processor P, as in the module PARALLEL SPARSE, is as follows.

for level I from bottom to top, do:

for each node S, with equations assigned to P, on levell, do:

if 1=0, then

elim_Iocal(S)

else

elim~lobal(S)

elim_Iocal(S)

endif

end of Sloop

end of I loop

The elim_IocaI(S) procedure has processor P partICipating in eliminating

unknowns in S by perfonning the associated modifications on equations assigned to P.

For those equations of S assigned to processor P, it also has to calculate the correspond

ing multiplier vectors and to send them to other processors. When level 1=0, one usu

ally assigns S to only one processor and on this node it is therefore a sequential sparse

solver. Otherwise, it is a sort of parallel dense solver using processors assigned to S.

The elim_global(S) procedure has processor P perfonning the modifications on its

equations due to eliminating unknowns in the descendants of S in the block elimination

tree which have no equations assigned to P. Therefore, the effects of elimination at

these nodes have not yet been processed by P.

IT.c. Assignment

By assigning an unknown to a processor we mean assigning both the problem data

and the factorization subtask associated with this unknown. To achieve high parallel

ism, load balancing and low communication costs we want to (a) avoid assigning

independent nodes to the same processor, and (b) assign processors to a single node so

as to have minimal communication connections. In this report, we assume a subtree

subcube type assignment for these purposes. It is a top to bottom process. Assume

that the number of processors used is equal to that of nodes on the leaf level O. First,

the root node of the elimination tree is assigned to the whole hypercube and then the

hypercube is split into two subcubes to which the two descendent subtrees are assigned.

This process goes on recursively until all subtrees become assigned to single proces-

sors. The assignment within each node is potentially arbitrary. For various subtree-

subcube assignments, see [George, Liu, Ng, 19871 and [Mu, Rice, 1990aJ.

For a subtree-subcube type assignment, the general sparse algorithm as described

above can be simplified. For each processor P there is an elimination path in the block

elimination tree from bottom to top with exactly one assigned node SI on each level I

for I = 0, 1, ..., L. Therefore, the algorithm can be rewritten as follows.

elim-local(S o)

for 1 = 1 to L, do:

elim_global(SI)

elim-local(SI)

end of 1 loop

This section describes the data structure suitable for sparse matrix computations on

a hstributed memory machine as developed for the Parallel ELLPACK system and its

module PARALLEL SPARSE.

Suppose processor P is assigned three unknowns u 1, u 5 and u 8 and equations 1,

5 and 8 are stored at P. For performing the operations of Gauss elimination in P, the

processor P needs to know the nonzero structure of the matrix A (or LU) during the

elimination process. We illustrate the data structures used with the example in Figuare

3.1 which shows the nonzero structure of A as it is known to P.

1 2 3 4 5 6 7 8 9 1 0
X 0 X 0 0 0 X 0 X 0 equation 1 x . . . x . . x . .
o . . . o . . x . .
o . . . z . . z . .

A = 0 0 X X X 0 Z X Z 0 equation 5
x . . . o . . o - . o . . . o . . x . .
0 0 0 X Z Z Y X Y X equation 8 o . . . o . . o . .
x . . . z . . z . .

Figure 3.1. Example matrix used to illustrate the data structure.

- 6 -

hypercube is split into two subcubes to which the two descendent subtrees are assigned.

This process goes on recursively until all subtrees become assigned to single proces

sors. The assignment within each node is potentially arbitrary. For various subtree

subcube assignments, see [George, Uu, Ng, 1987] and [Mu, Rice, 1990a].

For a subtree -subcube type assignment, the general sparse algorithm as described

above can be simplified. For each processor P there is an elimination path in the block

elimination tree from bottom to top with exactly one assigned node Sz on each level I

for I =0, 1, .. .,L. Therefore, the algorithm can be rewritten as follows.

elim_local(S0)

for / = 1 to L, do:

elim~lobal(Sz)

elim_local(Sz)

end of /loop

ID. DATA STRUCTURES FOR NODE PROCESSORS

This section describes the data structure suitable for sparse matrix computations on

a distributed memory machine as developed for the Parallel ELLPACK system and its

module PARALLEL SPARSE.

Suppose processor P is assigned three unknowns u 1, u 5 and u 8 and equations I,

5 and 8 are stored at P. For performing the operations of Gauss elimination in P, the

processor P needs to know the nonzero structure of the matrix A (or LU) during the

elimination process. We illustrate the data structures used with the example in Figuare

3.1 which shows the nonzero structure of A as it is known to P.

12345678910
X 0 X 0 0 0 X 0 X 0 equation 1
X·· 'X' 'X"
0" '0' ·X·-
0" ·z· -Z"

A = 0 0 X X X 0 Z X Z 0 equation 5
X·· '0' '0"
0" '0' 'X"
o 0 0 X Z Z Y X Y X equation 8
o 0 0
X·· 'Z' 'Z"

Figure 3.1. Example matrix used to illustrate the data structure.

The following notation is used in Figure 3.1.

X = original nonzero entry in the matrix A

Y = nonzero created by processing of equations and unknowns assigned to the pro-

cessor P

Z = nonzero created by processing of equations and unknowns assigned to other

processors.

Two important characteristics in our geometric approach are that no symbolic factoriza-

tion is used and symmetry is not assumed. We therefore use a dynamic data structure

instead of a static one as used with symbolic factorization. Three data structures - A-

INFO, M-INFO and C-INFO - are used to represent the information about the sparse

matrix during the elimination. Each of these is dynamically updated, A-INFO contains

both numeric and symbolic data, the others contain only symbolic data (indices and

pointers). The A-INFO structure only represents the information of A's rows in proces-

sor P, while the M- and C-INFO structures represent the necessary information about

A's columns due to a lack of symmetry.

- 7 -

The following notation is used in Figure 3.1.

X = original nonzero entry in the matrix A

Y =nonzero created by processing of equations and unknowns assigned to the pro

cessor P

Z =nonzero created by processing of equations and unknowns assigned to other

processors.

Two important characteristics in our geometric approach are that no symbolic factoriza

tion is used and symmetry is not assumed. We therefore use a dynamic data structure

instead of a static one as used with symbolic factorization. Three data structures - A

INFO, M-INFO and C-INFO - are used to represent the information about the sparse

matrix during the elimination. Each of these is dynamically updated, A-INFO contains

both numeric and symbolic data, the others contain only symbolic data (indices and

pointers). The A-INFO structure only represents the information of A's rows in proces

sor P, while the M- and C-INFO structures represent the necessary information about

A's columns due to a lack of symmetry.

II1.a. A-INFO: Data Structure for the Distributed Sparse Matrix.

a, id - col, len - a, hdr - rowl, hdr - rowu, ptr - a

This data structure encodes the information of the values and locations of the ma-

trix entries. It is dynamically updated as new nonzero entries are created during the el-

imination process. It is equation (or row) oriented information.

1 2 3 4 5 6 7 8 9 1
r o w o o o P o X 0' hdr_rowu(l) x . .--/.y. .

Figure 3.2. The A-INFO structure for the example in Figure 3.1.

- 8 -

UI.a. A-INFO: Data Structure for the Distributed Sparse Matrix.

a, id_col, len_a, hdr_rowl, hdr_rowu, ptr_a

This data structure encodes the infonnation of the values and locations of the ma

trix entries. It is dynamically updated as new nonzero entries are created during the el

imination process. It is equation (or row) oriented infonnation.

i.
a(i)

id_col(i)

ptr_a

ptr_a(i)
hdCrowl(j)

hdCrowu(j)

J

= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
= X X X X X X X X X X X Z Z Y Z Y Z
= ltl 3 7 9 3 4 5 8 4 8 10 9 7 7 6 9 5

J~~-'--"'I 4.->~~ -'I;

I t I <4___ -'I 0; -:;, ~
I \ J'-- 0 . - /
/i , ~4- _-~

: i
l
j 3/:~3 12 I)~~ 0 8 10 :11 15

= Y 5/9 ~
= "1 7 10-------

= 1 2 3

Figure 3.2. The A-INFO structure for the example in Figure 3.1.

1II.b. M-INFO: Data Structure for Modification Information.

idg - m, len-m, hdr - m, ptr m, hdrad m - -

This data structure encodes the information of locations of matrix entries which

must be convened to zeros at the corresponding elimination step. In other words,

modifications by the pivot row are needed on the rows with these entries. It is basically

unknown (or column) oriented.

- --

Figure 3.3. The M-INFO structure for the example in Figure 3.1.

- 9 -

III.b. M-INFO: Data Structure for Modification Information.

idg_m, len_m, hdr_m, ptr_m, hdrad_m

This data structure -encodes the information of locations of matrix entries which

must be converted to zeros at the corresponding elimination step. In other words,

modifications by the pivot row are needed on the rows with these entries. It is basically

unknown (or column) oriented.

hdemG) = 0 0 "1 (2 \ 5 (4 ,6 0 0 0
I I

!3 !

j = 1 2 14 15 6 7 8 9 10,
X 0 IX 0 '0 0 X 0 X 0

!

X , X Xi

0 i 0 Xi ! •

i
0 I ,Z Z!

0 0 ~X ~X :X ;' 0 ,Z X Z 0

X
I :0 0I :

I
0 '1' '0 " X

0 0 o X ·JgZ <i Z ~y X y X

0 0 0

X Z Z

i = 1 2 3 4 5 6 len_m =6
hdrad_m(i) = 5 6 9 15 17 14

idg_m(i) = 5 5 8
~I~ ~I I

'(' \ ","- 1 t\c \ \,l. C

ptcm =
~\\O \ptemO) = 0 0 0

hdr_m(j) = 0 012 '5 4 6 0 0 0

J = 1 2 3 4 5 6 7 8 9 10

Figure 3.3. The M-INFO structure for the example in Figure 3.1.

X o X o o o X o X o x . . . x . . x . .
o . . . o . . x . .
o . . . z . . z . .
ooXXXozXzO x . - . o . . o . .
o . . . o . . x . . ptr = hdr-m(6) = 4
0 0 O X Z Z " ' Y X Y X o . . . o . . o . .
x . . . z . . z . .

idg_m(p&) = 8 (row index of "2")

hdrad-m(ptr) = 15 (address of "2" in array A, i.e., a(15) = "2")

Figure 3.4. The example of Figure 3.1 showing the structure variables for the Z shown

in bold.

- 1.0 -

xoxoooxoxo
x· .. x· . x· .
a a .. x ..
a z .. z ..
ooxxxozxzox ... a .. a ..
a . . . a '. . x . . _ ptr :: hdcm(6) :: 4
a a OXZryXYX
a . a a
X' .. Z .. Z ..

id~m(pt'r) = 8 (row index of "Z' ')

hdrad_m(ptr) = 15 (address of "z" in array A, i.e., a(15) = "Z")

Figure 3.4. The example of Figure 3.1 showing the structure variables for the Z shown

in bold.

II1.c. C-INFO: Data Structure for Communication Information.
idg - c, len - c, hdr-c, ptr - c

This data structure encodes information about what matrix information is needed

from other processors (that is, from equations not assigned to the processor P). It is

used (along with the matrix data structure) also to determine where new nonzero entries

will be created during the eliminations.

Figure 3.5. The C-INFO structure for the example of Figure 3.1.

The value for hdr-c or ptr-c is negative when the processor that holds a particular

equation number has already passed on its information about where it might create fill-

in and this information has been processed by the processor assigned the unknown asso-

ciated with the column considered.

- 11 -

fiLe. C-INFO: Data Structure for Communication Information.

idg_c, len_c, hdr_c, ptr_c

This data structure encodes information about what matrix information is needed

from other processors (that is, from equations not assigned to the processor P). It is

used (along with the matrix data structure) also to determine where new nonzero entries

will be created during the eliminations.

hdcc == (" 1 5 -7
~

: 1 2 3 4\ 5 6 7 8 9 10
<YX \

0 X 0\0 0 X 0 X 0
~.x ~X rX

0 . 10 rx
,0 . ~Z \.Z
\0 X7X

I

0 X 0 Z 1X Z 0
"'X ;0 (0
,0 1\0 . ..lvX

I:0 0 0 X "Z Z Y'IX Y X
\0

,
(0[0

~ ~Z "iZ

j == 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i ==

1 2 6 10 2 5 2 3 5 7 8 4 10 8 4 10
11 --",,,--,,,'-.er.!" :> '!".".:!.(6 ----- r /r,
, ~ ~~./"'Jj

= (2 3f~ 12 14 8 _151~~~~~C~/~
== \.1 5 -7

123

Figure 3.5. The C-INFO structure for the example of Figure 3.1.

The value for hdr_c or ptcc is negative when the processor that holds a particular

equation number has already passed on its information about where it might create fill

in and this information has been processed by the processor assigned the unknown asso

ciated with the column considered.

IV. DATA STRUCTURES FOR THE GLOBAL COMPUTATION

This section describes the data structures for the global computations in the

module PARALLEL SPARSE as developed for the Parallel ELLPACK system and

which uses the subtree-subcube method to assign processor to nodes of the elimination

tree as described in Section 11. These structures are used in conjunction with the

dynamic data structures for a sparse matrix as described in Section 111.

We describe in order the following data structures used in the global computation.

1. The elimination tree of the linear system:

idl-nd, idl-nd

2. The assignment of equations to processors:

cidgeqn, ng-eqn, id-leaf

3. The relation between nodes of the elimination tree:

4. The pivot communication among processors:

rbuf, len-rbuf

5. The buffer for the C-Info data structure communicated among processors:

ibuf, len-ibuf, n-rows

6. The auxiliary information used in forming ibuf:

hdr-proc, p c i d

These data structures are discussed below, the context and notation of this discus-

sion are as follows:

The elimination tree is a complete binary tree

S, T denote generic nodes of the tree (not their index)

Each node S consists of equations in consecutive order

i19 il+l, ..., ilast

i 1 = 0 means that S is empty, which handles those applications where the

elimination trees are not really complete binary trees.

The nodes are numbered top-to-bottom and left-to-right.

The number of processors equals the number of leaf nodes in the elimination

tree and there is a one-to-one correspondence between them.

- 12 -

IV. DATA STRUCTURES FOR THE GLOBAL COMPUTATION

This section describes the data structures for the global computations 10 the

module PARALLEL SPARSE as developed for the Parallel ELLPACK system and

which uses the subtree-subcube method to assign processor to nodes of the elimination

tree as described in Section II. These structures are used in conjunction with the

dynamic data structures for a sparse matrix as described in Section Ill.

We describe in order the following data structures used in the global computation.

1. The elimination tree of the linear system:

idl_nd, idl_nd

2. The assignment of equations to processors:

cid~eqn, ng_eqn, id_leaf

3. The relation between nodes of the elimination tree:

lr

4. The pivot communication among processors:

rbuf, len_rbuf

5. The buffer for the C-Info data structure communicated among processors:

ibuf, len_ibuf, n_rows

6. The auxiliary information used in forming ibuf:

hdcproc, ptr_id

These data structures are discussed below, the context and notation of this discus

sion are as follows:

• The elimination tree is a complete binary tree

S, T denote generic nodes of the tree (not their index)

• Each node S consists of equations in consecutive order

iI, il+l, ... , ilast

i 1 = 0 means that S is empty, which handles those applications where the

elimination trees are not really complete binary trees.

• The nodes are numbered top-to-bottom and left-to-right.

• The number of processors equals the number of leaf nodes in the elimination

tree and there is a one-to-one correspondence between them.

P, Q, R denote generic processors

IV.a. The Elimination Tree

If the node S is the n-th node then

idl-nd(n) = i 1 idl-nd(n) = ilast

IV.b. The Assignment of Equations to Processors

Let ng - eqn be the total (global) number of equations (unknowns) in the linear sys-

tem. Then, for processor P, we have the array cidg - eqn to identify and locate the equa-

tions assigned to P defined, for i = 1,2, ..., ng-eqn as follows:

cidg-eqn (i) = k, or -k

if the i=th equation of the global system is the k-th equation assigned to P, or is

assigned to processor Q with id = k. Processor P is assigned exactly one leaf node, say

the m-th, and we have

id - leaf = m

Note that P may have other equations and nodes assigned to it from higher up in the

tree. Thus the Gauss elimination for the equations assigned to P starts at the leaf node

(id-leaf) and proceeds on a path up toward the root node of the elimination tree.

W.C. The Relation between Nodes of the Elimination Tree

Let S and T be nodes in the elimination tree with, for concretness, T a descendent

of S. They are called related if and only if elimination in node T affects equations in

node S or the ancestors of S. If T is a son of S, then S and T are related.

For each node S in the elimination path of a leaf node S' we identify its son Sons

which is not in the elimination path. Starting at the leaves of the tree and skipping the

first such node, we then list all the nodes T's in the subtree STR, rooted at node Sons

excluding Sons itself. For each T in STR,, we use a logical value I(= lTTs) to indicate

the relation between T and S:

f true if T and S are related ' =I false otherwise

- 13 -

• P, Q, R denote generic processors

IV.a. The Elimination Tree

If the node S is the n-th node then

IV.b. The Assignment of Equations to Processors

Let ng_eqn be the total (global) number of equations (unknowns) in the linear sys

tem. Then, for processor P, we have the array cidg_eqn to identify and locate the equa

tions assigned to P defined, for i = 1,2,... , ng_eqn as follows:

cidg eqn (i) = k, or -k

if the i:.th equation of the global system is the k-th equation assigned to P, or is

assigned to processor Q with id = k. Processor P is assigned exactly one leaf node, say

the m-th, and we have

Note that P may have other equations and nodes assigned to it from higher up in the

tree. Thus the Gauss elimination for the equations assigned to P starts at the leaf node

(id_leaf) and proceeds on a path up toward the root node of the elimination tree.

IV.c. The Relation between Nodes of the Elimination Tree

Let S and T be nodes in the elimination tree with, for concretness, T a descendent

of S. They are called related if and only if elimination in node T affects equations in

node S or the ancestors of S. If T is a son of S, then S and T are related.

For each node S in the elimination path of a leaf node S' we identify its son Sons

which is not in the elimination path. Starting at the leaves of the tree and skipping the

first such node, we then list all the nodes Ts in the subtree STRs rooted at node Sons

excluding Sons itself. For each T in STRs , we use a logical value 1(= h.s) to indicate

the relation between T and S:

t={ true

false

if T and S are related

otherwise

If the depth of the elimination tree is d (so there are 2d - 1 nodes in the tree) then there
d

are 2 + 6 + 14 + . . + (2' - 2) + . . . = (2' - 2) = 2"' - 2d - 2 such pairs of
i =2

(S, T), where there are (d - l)S7s corresponding to levels i from 2 to d, and from each

S on level i, there are (2' - 2)T's in STR,. Therefore, we allocate an array Ir of length

2df' - 2d - 2 to store these logical values I . The structure of the array Ir is illustrated

by the example below with d = 4 and S' the 24th node. Then the elimination path of

S' is 24, 12, 6, 3, 1 and the sons Sons are 13, 7 and 2 (with 25 omitted). The whole list

of nodes in the elimination is structured as follows:

The true-false value of Ir is determined during the computation.

The Gauss elimination proceeds in the order described above, i.e., each processor

follows the elimination path (outer loop runs over 5'). For each son Sons of a node S in

this path, the algorithm of elirn_global(S) checks each node T in STR, (inner loop runs

over 7') using the Ir values to see if eliminating unknowns in T causes modifications in

processor P. The counter j goes through these checks in the proper order and the Ir (j)
variable indicates if any modification action is needed, i-e., if T and S are related. Note

that the nodes in STR, need not necessarily be related to S, but the potential exists, i.e.,

not all the values in lr (j) are true.

N.d. The Pivot Row Communication Among Processors

Assume that the i-th row (equation) is assigned to processor P and, when it is

ready to be used as a pivot (all entries before the i-th one are zero), it has k non-zero

elements (including the ith one = the pivot). The array rbuf has the values of non-zero

elements and their column indices (2k entries in total) in the order: value, index, value,

index, ...

4

1

2

16,17,18,19,20,21,22,23,8,9,10,1 174,5

... , 22

3

3

7

28,29,30,31,14,15

3

level i

id of S

id of Sons

nodes in STR,

j =

2

6

13

26,27

1,2,

- 14 -

If the depth of the elimination tree is d (so there are 2d - 1 nodes in the tree) then there
. d .

are 2 + 6 + 14 + ... + (21
- 2) + ... = It (21

- 2) = 2d +1 - 2d - 2 such pairs of
i=2

(S, T), where there are (d - l)S's corresponding to levels i from 2 to d, and from each

S on level i, there are (2i - 2)T's in STRs ' Therefore, we allocate an array lr of length

2d +1 - 2d - 2 to store these logical values l. The structure of the array lr is illustrated

by the example below with d =4 and S' the 24th node. Then the elimination path of

S' is 24, 12, 6, 3, 1 and the sons Sons are 13, 7 and 2 (with 25 omitted). The whole list

of nodes in the elimination is structured as follows:

level i 2 3 4

id of S 6 3 1

id of Sons 13 7 2

nodes in STRs 26,27 28,29,30,31,14,15 16,17,18,19,20,21,22,23,8,9,10,11,4,5

J= 1, 2, 3 , 22

The true-false value of lr is determined during the computation.

The Gauss elimination proceeds in the order described above, i.e., each processor

follows the elimination path (outer loop runs over S). For each son Sons of a node S in

this path, the algorithm of elim~lobal(S) checks each node T in STRs (inner loop runs

over n using the lr values to see if eliminating unknowns in T causes modifications in

processor P. The counter j goes through these checks in the proper order and the IrU)

variable indicates if any modification action is needed, i.e., if T and S are related. Note

that the nodes in STRs need not necessarily be related to S, but the potential exists, i.e.,

not all the values in er U) are true.

IV.d. The Pivot Row Communication Among Processors

Assume that the i-th row (equation) is assigned to processor P and, when it is

ready to be used as a pivot (all entries before the i-th one are zero), it has k non-zero

elements (including the ith one = the pivot). The array rbut has the values of non-zero

elements and their column indices (2k entries in total) in the order: value, index, value,

index, ...

Thus, for example, if the i-th row appears at the i-th elimination step as

index : i i+l i+3 i+6 i+7 i+8

v a l u e 0 ... O x x 0 y 0 0 x z x 0

then

rbuf = x, i, x, i+l, y, i+3, x, i+6, z, i+7, x, i+8

IV.e. The Buffer for the C-INFO Data Structure Communicated Among Pro-
cessors

Assume the i-th row (equation) is assigned to P and the i-th unknown is about to

be eliminated. Processor P knows the non-zero structure of both the i-th row and i-th

column of A at that time. The non-zero elements in the i-th row beyond the pivot must

be added in the corresponding positions of all equations which have non-zero entries in

the i-th column. A simple example is given below.

processor I P Q p Q R Q

row = i

i+l

i+2

column

Here unknowns i+l , i+3, i+6, i+7 and i+8 might create fill-in (non-zero coefficients) in

equations i+l , i+2, i+4 and i+9. The C-INFO structure holds information which must

i i+l i+3 i+6 i+7 i+8

- 15 -

Thus, for example, if the i-th row appears at the i-th elimination step as

i+6 i+7 i+8index

value

then

o o x

i+l

x o
i+3

y o 0 x z x o

rbuf = x, i, x, i+l, y, i+3, x, i+6, z, i+7, x, i+8

IV.e. The Buffer for the C-INFO Data Structure Communicated Among Pro

cessors

Assume the i-th row (equation) is assigned to P and the i-th unknown is about to

be eliminated. Processor P knows the non-zero structure of both the i-th row and i-th

column of A at that time. The non-zero elements in the i-th row beyond the pivot must

be added in the corresponding positions of all equations which have non-zero entries in

the i-th column. A simple example is given below.

Processor P Q p Q R Q

column 1 i+l i+3 i+6 i+7 i+8

row = 1 X X 0 Y 0 0 x z x 0

i+l x

i+2 y

0

i+4 x

0

0

0

0

i+9 z

Here unknowns i+l, i+3, i+6, i+7 and i+8 might create fill-in (non-zero coefficients) in

equations i+l, i+2, i+4 and i+9. The C-INFO structure holds information which must

be updated if this happens. When processor Q eliminates the (i+l)-st unknown (or

(i+6)-th or (i+8)-th), it must first obtain information from processor P about what hap-

pened in equations i+l, i+2, i+4 and i+9 during the elimination of the i-th unknown.

Similar information must be passed to processor R for eliminating the (i+7)-th

unknown.

The information about this situation is represented for each processor Q, R, ...
separately as follows:

n-rows =number of equations below the i-th with non-zero entries in

column i. Here n-row = 4.

ibuf = three items

#1 list of row indices of non-zero elements in column i. Here the

list is i+l, i+2, i+4, i+9

#2 list of column indices of non-zero elements after the first in

row i associated with processor Q. Here the list is i+6, i+8

#3 value of n-rows. Here n-rows = 4

len-ibuf = length of ibuf array. Here len-ibuf = 7

hdr-proc(j) = first column (unknown) index in row i with a non-zero coefficient

whose equation is assigned to processor j - 1. It is defined in

more detail in Section 1V.f below.

Then the content of ibuf for the simple example and processor Q is

This information is communicated to processor Q and then new information is created

for processor R with len-ibuf = 5:

and sent to it. This is repeated until all relevant information has been sent to other pro-

cessors.

- 16-

be updated if this happens. When processor Q eliminates the (i+1)-st unknown (or

(i+6)-th or (i+8)-th), it must first obtain information from processor P about what hap

pened in equations i+1, i+2, i+4 and i+9 during the elimination of the i-th unknown.

Similar information must be passed to processor R for eliminating the (i+7)-th

unknown.

The information about this situation is represented for each processor Q, R, ...

separately as follows:

ibuf

len_ibuf

hdCprocU)

= number of equations below the i-th with non-zero entries In

column i. Here n_row =4.

= three items

#1 list of row indices of non-zero elements in column i. Here the

list is i+1, i+2, i+4, i+9

#2 list of column indices of non-zero elements after the first in

row i associated with processor Q. Here the list is i+6, i+8

#3 value of n_rows. Here nJows = 4

=length of ibuf array. Here len_ibuf =7

=first column (unknown) index in row i with a non-zero coefficient

whose equation is assigned to processor j - 1. It is defined in

more detail in Section IV.f below.

Then the content of ibuf for the simple example and processor Q is

i+ 1, i+2, i+4, i+9, i+6, i+8, 4

This information is communicated to processor Q and then new information is created

for processor R with len_ibuf = 5:

i+1, i+2, i+4, i+9, 4

and sent to it. This is repeated until all relevant information has been sent to other pro

cessors.

N . f . Auxiliary Information Used in Forming ibuf

This structure contains information about which processors are to receive informa-

tion by communicating ibuf. We have a list of pointers hdrgroc(j) for all processors

indicating their status with respect to equation i. There are three cases:

Case I : hdrgroc = 0

Processor j - 1 has no equations whose associated unknowns have non-zero

coefficients in the current (i-th) pivot equation. Or processor j - 1 is proces-

sor P (i = j - 1). In either case no communication is needed.

Case 2 : hdrgroc = - 1

Processor j - 1 has equations with exactly one associated unknown with non-

zero coefficients in the current (i-th) pivot equation. It needs the C-INFO

information.

Case 3 : hdrgroc = positive integer

Processor j - 1 has equations with more than one associated unknown with

non-zero coefficient in the current (i-th) pivot equation. It needs the C-INFO

information and must process several entries in it.

A more complete example is given below.

Indicated communication status for the 4 processors:
0: current processor, no communication

1: has more than one non-zero entry
Form the second part of ibuf with the chain i+3, i+6, i+8, -1 and send
ibuf to processor 1.
2: has exactly one non-zero entry.

The second part of ibuf is empty, but send ibuf to processor 2.
3: has no non-zero entries.

No communication with processor 3

Processor
Column

row i

0 1 0 1 3 0 1 2 1 2
i i+l i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9

x x 0 y 0 0 x z x 0

- 17 -

IV.f. Auxiliary Information Used in Forming ibuf

This structure contains infonnation about which processors are to receive infonna

tion by communicating ibuf. We have a list of pointers hdryroc(j) for all processors

indicating their status with respect to equation i. There are three cases:

Case 1: hdryroc = 0

Processor j - 1 has no equations whose associated unknowns have non-zero

coefficients in the current (i-th) pivot equation. Or processor j - 1 IS proces

sor P (i = j - 1). In either case no communication is needed.

Case 2: hdryroc =-1

Processor j - 1 has equations with exactly one associated unknown with non

zero coefficients in the current (i-th) pivot equation. It needs the C-INFO

infonnation.

Case 3: hdryroc = positive integer

Processor j - 1 has equations with more than one associated unknown with

non-zero coefficient in the current (i-th) pivot equation. It needs the C-INFO

infonnation and must process several entries in it.

A more complete example is given below.

Processor 0 1 0 1 3 0 1 2 1 2
Column i+l i+2 i+3 i+4 i+S i+6 i+7 i+8 i+9

rowi x x 0 y 0 0 x z x 0

hdr-proc = 0, i+3, -1, 0

Indicated. communication status for the 4 processors:
0: current processor, no communication

1: has more than one non-zero entry
Form the second part of ibuf with the chain i+3, i+6, i+8, -1 and send
ibuf to processor 1.
2: has exactly one non-zero entry.

The second part of ibuf is empty, but send ibuf to processor 2.
3: has no non-zero entries.

No communication with processor 3

=
=

o o o
i+l

o
i+2

i+6
i+3

o
i+4

a
i+5

i+8
i+6

o
i+7

-1
i+8

a
i+9

This example is illustrated in a more graphical and detailed form as follows. The
algorithm variables are identified explicitly here.

processor id - - Po P I Po P I p3 Po P I P z P I P z

- column id - 1 i+l i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9

current pivot eqn = x x 0 Y 0 0 . <.. x. ,yZ - X
.:a - -..v

0
/

p g i d - - I more than one I/
I

-----_.- L.----

lonly one non-zero entry '
sl---------

non zero enuy 1 ,l
, ,

-
hdr-proc = 0, i+3, -I,/ 0

L
I the current I J ~

pcid(k) - - ... O... 0 0 0 i+6 0 0 i+8 0 -1 0
k - - I i+l i+2 i+3 i+4 i+5 i+7 i+8 i+9

f' i 7

i
L- - - - - - -- . -...

r f & l h ~ ~ n d ~ ~ f ibuf by this chain and send ibuf t&
%---

- \ L r..-~~...--..-.-. -. - -
k ~ u n i c a t i o n with p0 .-- ,. ' \ the second part of ibuf is empty,

l e a u s e Po is the current processor,: - - .. send ibuf to P2 ------_-- . . . ti
TC---.------- -- - -
no communication with P '

--

V. STRUCTURE OF THE CODE
The structure of the code PARALLEL SPARSE is described in this section. The

hypercube node processor code is decomposed into five levels structurally as shown in
Figure 5.1, with each block corresponding to a FORTRAN subroutine or function.
Their definitions are described in order as follows.

- 18 -

This example is illustrated in a more graphical and detailed form as follows. The
algorithm variables are identified explicitly here.

i+9

a

i+8i+7i+6i+S

Po

',-!.to non-zero entries .

i+4i+3

Po

i+2

ox

i+1

x

Po

=

l--- 0 0~>.~__ ~
/ /

I-m-o-re-tha-C;--n-on-e-<; 'only onenm;~zero entry ,
I "'- ~

, non zero entry! ;-/'
/ ~.-0, i+3, -I, 0

~~
~urrent proc~

processor id =

column id =

current pivot eqn =

ptr_id =

a
i+9

o
i+2

o
i+1

...0... 0
=

i+6 0 0 i+8 0 -1
i+3 i+4 i+S i+6 i+7 i+8t ---------"" '--------<,
I

. L-------..
(fonn the second part of ibuf by this chain and s~nd ibz!.LlQ..f:..i....)

I
;- 0 i+3 - r 0 _________

= ~c~munic~on With:0 "'\ r;:OOnd 1''';' oiib;ifis empty,
\~ause Po is the current processor:- 1 "----- __..~end ibu~to P~ _ ..

\;

'nocommurncit'ion-w{fuj>;':
'--- --"

=

=

V. STRUCTURE OF THE CODE

The structure of the code PARALLEL SPARSE is described in this section. The
hypercube node processor code is decomposed into five levels structurally as shown in
Figure 5.1, with each block corresponding to a FORTRAN subroutine or function.
Their definitions are described in order as follows.

Parallel Sparse data Parallel Sparse
(on node processors) (on host processor)

lu-factor back-solve fwd-solve

elim~lobal elim-local rbcube

mod-eqns send-pvtrow mod-eqn

Figure 5.1. The structure of the code PARALLEL SPARSE.

V.a Structure of the Code on the Host Processor

Parallel Sparse. This is the main program which communicates the problem data
and the computed results with node processors, and assembles the distributed solution
of a sparse linear system of equations.

V.b Structure of the Code on each Node Processor P

Level 1

(1) Parallel Sparse. This is the main program which communicates the problem
data and the computed results with the host processor, calls subroutines for
the LU factorization and for forward and back substitutions to solve a linear
system of equations.

Level 2

(2) eufactor. This subroutine carries out Gauss elimination to do LU factoriza-
tion for the rows in P using the algorithm as described in Section 11.

(3) Jivd-solve. This subroutine performs forward substitution to solve Ly = b for
the unknowns in P.

(4) back-solve. This subroutine performs backward substitution to solve ux = y
for the unknowns in P.

skip

- 19 -

Parallel Sparse
(on node processors)

data Parallel Sparse
(on host processor)

multicast

Figure 5.1. The structure of the code PARALLEL SPARSE.

V.a Structure of the Code on the Host Processor

Parallel Sparse. This is the main program which communicates the problem data
and the computed results with node processors, and assembles the distributed solution
of a sparse linear system of equations.

V.b Structure of the Code on each Node Processor P

Levell

(1) Parallel Sparse. This is the main program which communicates the problem
data and the computed results with the host processor, calls subroutines for
the LV factorization and for forward and back substitutions to solve a linear
system of equations.

Level 2

(2) euJactor. This subroutine carries out Gauss elimination to do LV factoriza
tion for the rows in P using the algorithm as described in Section II.

(3) fwd_solve. This subroutine performs forward substitution to solve Ly =b for
the unknowns in P.

(4) back solve. This subroutine performs backward substitution to solve Ux = y
for the unknowns in P.

Level 3

(5) elim global. This subroutine performs the global elimination on a tree node
S asdescribed in Section II. Specificly, it checks the dependency of s and its
descendents by tracking the array k in a certain way. For each related des-
cendent T, it further checks each unknown u in T to see if eliminating u has
effects on P'S remaining rows to be processed. If so, it gets the pivot row of
u and performs the modifications.

(6) elim local. This subroutine performs the local elimination on a tree node s
as d&cribed in Section II. Specificly, it loops over all unknowns u in S. For
each u, if necessary, it first participates in communicating the pivot row of u
and then performs the modifications on P'S rows by the pivot row.

(7) rbcube. This subroutine carries out communication (broadcasting) for a
message in a hypercube.

Level 4

(8) mod-eqn and mod-eqm. These two subroutines perform modifications on the
first row, in the former, and the remaining ones, in the latter, by a pivot row.
The rows to be modified are indicated by a chain consisting of pointers in
arrays hdr m and ptr m in M-INFO as described in Section ID. The
modification task due to a pivot row is here divided into two subroutines
because a pipelining technique is also used locally in elim-local in order to
send the next pivot row out as early as possible.

(9) sendgvtrow. This subroutine processes the communication information in
C-INFO, generates the pivot row and sends it to appropriate processors
according to C-INFO.

Level 5

(10) mod-snuct and mod-snucts. These two subroutines update the C-INFO data
structures column by column by using the message in array ibuf as described
in Section IV. The operations are similar to those in mod-eqn and mod-eqns
as above. Again, a pipeline technique is involved here.

(11) gen - buff. This subroutine generates the message for array ibuf for a proces-
sor Q.

(12) skip. This subroutine is used in tracking a pointer array ptr-c of C-INFO for
skipping those entries for which the corresponding C-INFO has been updated.

(13) multicast. This subroutine carries out multicasting communication, i.e., sends
a message to a set of specified processors (not necessarily to the whole hyper-
cube).

- 20-

Level 3

(5) elim_global. This subroutine performs the global elimination on a tree node
s as described in Section II. Specificly, it checks the dependency of s and its
descendents by tracking the array er in a certain way. For each related des
cendent T, it further checks each unknown u in T to see if eliminating u has
effects on p's remaining rows to be processed. If so, it gets the pivot row of
u and performs the modifications.

(6) elim_local. This subroutine performs the local elimination on a tree node s
as described in Section II. Specificly, it loops over all unknowns u in s. For
each u, if necessary, it first participates in communicating the pivot row of u
and then performs the modifications on p's rows by the pivot row.

(7) rbcube. This subroutine carries out communication (broadcasting) for a
message in a hypercube.

Level 4

(8) mod_eqn and mod_eqns. These two subroutines perform modifications on the
first row, in the former, and the remaining ones, in the latter, by a pivot row.
The rows to be modified are indicated by a chain consisting of pointers in
arrays hdr_m and ptr_m in M-INFO as described in Section III. The
modification task due to a pivot row is here divided into two subroutines
because a pipelining technique is also used locally in elim_local in order to
send the next pivot row out as early as possible.

(9) sendyvtrow. This subroutine processes the communication information in
C-INFO, generates the pivot row and sends it to appropriate processors
according to C-INFO.

LevelS

(10) mod struct and mod structs. These two subroutines update the C-INFO data
structures column by column by using the message in array ibuf as described
in Section IV. The operations are similar to those in mod_eqn and mod_eqns
as above. Again, a pipeline technique is involved here.

(11) gen buff. This subroutine generates the message for array ibuf for a proces
sorQ.

(12) skip. This subroutine is used in tracking a pointer array ptr_c of C-INFO for
skipping those entries for which the corresponding C-INFO has been updated.

(13) multicast. This subroutine carries out multicasting communication, i.e., sends
a message to a set of specified processors (not necessarily to the whole hyper
cube).

VI. CONCLUSIONS
We present a dynamic data structure to represent general nonsyrnmetric sparse

mamces suitable for Gauss elimination without using a symbolic factorization on a dis-
mbuted memory machine. Data structures for global computation in a parallel sparse
solver based on a block elimination tree are also described. They are used in the
module PARALLEL SPARSE as developed for the Parallel Ellpack system. The
organization of the code PARALLEL SPARSE is also described. It is efficiently imple-
mented on the NCUBE machine except the multicasting subroutine where we simply
use the NCUBE provided primatives nread and nwrite, which is very inefficient. Our
Parallel Ellpack system provides a test bed for the performance evaluation for different
software components in solving a PDE problem. PARALLEL SPARSE has been used
as a direct solution module in the performance evaluation in conjuction with different
assignment and indexing modules. They are reported in [Mu, Rice, 1990al and [Mu,
Rice, 1990bl.

REFERENCES

Duff, I.S. (1986), "Parallel Implementation of Multifrontal Schemes", Parallel Com-
puting, 3, pp. 193-204.

George, A., M. Heath, J. Liu, and E. Ng (1988), "Sparse Cholesky factorization on a - local-memory multiprocessor^', SIAM Sci. Stat. Comput., 9, pp. 327-340.
George, A., J. Liu, and E. Ng (1987), "Communication reduction in parallel sparse

Cholesky factorization on a hypercube", Hypercube Multiprocessors (M. Heath,
ed.), SIAM Publications, Philadelphia, PA, pp. 576-586.

George, A., J. Liu, and E. Ng, (1988) "A Data Structure for Sparse QR and LU Fac-
tors", SIAM J. Sci. Stat. Comput.,9, pp. 100-121.

George, A., Ng, E (1988), "Parallel Sparse Gaussian Elimination with Partial Pivot-
ing", Technical Report ORNLKM-10866, Oak Ridge National Laboratory, Oak
Ridge, TN.

Houstis, E. and Rice, J.R., (1989), "Parallel Ellpack", Math. Comp. Simulation, 31,
(1989), pp. 497-508.

Liu, J. (1988), "Equivalent Sparse Matrix Reordering by Ellimination Tree Rotations",
SIAM J. Sci. Stat. Comput., 9, No. 3, 424-444.

Mu, M. and J.R. Rice (1989a), "LW factorization and elimination for sparse matrices
on hypercubes", in Fourth Conference on Hypercube Concurrent Computers
and Applications, (Monterey, CA, March, 1989), Golden Gate Enterprises, Los
Altos, CA, (1990), pp. 681-684.

Mu, M. and J.R. Rice (1990a), "A Grid Based Subtree-Subcube Assignment Strategy
for Solving PDEs on Hypercubes", CSD-TR 869, CER-89-12, Computer Science
Department, Purdue University, Revised in April, 1990.

Mu, M. and J.R. Rice (1990b), "The structure of Parallel Sparse Matrix Algorithms for
Solving Partial Differential Equations on Hypercubes", CSD-TR 976, CER-90-
19, Computer Science Department, Purdue University, May, 1990.

- 21 -

VI. CONCLUSIONS

We present a dynamic data structure to represent general nonsymmetric sparse
matrices suitable for Gauss elimination without using a symbolic factorization on a dis
tributed memory machine. Data structures for global computation in a parallel sparse
solver based on a block elimination tree are also described. They are used in the
module PARALLEL SPARSE as developed for the Parallel Ellpack system. The
organization of the code PARALLEL SPARSE is also described. It is efficiently imple
mented on the NCUBE machine except the multicasting subroutine where we simply
use the NCUBE provided primatives nread and nwrite, which is very inefficient. Our
Parallel Ellpack system provides a test bed for the performance evaluation for different
software components in solving a POE problem. PARALLEL SPARSE has been used
as a direct solution module in the performance evaluation in conjuction with different
assignment and indexing modules. They are reported in [Mu, Rice, 1990a] and [Mu,
Rice, 1990b].

REFERENCES

Duff, 1.S. (1986), "Parallel Implementation of Multifrontal Schemes", Parallel Com
puting, 3, pp. 193-204.

George, A., M. Heath, J. Liu, and E. Ng (1988), "Sparse Ch01esky factorization on a
local-memory multiprocessor", SIAM Sci. Stat. Comput., 9, pp. 327-340.

George, A., J. Liu, and E. Ng (1987), "Communication reduction in parallel sparse
Cholesky factorization on a hypercube", Hypercube Multiprocessors (M. Heath,
00.), SIAM Publications, Philadelphia, PA, pp. 576-586.

George, A., J. Liu, and E. Ng, (1988) "A Data Structure for Sparse QR and LU Fac
tors", SIAM J. Sci. Stat. Comput.,9, pp. l00-12l.

George, A., Ng, E (1988), "Parallel Sparse Gaussian Elimination with Partial Pivot
ing", Technical Report ORNL{fM-I0866, Oak Ridge National Laboratory, Oak
Ridge, TN.

Houstis, E. and Rice, J.R., (1989), "Parallel Ellpack", Math. Camp. Simulation, 31,
(1989), pp. 497-508.

Liu, J. (1988), "Equivalent Sparse Matrix Reordering by Ellimination Tree Rotations",
SIAM J. Sci. Stat. Comput., 9, No.3, 424-444.

Mu, M. and J.R. Rice (1989a), "LU factorization and elimination for sparse matrices
on hypercubes", in Fourth Conference on Hypercube Concurrent Computers
and Applications, (Monterey, CA, March, 1989), Golden Gate Enterprises, Los
Altos, CA, (1990), pp. 681-684.

Mu, M. and J.R. Rice (1990a), "A Grid Based Subtree-Subcube Assignment Strategy
for Solving PDEs on Hypercubes", CSD-TR 869, CER-89-12, Computer Science
Department, Purdue University, Revised in April, 1990.

Mu, M. and J.R. Rice (1990b), "The structure of Parallel Sparse Matrix Algorithms for
Solving Partial Differential Equations on Hypercubes", CSD-TR 976" CER-90
19, Computer Science Department, Purdue University, May, 1990.

	PARALLEL SPARSE: Data Structure and Organization
	Report Number:
	

	tmp.1307986960.pdf.DmR0j

