
'+++i'++++__'_" Ass°ciati°n f°: Ioof_:mat_°nnuan:u:t_?alg: Management _ ii'_ _

Centimeter
1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 mm

1 2 3 4 5

Inches IIIII,.oi!_,!' Ihli_ 2.2

iilll,'._

IIIIINiLlllgIIIli'._

' "_%

HQNUFQCTURED TO QIIH STQNDQRDS //J_/_%x_\.,,,_'q_%,°'_;:_"_:._,

Parallel Spectral Transform Shallow Water Model:
A Runtime-Tunable Parallel Benchmark Code

P. H. Worley

Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367
and

._ ._ _ _ _ _ I.T. Foster

_!__._ Argonne National Laboratory

._, ,,,_,._!__ 9700 South Cass Avenue

z _ _ _'= ,: " Argonne, IL 60439
o=]

= *" ii" ff
_ _" >,,'_ _ --

em ¼,

-- '_ '_ 0 ,_ authored by a contractor of the U.S.

'3 _ r_ E _ rov_v-m,e_ to _ orrmrod_
0 .., .-- Govm'nment retain_ a nonexck_dvo,

_ =- = .= =.,.

I= ¢J

.

_i _ _g'_
_ ,_ _._

*Research supported by the Applied Mathematical Sciences Research Program of the Office of

Energy Research, U.S. Department of Energy under contract DE-AC05-84OR21400 with Martin

Marietta Energy Systems, Inc.

MASTER
OI'_UTION [IFTHISOOCU?,I[NTIS IINLIMITI_

." , , ,..,.. .,

(jSTI

Parallel Spectral Transform Shallow Water Model:

A l:tuntime-'_nable Parallel Benchmark Code

P. H. Worley [.T. Foster

Oak RidgeNationalLaboratory Argonne NationalLaboratory
P.O.Box 2008 9700 South Cass Avenue

Oak Ridge, TN :}7831-6367 Argonne, IL 60439

Abstract performanceofspecificparallelalgorithmsinthecon-

textoftheapplicationcodes,itisequallyimportantto

Fairness is an important issue when benchmarki.g measure the performance in solving the stated prob-

parallel computers using application codes. The best lem, where the parallel algorithm is allowed to vary

parallelalgorithmon one platformmay not bethebest between platformsor as the system characteristics

on another. While it is not feasible to reevaluate par. evolve. One solution to this problem is the 'paper and

allel algorithms and reimplement large codes whenever pencil' benchmark, as exemplified by the NAS bench-

new machines become available, it is possible to era- mark suite [1]. For such a benchmark, the numerical

bed algorithmic options rote codes that allow them to algorithm is specified, but the parallel implementation

be "tuned" for a particular machine without reqmring is left to the researcher or the vendor. But it can be

code modifications. In this paper, we describe a code very time-consuming to develop parallel application

in which such an approach was taken, codes from scratch, and paper benchmarks are most

PST, b"WM was developed for evaluating parallel el- useful for algorithmic kernels.

gorithms for the spectral transform method in atmo- In this paper, we describe the Parallel Spectral

spheric circulation models. Many levels of runtime- Transform Shallow Water Model (PSTSWM) com-

selectable algorithmic options are supported. We dis- pact application code. PSTSWM supports a signifi-

cuss these options and our evaluation methodology, cant amount of runtime-selectable algorithm tuning,

We also provide empirical results from a number of allowing both the parallel algorithm and the commu-

parallel machines, zndicatmg the |mportance of tuning nication protocol used in the code to be specified at

for each platform before making a comparison, runtime. When using PSTSWM for benchmarking,

we are able to measure how quickly the numerical

simulation can be run without fixing the parallel im-

1 Introduction plementation, but still executing the same numerical
code. Thus we consider PSTSWM to be a compro-

Benchmarking parallel (and sequential) computers mise between paper benchmarks and the usual fixed

is a varied activity. It includes determining low level benchmarks. We have used PSTSWM successfully to

machine and system characteristics, measuring the determine efficient parallel algorithms for a variety of

performance of important or representative kernels, multiprocessor platforms and to compare performance
across platforms. We feel that encapsulating multipleand measuring the performance of full or compact ap-

plication codes [2]. It is also an activity beset with parallel algorithm options into a code is a very pew-

many difficulties, for example, when trying to fairly erful approach to benchmarking.

compare/contrast the performance of different com-

puter systems.

There arespecialdifficultieswhen usingfullorcorn- 2 PSTSWM
pact applicationcode benchmarks in interplatform

comparisons. While it isimportant to measure the PSTSWM isa message-passingparallelimplemen-

°To appeaxin: Prec. 199_ Scalable High Performance Corn. tation of the sequential Fortran 77 code STSWM
_ling Cent., [£EE Computer SciencePress. 2.0 [7]. STSWM solves the nonlinear shallow wa-

The submitted manuscr*pt hal been authored

bY I contractor of the U.S. Government

under contract No. W.31-109-ENG-38.

Accordingly. the U. $. Government retains a

nonexciulive, royalty.tree license to publishor reproduce the pubhshed form of this

¢ontr)biJlion0 or al|ow others to do so, for

DISTRIBUTION OF THI,S DOCL_lVIENT IS UNL.IN41TED u.s. Go¥,,,,m,,,,_,,_,,,.
, -

DISCLAIMER

This report was preparedas an account of work sponsored by an agency of the United States

Government. Neither the United States Governmentnor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Governmentor any agency thereof.

tions constitute a simplified atmospheric-like fluid pre- variables. (Much of tile calculation of tile time
diction model that exhibits many of the features of update is "bundled" with the Legendre transform

more complete models, and that has been used to in- for efficiency.)
vestigate numerical methods and benchmark a num-

ber of machines. The spectral transform algorithm of 4) Transform state variables back to gridpoint space
STSWM follows closely how CCM2, the NCAR Corn- using
munity Climate Model, handles the dynamical part of

the primitive equations [6]. a) an inverse LT and associated computations
PSTSWM differs from STSWM in one major re- and

spect: fictitious vertical levels have been added in or-

der to get the correct communication and compute- b) an inverse real block FFT.

tion granularity for three dimensional weather and cli-

mate codes, and to allow parallel algorithms that de- For more details on the steps in solving the shallow we-

compose the vertical dimension to be evaluated. The ter equations using the spectral transform algorithm,

number of vertical levels is an input parameter. In all see [7].

other respects, we changed the algorithmic aspects of
STSWM as little as possible. While the algorithmic
structure of STSWM was maintained, the code struc-

3 Parallel algorithm options
ture was altered radically in developing PSTSWM.

These changes were made to support the algorithm

comparison, and to support reuse of the code devel- Parallel algorithms are used to compute the FFTs

oped in implementing the parallel algorithms, and to compute the vector sums used to approximate

PSTSWM uses the spectral transform method to the forward and inverse Legendre transforms. There

solve the shallow water equations. During each are four "levels" of runtime options supported in the

timestep, the state variables of the problem are trans- code.

formed between the physical domain, where the phys-

ical forces are calculated, and the spectral domain, 3.1 Processor grid
where the terms of the differential equation are eval-

uated. The physical domain is a tensor product

longitude-latitude-vertical grid. The spectral domain The physical and spectral domains are decomposed

is the set of spectral coefficients in a truncated spher- over a logical two-dimensional processor mesh of size

ical harmonic expansion of the state variables. When Px x Py. The longitude dimension of the physical do-

a "triangular" truncation of the spectral coefficients is main is decomposed over Px processors and the lat-

used, as is common, the indices for the spectral coef- itude dimension is decomposed over Py processors.

ficients for a single vertial level make up a triangular Thus, FFTs in different processor "rows" are inde-

array, pendent, and each row of Px processors collaborates

Transforming from physical coordinates to spectral in computing a block FFT. Similarly, the Legendre

coordinates involves performing a real fast Fourier transforms in different processor "columns" are inde-

transform (FFT) for each line of constant latitude, pendent, and each column of Py processors collabo-

followed by integration over latitude using Gaussian rates in computing a block of Legendre transforms.

quadrature (approximating the Legendre transform The total number of processors and the logical aspect

(LT)) to obtain the spectral coefficients. The inverse ratio, and thus the number of processors dedicated to

transformation involves evaluating sums of spectral computing the different parallel transforms, are input
harmonics and inverse real FFTs, analogous to the parameters. While "squarish" meshes are generally

forward transform. The basic outline of each timestep best, the FFT and LT algorithms have different corn-

is the following: putational and communication complexities, and non-
square meshes are sometimes better, depending on the

1) Evaluate non-linear product and forcing terms, problem size and the multiprocessor.

2) Fourier transform non-linear terms as a block The mapping of the logical grid to physical pro-
transform, cessors is also a runtime option. A set of standard

mappings is provided, suitable for hypercube and for

3) Compute forward Legendre transforms and ad- mesh interconnect topologies, as well as the options to

vance in time the spectral coefficients for state input an arbitrary mapping.

3.2 Parallel algorithms only in communication costs. Load balance issues are
discussed in detail in [4]. Note that the simple char-

Two classes of parallel algorithms are available for acterizations described here ignore link contention in

each transform: distributed algorithms, using a fixed the physical network, and, for example, the ®(log Q)

data decompostion and computing results where they distributed Legendre transform algorithm is not auto-

are assigned, and transpose algorithms, remapping the matically better than the O(Q) distributed algorithm.

domains to allow the transforms to be calculated se- In summary, PSTSWM provides 12 different paral-

quentially. These represent four classes of parallel al- lel algorithms for implementing the spectral transform
gorithms: method: 3 FFT x 4 LT.

1) distributed FFT/distributed LT

2) transpose FFT/distributed LT 3.3 Parallel algorithm variants

3) distributed FFT/transpose LT Each FFT and LT parallel algorithm also has a

4) transpose FFT/transpose LT number of implementation options that can be se-
lected at runtime.

There are two transpose algorithms, which differ @(Q) transpose. This algorithm proceeds in Q- 1

primarily in the number of messages sent and the cu- steps on Q processors, where, at each step, a proces-

mulative message volume. Assume that the trans- sot sends 1/Q of its data to another processor [8]. To

pose algorithms are implemented on Q processors and be efficient, some care must be taken with the order
that each processor contains D data to be transposed, of the data communication. We support two different

Then the per processor communication costs for the schedules in PSTSWM. In the XOR schedule, pro-

two algorithms can be characterized by cessor q swaps data with processor XOR(q, i) at step
i. This avoids competition for bandwidth in hyper-

• O(Q) messages, O(D) total volume
cube interconnection networks [8], and is often more

• O(log Q) messages, O(D log Q) total volume efficient than a general send/receive pattern on other

networks. In the MOD schedule, processor q sends to

respectively. In the first (O(Q) transpose) algorithm, processor MOD(q + i, Q) at step i.

every processor sends data to every other processor. The most robust and portable implementation of

In the second (O(logQ) transpose) algorithm, every the O(logQ) transpose is to pair each send request
processor exchanges data with its neighbors in a logi-
cal log 2 Q dimensional hypercube, with a receive request. But, since all the data to be

There are also two distributed Legendre algorithms, sent is available at the beginning of the transpose, it

Assume that the Legendre transform is parallelized can also all be sent immediately (send.ahead), delaying
any receive requests until later. Depending on the

over Q processors and that each processor will contain details of the underlying message passing system and

D spectral coefficients when the transform is complete, the size of the problem, send-ahead can be an efficient
Then the per processor communication costs for these

technique, or it can consume all system buffer space
two algorithms can be characterized by and cause deadlock.

• O(Q) messages, O(DQ) total volume Since all data that is received is retained and where

the data is to go is known beforehand, all receive re-
. e(log Q) messages, e(DQ) total volume

quests can be posted before the send requests (receive-

respectively. The O(Q) algorithm works on a log- ahead) if nonblocking receives are supported by the

ical ring, sending messages to and receiving them native message passing system. Completion of the re-

from nearest neighbors only. The O(log Q) algorithm ceive requests would then be checked after individual

uses the same communication pattern as the G(log Q) send requests, or after all the send requests in a send-
transpose algorithm, ahead implementation.

There is only one distributed FFT algorithm. It In summary, PSTSWM supports two different corn-

has the same characterization of communication costs munication schedules (denoted by the indicated sym-

and communicationpattern as the O(log Q) transpose bol): XOR (X) and MOD (M), and four differ-
algorithm, eat communication options: send/receive (0), recv-

All parallel algorithms execute essentially the same ahead/send (1), send-ahead/receive (2), and receive-

computations, and, modulo load imbalances, differ ahead/send-ahead(3).

®(logQ) transpose, Tile schedule for this algo- runtime. For brevity, we will restrict our discussion to
rithm is fixed. Also, each send involves data received the SWAP primitive, but tile same options also apply

at the previous step, so a send-ahead implementation to SENDRECV.

is not possible. But, if extra buffer space is allocated, First, in a SWAP two processors exchange mes-

the receive requests can be posted early, hopefully sages. In a simple SWAP, each processor sends a rues-

eliminating some buffer copying by guaranteeing that sage and then receives one. In an ordered SWAP, one

messages are placed in user buffer space when they processor sends while the other receives, after which

arrive. Both send/receive (0) and receive-ahead/send the first processor receives and the second processors

(1) implementations are supported, sends. The ordered SWAP will work on synchronous

message passing systems and potentially avoids some

Distributed FFT. Walker, et al. [10] showed that buffer copying. The simple swap takes advantage of

on computers that permit overlapping of computation the full bandwidth in a bidirectional link and concur-

and communication, it can be advantageous to divide rency in initiating the SWAP on the two processors.

the single block FFT into two and interleave the corn- For each of the two types of SWAP, the exchange

munication for one block with the computation for can be implemented with blocking or nonblocking

the other. PSTSWM supports both overlap (O) and sends, blocking or nonblocking receives, and regular or

nonoverlap (N) versions of the distributed FFT. forcetype messages, as supported by the native mes-
sage passing system. Tile forcetype messages, avail-

O(Q) distributed LT. The computation preceding able on Intel systems, do without the normal hand-
shaking protocol that guarantees that messages are

the communication in this algorithm can be delayed not lost if they arrive before the corresponding receive

and interleaved with the communication steps, en- request is made. In certain circumstances, the user can

abling significant overlap of communication and corn- guarantee that a receive request will be posted before

putation. Even ifa computer does not support concur- the send, in which case the forcetype message is much
rent computation and communication, overlap tech- more efficient. Correctness is guaranteed in the SWAP

niques can still overlap idle time and computation, and SENDRECV commands when the fort,_type op-

but contention for shared resources such as the sys- tion is chosen.

tern bus may reduce overall performance. Also, if For the ordered SWAP command, there is also a

extra buffer space is allocated, the receive requests synchronous option, where handshaking messages are
can be posted early. PSTSWM supports both overlap

(O) and nonoverlap (N) and both send/receive (0) and used to guarantee that each processor is ready to re-
ceive a message before it is sent.

receive-ahead/send (1) implementations of this algo- In summary, PSTSWM supports six "simple" op-

rithm, tions and seven "ordered" options. We denote the

simple options by Sn, for some number n, and the

(_(logQ) distributed LT. Overlap of communica- ordered options by On. The simple options are
tion and computation is not efficient for this algo-

0: blocking send/blocking receive,rithm. But, if extra buffer space is allocated, the re-

ceive requests can be posted early. Both send/receive 1: nonblocking send/blocking receive,

(0) and receive-ahead/send (1) implementations are

supported. 2: blocking send/nonblocking receive,

3: nonblocking send/nonblocking receive,

3.4 Communication protocols 4: blocking send/nonblocking receive using force-

All of the parallel algorithms and their implementa- types, and

tionsare based on SWAP and SENDRECV primitives, 5: nonblocking send/nonblocking receive using

where, during each communication step, a processor forcetypes.

sends a message to one processor and receives ames- The ordered options are the same six plus
sage from another. The send-ahead and receive-ahead

implementations use subcommands, e.g. SWAP1, 6: synchronous blocking send/blocking receive.

SWAP2, and SWAP3, that together are equivalent to Note that some options are not supported for some

the basic primitive, algorithm variants. For example, it is meaningless to

SWAP and SENDRECV have a number of differ- specify a receive-ahead algorithm that uses blocking

ent communication protocols that can be selected at receives.

4 Tuning methodology 2, 4, 8, 16, 32, 64, 128, 256, and 512 processors; for
32 processors, we try the aspect ratios 1 x 32, 2 × 16,

PSTSWM incorporates so many options that a 4 x 8, 8 x 4, 16 x 2, and 32 x 1. While powers of two are

comprehensive study of all possible combinations of not necessary, they reduce the number of aspect ratio

algorithm parameters, problem size, and processor experiments to a reasonable number without giving
count is unreasonable. Instead, we proceed in two up much information. Also, the distributed FFT and

stages. O(logQ) transpose algorithms require that the num-

In the first stage, we perform a series of tuning ex- ber of processors be a power of two.
periments designed to identify an "optimal" set of al-

gorithm variants and communication protocol param-

eters for each FFT and LT algorithm. These tun- 5 Empirical results
ing experiments are performed with either Px = 1

or Py = 1, i.e., one-dimensional decompositions, al-
In this section we describe empirical results that

lowing the FFT and LT algorithms to be studied in
indicate the importance of algorithm tuning on vat-

isolation. One or more of the problem dimensions is
ious machines when benchmarking using PSTSWM.

reduced to provide the computation granularity and
Other papers will describe the algorithm comparisoncommunication volumes that would obtain in a two-
and benchmarking results in detail. Here, we concen-

dimensional decomposition. For example, when eval-
trate on the variance in timings observed during the

uating the distributed FFT algorithm for a 16 x 8 pro-
cessor grid on a problem with 16 vertical levels, a 16 x 1 tuning experiments.

We describe experiments run on the four parallelprocessor grid is used with the number of vertical lev-

els reduced by a factor of 8 (from 16 to 2). computer systems listed below. These systems vary

The number of experiments performed in this first considerably in their communication or computational

stage is further reduced by first evaluating the full capabilities, despite similarities in their architectures
range of parameters only on "largest" and "mid-sized" and programming models.

multiprocessor configurations for each parallel algo-
rithm. For example, P --- 512 and P = 64 are consid- Name Processor Network P

ered on the 512-processor Intel Paragon at Oak Ridge nCUBE/2 nCUBE 2 hypercube 1024
National Laboratory. If these studies all show one set iPSC/860 i860 hypercube 128

of communication parameters and algorithm variants Paragon:
OSF/1 i860SP 16 x 32 mesh 512to be consistently superior, no further experiments are

performed. We expect the impact of communication SUNMOS i860SP 16 x 32 mesh 512
parameters on performance to be relatively insensitive

The nCUBE/2 and the Intel iPSC/860 use hyper-to the problem granularity and number of processors,

and have found this to be true in many cases. When cube interconnects in which each of P processors is
connected to log 2 P neighbors via bidirectional links.there is a significant difference, the purpose of the tun-

ing exercise must be taken into account. For bench- The Intel Paragon use a two-dimensional bidirectional
mesh interconnect and cut-through routing. Measure-marking "peak" performance, we give preference to
meats were run on the Paragon using both Rl.l.2,

the parameters that worked best for the larger con-
figurations. In all cases, subsequent experiments for an OSF-based operating system, and SUNMOS, a low

a given platform and parallel algorithm use a fixed overhead operating system developed at Sandia N_-

set of communication parameters. The experiments tional Laboratories and the University of New Mexico.

performed in the first stage are also used to eliminate Both of these operating systems are still evolving, and

FFT and LT algorithms from further consideration any conclusions as to their performance or optimal

(on a given platform) if it is clear that they are not tuning parameters will be short-lived.
competitive.

Once we have identified optimal communication pa- Low level tuning. The best algorithm variants and

rameters and promising parallel algorithms, we per- communication protocols for the different parallel al-

form a second series of experiments that compares all gorithms are listed below. The optimal parameters

possible combinations of the remaining FFT and LT are denoted by (a, b), where a is the algorithm vari-
algorithms on all possible aspect ratios for each power ant and b is the communication protocol. Both a

of two number of processors supported by each com- and b are encoded as indicated in earlier sections.

puter. For example, on the Intel Paragon, we use 1, The multiprocessors are denoted as follows: nCUBE/2

(N), iPSC/860 (I), Paragon-OSF (P), and Paragon- O(Q) Transpose FFT Algorithm
SUNMOS(S). 1 N I I I P S

of Options 8 50 46 50

Transpose Algorithms T42L16 - Q1 1.03 1.22 1.11 I 05
[N I P S T42L16 - MAX 1.16 1.38 1.56 1.49

O(Q) (X2,S0) (X0,S5)(X1,$5)(X0,S0) T85L32-Q1 1.03 1.24 1.11 1.01

e(logQ) (0,S0) (0,$5) (0,S5) (0,06) T85L32- MAX 1.10 1.37 1.24 1.10,.,

Distributed Algorithms O(log Q) Transpose FFT Algorithm '
N I P S N I P S

"FFT (O,O0) (O,$5) (N,S5) (N,O6) # of Options 3 19 18 19

O(Q) (O0,S0) (O1,$5) (O1,$4)(O1,$2) T42L16-Q1 - 1.40 1.03 1.05
O(logQ) (0,S0) (0,$5) (1,$4) (1,$5) T42L16-MAX 1.14 1.45 1.29 1.53

The important thing to notice in these tables is that T85L32 - Q1 - 1.40 1.03 1.01

the optimal parameters do differ between platforms. T85L32- MAX 1.12 1.48 1.37 1.12iiii i

Note that the best parameters for one platform may Distributed FFT Algorithm
not be supported on another. For example, the native N I P S

message passing system on the nCUBE/2 does not # of Options 5 21 18 21

support nonblockingsends or receives, nor does it have T42L16 - Q1 1.00 1.30 1.04 1.03
a special forcetype protocol. T42L16- MAX 1.21 1.76 1.29 1.50

Of more relevance to this paper is the sensitivity T85L32 - Q1 1.00 1.27 1.05 1.04

of performance to the parameter selection. To indi- T85L32- MAX 1.17 1.69 1.37 1.09

cate this, the following tables give statistics about O(Q) Distributed LT Algorithm
the range of timings for two problem sizes: twelve

N I P] S
timesteps each of T42LI6, which has a physical com-

putationalgrid of size 128x64× 16, and T85L32, which _ of Options 7 64 6i ! 64

has a physical computational grid of size 256 x 128 ×32. T42L16 - Q1 1.13 1.44 1.20 1.10

T42 is the design point for CCM2 [6], and T85 is T42L16-MAX 1.41 1.76 1.97 1.85
T85L32- Q1 1.10 1.29 1.09 1.09representative of the size of problem that climate re-

searchers would like to solve next. The tuning experi- T85L32 - MAX 1.31 1.70 1.63 3.97

ments reported here were designed assuming a logical "O(log Q) Distributed LT Algorithm

16 x 32 processor for the nCUBE/2 and Intel Paragon, N I P S
and assuming a logical 8 x 16 processor mesh for the # of Options- -3 19 i8 19

[ntel iPSC/860. For example, for the Intel Paragon, a T42L16 - Q1 - 1.35 1.07 1.08

1 x 32 logical processor grid is used and the problem T42L16- MAX 1.15 1.46 1.21 1.73

size is scaled by 1/16 when evaluating parallel LT al- T85L32 - Q1 - 1.29 1.06 1.01
gorithms, to get the correct granularity. For brevity, T85L32 - MAX 1.11 1.40 1.22 1.12
only the transpose FFT tuning experiments are re-

ported. The other transpose experiments have similar As can be seen from the data, tuning is

statistics, very important for performance for some algo-

The statistics used are the first quartile (Q1) and rithm/multiprocesor combinations, and is relatively

largest time (MAX), both normalized by the minimum unimportant for others. Similarly, for some algorithms

time. The MAX statistic indicates how much is to be and multiprocessors, there are many parameter set-

gained by tuning. The Q1 statistic gives some indi- tings that produce good results, while for others there

cation as to how important it is to get the optimal are few. The way that the statistics change with prob-

parameters. For example, for the O(log Q) transpose lem granularity is also strongly algorithm and machine

algorithm on the iPSC/860, the worst case and the dependent. All of the algorithm variants and commu-
first quartile are both between 40% and 50% worse nication protocols used in these experiments are ex-

than the optimal algorithm, indicating that there is pected to be reasonable choices in some environment,

a strong optimum. In contrast, on the Paragon, the and cannot be dismissed out of hand. In particular,

first quartile is only 3% worse than the optimum, and, the optimal parameters for one of our target machines

while tuning is worthwhile, getting the optimal pa- are sometimes bad choices for a different target, as

rameters is not as important, will be described in an expanded paper. Thus, given

the complexity of the behavior, we feel that empirical data is that the best algorithms can differ with the

low level tuning experiments are an important step in problem size and the multiprocessor. In almost all

benchmarking when using PSTSWM. cases, there is a cluster of "good" algorithms close
Note that twelve timsteps results i, .5-20 second to the optimal one, and the particular one mentioned

times for these experiments. We have observed longer here is not particularly important. But the members

runs to have exactly the same behavior, and are confi- of this "optimal set" vary with problem size and be-

dent in the validity of these experiments. While there tween multiprocessors.

is some variability in the run times for some of the The following tables give _t.atistics about the sensi-

experiments, all of the good parameter settings show tivity of performance to the high level tuning. Since

little variability in the time to compute a timestep, large numbers of processors allow us to examine ex-

and the minimum timings are very consistent, treme logical aspect ratios that are expected to be
poor performers, we give both the largest time (MAX)

High level tuning. Unlike the low level tuning pa- and the largest time in the set of experiments using

rameters (algorithm variants and communication pro- 1:1, 1:2, and 2:1 aspect ratios (MAXSQ). We also give

tocols), it is unreasonable to choose a single aspect the timefor a "generic" algorithm (GEN), one that has
ratio or parallel algorithm for all problem sizes and optimal asymptotic behavior and a simple protocol

machine configurations. The different parallel algo- that is supported on all message passing systems that
rithms have different asymptotic behaviors, and the the authors have experience with. This algorithm uses

best choices vary significantly as problem and machine O(Q) transpose FFT and LT algorithms, a 1:1 or 1:2
sizes change, logical aspect ratio, a MOD communication schedule,

For climate modeling, the problem size seldom and an ordered, blocking communication protocol, i.e.,

changes. Once the optimal low level parameters have (M0,O0) using our earlier encoding. The generic algo-

been determined, it is straightforward to evaluate all rithm is meant to represent what a reasonable choice

relevant machine configurations to determine the best would have been if we had forgone tuning. As before,

aspect ratio and parallel algorithms for a given number all statistics are normalized by the minimum execution
of processors. This information can then be saved and time.

used whenever a given number of processors becomes N I P S
available for a run.

T42L16- GEN 1.48 1.53 1.43 1.95
We defer the complete description of the algorithm

T42L16- MAXSQ 2.11 1.59 2.47 2.20
comparison to [4], and only discuss the high level tun-

ing for the largest configurations on each of the target T42L16- MAX 3.95 7.69 6.40 6.75
machines. T85L32- GEN " 1_i2 1.50 1.19 1.06

The best parallel algorithm combinations and log- T85L32- MAXSQ 1.92 1.46 2.28 1.92

ical aspect ratios are listed below. The parallel algo- T85L32- MAX 3.95 2.75 4.43 8.74

rithms are denoted as follows: O(Q) transpose (TQ),
As would be expected, the generic algorithm is very

O(log Q) transpose (TL), distributed FFT (DF), O(Q)

distributed Legendre transform (DQ), and O(log Q) good for the cases where the optimal algorithm is the
tuned version of O(Q) transpose FFT/O(Q) transpose

distributed Legendre transform (DL). Remember that

a Px x Py aspect ratio indicates, among other things, LT, and is significantly worse otherwise. The MAXSQ
that Px processors collaborate to compute a block values indicate that high level tuning can lead to sig-

nificant improvements (50%-100%). As before, all ofFFT and Py processors collaborate to compute a
block LT. the parallel algorithms, if not the aspect ratios, are ex-

pected to be reasonable choices in some environment,

T42L16 N I P S - and cannot be dismissed out of hand. Even nonsquare

FFT DF TQ TL TL aspect ratios are optimal for smaller numbers of pro-

LT DL DQ TL DL cessors. See [4] for more details.
aspect 32x32 16×8 16x32 16x32

,

T85L32 N I P S

FFT TQ TQ TQ TQ 6 Summary and conclusions
LT TQ DQ TQ TQ

aspect 32 x 32 16 x 8 32 x 16 32 x 16 We found runtime tuning options to be a use-
ful technique for determining efficient programming

As before, the important point to be drawn from this techniques (low level tuning) and for determining

appropriate parallel algorithms (high level tuning). National Laboratory, the National Center for Atmo-

" Our experience with PSTSWM has also convinced us spheric Research, and Oak Ridge National Laboratory,

that conventional benchmark studies, using fixed al- for sharing codes and results, to Brian Toonen for help

gorithms, can be very misleading. PSTSWM is not with the computational experiments, and to the SUN-

an exceptionally complex code, yet relatively minor MOS development team for help in getting PSTSWM

chanses in the algorithms can change performance by running under SUNMOS on the Intel Paragon.
a (actor of two or more. In particular, for climate This research was performed using Intel iPSC/860

modeling research, a fair comparison and evaluation and Paragon multiprocessor systems at Oak Ridge

of multiprocessors requires the use of optimized par- National Laboratory (ORNL), nCUBE/2 and Intel

allel algorithms. Paragon systems at Sandia National Laboratories, and

Structuring PSTSWM so as to support multiple the nCUBE/2 system at Ames National Laboratory.

parallel algorithms efficiently was not a simple task,

but maintaining and porting the code to other message

passing systems will be straightforward. PSTSWM is References
primarily written in standard Fortran 77, with mes-

sage passing implemented using the PICL message [1] D. H. Bailey, et al., The NAS Parallel Benchmarks,

passing libraries [5]. All message passing is encap- Internat. J. Supercomputer Applications, 5 (1991),

sulated in 3 high level routines for broadcast, global pp. 63-73.

minimum, and global maximum, two classes of low [2] J. J. Dongarra and W. Gentzsch, eds., Computer
level routines representing variants and/or stages of Benchmarks, North-Holland, Amsterdam, 1993.
the swap operation _tnd the send/receive operation,

repsectively, and one synchronization primitive. Port- [3] I. T. Foster, Language constructs for modular parallel

ing the code to another message passing system will programs, MCS-P391-1093, Argonne National Labo-

require simply porting the PICL library or reimple- ratory, Argonne, IL, 1993.
menting the few communication routines in PSTSWM [4] I. T. Foster and P. H. Worley, Parallel algorithms

using either native message passing primitives or the for the spectral transform method, ORNL/TM-12507,

proposed MPI message passing standard [9], which Oak Ridge National Laboratory, Oak Ridge, TN, May
supports all of the communication protocols currently 1994.

implemented in PSTSWM. [5] G. A. Geist, M. T. Heath, B. W. Peyton, and
A similar effort to ours to introduce runtime alga- P.H. Worley, PICL: a portable instrumented corn.

rithm options into a parallel code may not always be munication library, ORNL/TM-11130, Oak Ridge

reasonable, but some options are simple to insert, and National Laboratory, Oak Ridge, TN, July 1990.
can make a big difference on some machines. It is

generally a good idea to encapsulate message passing [6] J. J. Hack, et al., Description of the NCAR Commu-nity Climate Model (CCM_), NCAR/TE-382+STR,
primitives in parallel codes [3], and once that is accom- National Center for Atmospheric Research, Boulder,
plished, a variety of communication protocols and al- Colo., 1992.
gorithm variants can be embedded easily. In summary,

it is our opinion that the low level tuning described [7] J. J. Hack and R. Jakob, Description of a global

in this paper is a generally applicable technique that shallow water model based on the spectral transform

should be used before commencing any benchmarking method, NCAR/TN-343+STR, National Center for
Atmospheric Research, Boulder, CO, February 1992.

effort on message passing systems. Depending on the

application code, it may also be useful to support a [8] S. L. Johnsson and C.-T. Ha, Algorithms for matrix

variety of multiple algorithms in the same code. transposition on boolean N.cube configured ensemble
architectures, SIAM J. Matrix Anal. Appl., 9 (1988),

Acknowledgements pp. 419-454.

[9] D. W. Walker, The design of a standard message

This work was supported in part by the Atmo- passing interface for distributed memory concurrent

spheric _ld Climate Research Division and in part computers, Parallel Computing, (1994). (to appear).
by the _pplied Mathematical Sciences Research Pro-

gram, both of the Office of Energy Research, U.S. [10] D.W. Walker, P. H. Worley, and J. B. Drake, Par.

Department of Energy.. We are grateful to members allelizing the spectral transform method. Part 11, Con-
currency: Practice and Experience, 4 (1992), pp. 509-

of the CHAMMP Interagency Organization for Nu- 531.
merical Simulation, a collaboration involving Argonne

m m
i I

