
Twelfth IEEE Symposium on Mass Storage Systems

Parallel Storage and Retrieval of Pixmap Images

Roger D. Hersch
Ecole Polytechnique Federale de Lausanne

Lausanne, Switzerland

Abstract

Professionals in various fields such as medical imaging,
biology and civil engineering require rapid access to huge
amounts of uncompressed pixmap image data. To fulfill
these requirements, a parallel image server architecture
is proposed, based on arrays of intelligent disk nodes,
with each disk node composed of one processor and one
disk. This contribution shows how images can be parti
tioned into extents and efficiently distributed among
available intelligent disk nodes. The image server's
performance is analyzed according to various parameters
such as the number of cooperating disk nodes, the sizes of
image file extents, the available communication through
put and the processing power of disk node and image
server processors. Important image access speed
improvements are obtained by image extent caching and
image part extraction in disk nodes. With TBOO
transputer-based technology, a system composed of eight
disk nodes offers access to three full-color 512x512
pixmap image parts per second (2.4 megabytes per
second). For the same configuration but with the recently
announced T9000 transputer, image access throughput is
eight images per second (6.8 megabytes per second).

Introduction

Graphic and multi-media user interfaces promote the use
of computers for visualizing pixmap images. In the fields
of scientific modeling, medical imaging, biology, civil
engineering, cartography, and graphic arts there is an
urgent need for huge storage capacities, fast access, and
real-time interactive visualization of pixmap images.

While processing power and memory capacity double
every two years, disk bandwidth only increases by about
10% per year. Interactive real-time visualization of full
color pixmap image data requires a throughput of two to
ten megabytes per second. Parallel input/output devices
are required to access and manipulate, at high speed,
image data distributed on disk arrays.

A high-performance, high-capacity image server should
provide users located on local or public networks with a
set of adequate services for immediate access to images
stored on disk arrays. Basic services include real-time
extraction of image parts for panning purposes, re
sampling for zooming in and out, browsing through 3-d
image cuts and accessing image sequences at the required
resolution and speed.

1051-9173/93 $3.00 ©1993 IEEE 221

Previous research was focused on increasing transfer rates
between CPU and disks by using Redundant Arrays Of
Inexpensive Disks (RAID) [1, 2]. Access to disk blocks
was parallelized, but block and file management
continued to be handled by a single CPU with limited
processing power and memory bandwidth.

To access large quantities of pixmap image data at a
throughput of two to ten megabytes per second, a multi
processor-multidisk (MPMD) approach is proposed.
Pixmap image data is partitioned into rectangular extents,
each extent having a size which minimizes global access
time. To ensure high throughput, image extents are stored
on a parallel array of disk nodes. Each disk node includes
one disk node processor (T800 transputer), cache memory
(six megabytes) and one disk (400 to 1000 megabytes).
The hardware part of this architecture is similar to the one
used in the DataMesh project [4].

The proposed parallel image server architecture includes
an array of disk nodes offering parallel image storage,
image-handling processors dedicated for the storage and
processing of image parts and a network interface. This
contribution discusses how images can be partitioned into
extents and efficiently distributed among disk nodes. It
analyzes the performance of the system according to
various parameters such as the number of cooperating
disk nodes, the size of the image file extent, the effect of
file image caching, and the type of available processing
and communicating capabilities. Performance figures
quoted hereafter refer to storing and accessing
uncompressed images.

This contribution does not discuss the problem of disk
crash recovery. However, RAID-5 redundancy schemes
[2] could be incorporated onto the proposed MPMD
architecture.

Image Server Architecture

The image server comprises a network interface, a single
or several image-handling processors used for image
assembly and processing as well as an array of disk nodes
(Figure 1). One image-handling processor runs the image
server master process, receiving image access requests
from the network and issuing image access calls to the
parallel image file server. The parallel file server includes
a file system master process responsible for maintaining
overall parallel file system coherence (directories, file
index tables, file extent access tables) and extent serving
processes running on disk node processing units. Extent

fabienne
12th IEEE Symposium on Mass Storage Systems, Montherey CA, April 1993, Digest of papers, IEEE Computer Science Society Press, 221-226

fabienne

Twelfth IEEE Symposium on Mass Storage Systems

network interface:
FDDI, ATM broadband

image handling processors,
clients of parallel image
file system

disk node
managing
processors +
cache

SCSI disks:

400-1000
Mbytes/disk

;
image file requests i

from network stations!

I

image file requests
from network stations

a} single image handling processor
server architecture

b) multiple image handling
processor server architecture

Figure 1. Image server architecture.

serving processes are responsible for serving extent access
requests, for maintaining the free block lists and for
managing local extent caches. Image processing tasks
required for image presentation such as re-sampling,
filtering and adaptation of gray levels may be located on
interface processors and on disk node processing units.

Extent Size Computation

Image access performance is heavily influenced by the
way in which pixmap images are distributed onto a disk
array. Image access characteristics are known: client
workstations generally require rectangular portions of
pixmap image files. Therefore, image file data is par
titioned into rectangular extents. To simplify the file
system managing parallel storage of files on multiple disk
nodes, extents are numbered sequentially from left to right
and from top to bottom. The k disk nodes in the disk array
selected for storing an image file are numbered from 0 to
k-1. Image file extents are mapped sequentially one to one
in modulo-k mode to disk nodes.

At image storage time, image size, visualization window
size and number of disks are known. The image partition
ing problem is reduced to the problem of finding a
horizontal extent size which ensures that extents lying

222

within the visualization window are distributed as
uniformly as possible on the set of available disk nodes
(Figure 2). The chosen extent size should be relatively
close to an initially given suitable extent size (which, by
simulation, is known to provide high parallel disk
throughput).

For an initially given extent size, the size of the visualiza
tion window determines the number of extents contribut
ing to the window content. If the number of disks is equal
to or higher than the number of window extents, the offset
between disk numbers from one extent row to the one
beneath should be equal to the number of horizontal
extents covering the window width. If the number of disks
is smaller than the number of window extents, a down
scaled visualization window is considered which contains
as many extents as there are available disks. The horizon
tal offset between disk numbers from one extent row to
the next should be close to the number of horizontal
extents covering the reduced window width. If more than
nine extents contribute to a given visualization window,
uniform distribution of extents on contributing disks can
be ensured if the chosen offset and the number of disks
are mutually prime if, for example, their greatest common
divisor is no higher than one.

Twelfth IEEE Symposium on Mass Storage Systems

dO d1 d2 d3
~ ~

large
visualization
window

d~ d5 dO d1 d2

d~ d3 d4 dE dO

dC d1 d2 d3 d4

balanced distribution of
extents among 6 disks

disk access
rates:
dO: 3 requests
d1: 3
d2: 3
d3: 3
d4: 2
d5: 2

for given visualization window

Figure 2. Example of extent distribution
among disk nodes.

The desired offset is obtained by varying the extent width.
If the desired offset is larger than the one given by the
initial extent width, horizontal extent size reduction will
increase the positive disk number offset between one
extent line and the next. If the desired offset is smaller
than the actual one, a horizontal extent size increment will
reduce it (Figure 3). Computation of extent size for k
disks must make use of modulo-k arithmetic: a positive
offset can be increased until k-1, further extent size
reduction resets the offset to zero. Furthermore, required
offsets are given in absolute values, they can be either

Initial distribution:

nb of disks: 6
image width: 2048 pixels
extent size: 256 x 256
resulting offset: 2

eO e1 e2 e3 e4
dO d1 d2 d3 d4

e8 e9 e10 e11 e12
d2 d3 d4 d5 dO

Distribution for offset =
new extent width: 310

eO e1 e2 e3
dO d1 d2 d3

e7 e8 e9 e10
d1 d2 d3 d4

e5 e6 e7
d5 dO d1

e13 e14 e15
d1 d2 d3

e4 e5 e6
d4 d5 dO

e11 e12 e13
d5 dO d1

Figure 3. Horizontal extent size enlargement
reduces offset.

223

positive or negative. One should choose as a desired offset
the one that will produce the smaller extent size difference
(size enlargement or size reduction).

The newly obtained extent width generates the required
offset between disk numbers in successive extent rows.
However, this width may differ considerably from the
initially given extent width. As a consequence, the given
visualization window may become covered by more or
less extents. Therefore, an iterative process follows, which
repeats the complete algorithm several times. This process
generally converges after one or two iterations.

Image Access Characteristics

Most slide and page scanners work at a resolution of
approximately 3000x4000 pixels. Such a resolution pro
vides both a general view of the image obtained by sub
sampling or a detailed view of image parts. Windowing
systems offer visualization windows of variable sizes: a
typical window size may be 512x512 pixels. Such a
window may be enlarged to 1024x1024 or reduced to
256x256 pixels.

The considered architecture assumes that the full image
visualization window is divided among one or several
image-handling processors. Each image-handling
processor is linked by two communication channels to a
variable number of interconnected disk nodes. For the
sake of simplicity, we will analyze architectures having
either a single (Figure la) or a set of four image-handling
processors (Figure lb). The following questions arise:

• What are optimal extent sizes for given visualization
window sizes?

• What is the optimal number of disk nodes which can
be connected to one client using two communication
channels?

• How much do intelligent disk nodes improve overall
performance when extracting, in parallel, relevant
image information from image extents?

• What is the performance improvement when access
ing image data from disk caches instead of accessing
it from disks?

• How does an increased number of image-handling
processors improve overall image access times?

To find answers to these questions, a discrete event simu
lation program was written in Mathematica. The simula
tion takes into account the time needed to compute extent
distribution requests to disk nodes, communication time
between client and disk node processors, SCSI disk block
access times, two-dimensional block copies for extracting
visualized image parts from extents, transfer of resulting

Twelfth IEEE Symposium on Mass Storage Systems

image parts through two communication links, receipt and
assembly of image parts by the client processor.

Simulation parameters assume that processors are T800
transputers [3], that the channel throughput of a T800-
based system is identical to the effective throughput of
T800 transputer communication links (-1.6 megabytes
per second) [7] and that disks have a raw transfer rate of
2.4 megabytes per second, a track to track access time of
four ms and an average rotation time of 8.3 ms. Since
multiple extents of the same image located on the same
disk are generally stored on adjacent disk locations, we
assume that mean seek time (fifteen ms) and average
rotational delay are only applied to the first extent of an
image on every disk. For consecutive extents of the same
image, only track to track head displacement and transfer
time are taken into account. This simulation setup has
been validated by comparison with measurements carried
out using a prototype T800-based image server composed
of four image-handling processors, eight disk node pro
cessors and eight disks. The simulation has been extended
to T9000 transputers which offer twice as much memory
transfer throughput, ten megabytes per second data
transfer bandwidth on their communication links and a
crossbar switch for high-speed packet routing [5].

Simulation Results

Simulations have been carried out for different client win
dow sizes (512x512, 256x256, 128xl28, 64x64, 32x32
pixels), for different initial extent sizes (512x512,
256x256, 128xl28, 64x64, 32x32 and 16xl6 pixels), for
between one and sixteen interconnected disk nodes and
for full color images (three bytes per pixel). Image size is
much larger than visualization window size (for example
2200x2200 pixels).

These simulations show that the optimal number of disk
nodes associated with one client processor depends, to a
large extent, on the number of communication links
between that processor and the disk nodes. With a
communication bandwidth limited by two transputer
links, two disk nodes offer between 50% and 80% of
asymptotic image access speed (image access speed
obtained using a large number of disk nodes). Three or
more disk nodes offer more disk access bandwidth but,
due to the increased number of hops and the limited
bandwidth of the two image handling processor's input
channels, overall image access times do not decrease
linearly (Figure 4).

Accessing large extents from disks reduces the time lost
in head displacement at the expense of a higher latency
(waiting time until full extent is available for transfer to
client image processor). Small extents reduce latency time
but require more disk head displacements and increased
communication transfer overheads.

224

1.75

1.5

~ 1.25
Q)

E
~
(/)
(/)
Q)

~ 0.75

0.5

0.25

single numbers give
the horizontal extent size

Initial
extent
SIZe:

{16, 16}

!512, 512l
256,256

{32, 32}

~~:641~:::64:~:::ii.,l..&-l128, 128} s: 64, 64}

o~~--~------~~--~--~~
2 4 6 8 10 12 14

number of disk nodes

Figure 4. T800 single image handling processor
MPMD access times for 512x512
visualization window.

16

The simulation shows that image subdivision into extents
with sizes between ten and forty eight Kbytes (64x64 to
256x256 pixels) produces the best results (Figure 4).
Global extent size is independent of the requested visual
ization window size. The extent partitioning algorithm
described above computes the exact extent size to ensure
that neighbors of a given extent are stored on different
disks.

Parallel extraction of relevant image parts from extents at
disk node level offers between 40% and I 00% image
access speed improvement for normal sized visualization
windows (512x512 to 128xl28 pixels). Each disk node
includes a six megabyte cache memory. A list of cache
resident extents specifies whether a given extent resides in
cache or not. In the case of a cache hit, data is extracted
directly from cache memory and sent through the
communication channels to the client processor. For
normal visualization window sizes, cache hits improve
client access time by 5% to 30%. Image part extraction
from cache brings speedup factors which are almost one
order of magnitude higher than image part extraction or
cache alone (Figure 5). Cumulated effects of cache hits
and image part extraction provide speedup factors
between 1.5 and four for normal visualization window
sizes. For small visualization windows (64x64 to 32x42
pixels) speedup factors are between six and ten.

Twelfth IEEE Symposium on Mass Storage Systems

7 (Extract& Cache)

6

3

2

window size

Figure 5. Speedup obtained by image part extraction,
cache access and image part extraction from
cache (single TBOO image handling processor,
eight disk nodes, extent size 128x128).

The T9000 transputer and its associated crossbar switch
offer twice as much memory to memory transfer through
put and between six to ten times more communication
bandwidth than the T800 transputer. For small visual
ization windows, simulations show that such an increase
in communication bandwidth and processing power
reduces image access times by a rather small factor (two
to three). At large window sizes (for example 1432x1432
pixels) however, the T9000 transputer single image
handling processor MPMD offers an image access
throughput of eleven megabytes per second while, for the
same configuration, the limited communication capabil
ities of the T800 transputer restrict its overall image
access throughput to 2.7 megabytes per second (Figure 6).

Simulation also enables us to make a comparison between
the present approach, where disk node processors extract
relevant image parts from disk extents and transfer them
to the image handling processors, and a general purpose
RAID system, where one image handling processor
receives complete extents from an array of parallel SCSI
disks and extracts the relevant image parts. An ideal
T800-based RAID system, with eight disks hooked onto
eight independent SCSI channels with the same character
istics as above, is two to three times faster than a single
image handling T800 processor connected to eight disk
nodes (Figure la). This factor falls to 1.3 when the ideal
RAID system is compared to an MPMD system consisting
of four image handling T800 processors. Compared to a
T9000 single image handling processor MPMD, an ideal
T9000-based RAID is only 5% to 10% faster.

Real RAID systems based on a processor technology of
the same generation as the T800 transputer do not offer
their maximal bandwidth. System bus and memory band

225

Sr-~--~--~------~----~--~

4

processor,

window size:

!T9000, 1432x1432}
------- T800,512x512}

------- {T9000, 512x512}
o~~--~--~--~--~------~~

2 4 6 8 10 12 14 16

number of disk nodes

Figure 6. TBOO and T9000 image access times for
normal and large visualization windows
(512x512 and 1432x1432).

width limitations reduce the available bandwidth by
approximately a factor of two. File system overhead
further reduces RAID bandwidth by a factor of three [6].
We can therefore assume that the presently described
multiprocessor-multidisk architecture offers higher image
access times than conventional RAID systems of the same
technology. Moreover, thanks to its multiprocessor archi
tecture, it offers significant image handling capabilities
(zooming, adaptation of gray levels, iconization, creation
of color maps, etc ..) which are required for presenting
images at the client's workstation.

Conclusions

Browsing through large pixmap images requires the
image to be segmented into rectangular facets, which are
fetched from disks or cache on demand. Optimal facet
size depends on image size, on visualization requirements
and on the available number of disk nodes. A server
architecture consisting of one image handling processor
and of eight disk nodes (Figure la) provides a cost
effective image server architecture. A 512x512 size
window of a large-sized full color 24 bits per pixel image
stored on eight disks in extent pieces 64x64 pixels can be
fetched, transferred and received by a single image
handling processor in 1/3 of a second. With four image
handling processors connected to eight disk nodes (Figure

Twelfth IEEE Symposium on Mass Storage Systems

I b), image access time is reduced to 117 of a second. On a
T9000 MPMD system with a single image handling
processor, image access time is reduced to 0.115 second.

A higher throughput can be obtained when accessing full
size images. For example, 768x512x3 color images (1.18
megabytes) can be accessed by a single T800 image
handling processor and two disks at the rate of two images
per second (2.3 megabytes per second) and by four T800
image-handling processors and eight disks at a rate of 4.5
images per second (5.3 megabytes per second). With a
single T9000 image-handling processor and eight disks
one may access images at a rate close to seven images per
second (8.14 megabytes per second).

Such performance figures are sufficient for building
image servers offering fast access to large sets of pixmap
images. Increased parallelization is worth while for large
visualization windows (for example l024xl024 pixels), as
long as enough communication bandwidth between the
MPMD processors is provided. Due to the disk access
overhead for accessing small pieces of information, the
performances at normal window sizes cannot be increased
by applying a higher degree of parallelization. However,
disk node parallelism offers strong potential for serving
multiple requests simultaneously.

Simulations show that disk performance is a bottleneck
when accessing images at normal and small visualization
window size (256x256 pixels). At larger visualization
window sizes, either the communication bandwidth
between the processors or memory-to-memory block copy
within the image handling processor becomes the bottle
neck. Using an increased number of image handling
processors directly connected to the network may provide
a solution for eliminating the bottleneck of a single
processor's limited communication and block copy
capacity. However, such a solution depends on available
network protocols and throughputs, and must be the
subject of a separate study.

Acknowledgments

The author would like to acknowledge the contributions
made B. Krummenacher, L. Landron et B. Tonelli who
developed the hardware and the software of the T800-
based MPMD prototype system.

226

References

[I] D. A. Patterson, G. Gibson, R. H. Katz, "A Case for
Inexpensive Disks (RAID)", Proceedings of the ACM
SIGMOD Conf. 1988, pp. 109-116.

[2] P. A. Chen, D.A. Patterson, "Maximizing Performances
in a Striped Disk Array", Proceedings IEEE International
Symposium on Computer Architecture, Seattle, 1990,
322-331.

[3] M. Homewood eta!., "The IMS T800 Transputer", IEEE
Micro, Vol. 7, No 5, Oct. 1987, 10-26.

[4] J. Wilkes, "DataMesh, Parallel Storage Systems for the
1990's", lith IEEE Symposium on Mass Storage
Systems, Monterey, Calif., Digest of Papers, IEEE
Computer Press, 1991, 131-136.

[5] The T9000 transputer products overview manual,
!NMOS, 1991.

[6] A. L. Chervenak, R. H. Katz, "Performance of a Disk
Array Prototype", Proceedings SIGMETRICS, May
1991, 188-197.

[7] B. Chardonnens, R. D. Hersch, 0. Kolbl, "Transputer
based distributed cartographic image processing",
Proceedings Joint Conference on Vector and Parallel
Processing: VAPP IV, Compar 90, (H. Burkhart, Ed),
ETHZ, September 1990, Springer Verlag, LNCS 457,
336-346.

