
Parallel Structured Duplicate Detection

Rong Zhou
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

rzhou@parc.com

Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

We describe a novel approach to parallelizing graph search
using structured duplicate detection. Structured duplicate de-
tection was originally developed as an approach to external-
memory graph search that reduces the number of expensive
disk I/O operations needed to check stored nodes for dupli-
cates, by using an abstraction of the search graph to local-
ize memory references. In this paper, we show that this ap-
proach can also be used to reduce the number of slow syn-
chronization operations needed in parallel graph search. In
addition, we describe several techniques for integrating paral-
lel and external-memory graph search in an efficient way. We
demonstrate the effectiveness of these techniques in a graph-
search algorithm for domain-independent STRIPS planning.

Introduction
Graph search is a central problem-solving technique in many
areas of AI, including planning, scheduling, and combina-
torial optimization. Because graph-search algorithms are
both computation-intensive and memory-intensive, develop-
ing techniques for improving the efficiency and scalability of
graph search continues to be an active and important topic
of research. An important category of research questions re-
lates to how to best exploit available hardware resources in
graph search. The possibilities include using external mem-
ory, such as disk, to increase the number of visited nodes
that can be stored in order to check for duplicates, as well
as using parallel processors, or multiple cores of the same
processor, in order to improve search speed.

In this paper, we describe a novel approach to efficient
parallelization of graph search. Grama and Kumar (1999),
in a survey of parallel search algorithms, point out that “De-
creasing the communication coupling between distributed
[OPEN] lists increases search overhead, and conversely,
reducing search overhead using increased communication
has the effect of increasing communication overhead.” This
dilemma is faced by virtually all previous approaches to par-
allel graph search (Kumar, Ramesh, & Rao 1988; Dutt &
Mahapatra 1994). Although the assumption is often made,
for the purpose of parallelization, that a large search prob-
lem can be decomposed into a set of smaller ones that are
independent from each other, most graph-search problems

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have sub-problems that interact in complex ways via paths
that connect them in a graph. For graphs with many du-
plicate paths, achieving efficient parallel search remains a
challenging and open research problem.

Many researchers have recognized that external-memory
algorithms and parallel algorithms often exploit similar
problem structure to achieve efficiency. This has inspired
some recent work on parallelizing graph search using tech-
niques that have proved effective in external-memory graph
search. Delayed duplicate detection is an approach to
external-memory graph search in which newly-generated
nodes are not immediately checked against stored nodes
for duplicates; instead, they are written to a file that is
processed later, in an I/O-efficient way, to remove dupli-
cates. Based on this idea, some recent approaches to re-
ducing communication overhead in parallel graph search de-
lay duplicate-detection-induced communication operations
so that they can be combined later into fewer operations,
and performed more efficiently (Korf & Schultze 2005;
Niewiadomski, Amaral, & Holte 2006; Jabbar & Edelkamp
2006; Korf & Felner 2007). But delaying communication
between multiple processing units can increase search over-
head by creating a large number of duplicates that require
temporary storage and eventual processing.

Structured duplicate detection is an alternative approach
to external-memory graph search that exploits the struc-
ture of a search graph in order to localize memory refer-
ences (Zhou & Hansen 2004; 2005; 2006b; 2007). It can
outperform delayed duplicate detection because it removes
duplicates as soon as they are generated, instead of storing
them temporarily for later processing, and thus has lower
overhead and reduced complexity. In this paper, we describe
a generalization of structured duplicate detection, called
parallel structured duplicate detection, that reduces commu-
nication overhead in parallel graph search using techniques
that do not subsequently increase search overhead. We show
that this results in efficient parallelization.

Because graph search is typically memory bound, par-
allelizing it, by itself, will not usually improve scalability.
Therefore we show how to integrate our approach to parallel
graph search with the approach to external-memory graph
search based on structured duplicate detection. We demon-
strate the effectiveness of these techniques in a graph-search
algorithm for domain-independent STRIPS planning.

1217



Structured duplicate detection
We begin with an overview of previous work on structured
duplicate detection. Structured duplicate detection (SDD) is
an approach to external-memory graph search that leverages
local structure in a graph to partition stored nodes between
internal memory and disk in such a way that duplicate detec-
tion can be performed immediately, during node expansion,
instead of being delayed.

The local structure that is leveraged by this approach is
revealed by a state-space projection function that is a many-
to-one mapping from the original state space to an abstract
state space. If a state x is mapped to an abstract state y, then
y is called the image of x. One way to create a state-space
projection function is by ignoring the value of some state
variables. For example, if we ignore the positions of all tiles
in the Fifteen Puzzle and consider only the position of the
“blank,” we get an abstract state space that has only sixteen
abstract states, one for each possible position of the blank.

Given a state-space graph and projection function, an ab-
stract state-space graph is constructed as follows. The set
of nodes in the abstract graph, called abstract nodes, corre-
sponds to the set of abstract states. An abstract node y′ is a
successor of an abstract node y iff there exist two states x′
and x in the original state space, such that (1) x′ is a succes-
sor of x, and (2) x′ and x map to y′ and y, respectively. Fig-
ure 1(b) shows the abstract state-space graph created by the
simple state-space projection function that maps a state into
an abstract state based on the position of the blank. Each ab-
stract node Bi in Figure 1(b) corresponds to the set of states
with the blank located at position i in Figure 1(a).

In SDD, stored nodes in the original search graph are
divided into “nblocks,” where an nblock corresponds to a
set of nodes that map to the same abstract node. Given
this partition of stored nodes, SDD uses the concept of
duplicate-detection scope to localize memory references.
The duplicate-detection scope of a node x in the original
search graph is defined as all stored nodes (or equivalently,
all nblocks) that map to successors of the abstract node y
that is the image of node x under the projection function. In
the Fifteen Puzzle example, the duplicate-detection scope of
nodes that map to abstract node B0 consists of nodes that
map to abstract node B1 or B4.

The concept of duplicate-detection scope allows a search
algorithm to check duplicates against a fraction of stored
nodes, and still guarantee that all duplicates are found. An
external-memory graph search algorithm can use RAM to
store nblocks within the current duplicate-detection scope,
and use disk to store other nblocks when RAM is full. SDD
is designed to be used with a search algorithm that expands
a set of nodes at a time, such as breadth-first search, where
the order in which nodes in the set are expanded can be ad-
justed to minimize disk I/O. SDD’s strategy for minimizing
disk I/O is to order node expansions such that changes of
duplicate-detection scope occur as infrequently as possible,
and involve change of as few nblocks as possible. When
RAM is full, nblocks outside the current duplicate-detection
scope are flushed to disk. When expanding nodes in a dif-
ferent nblock, any nblocks in its duplicate-detection scope
that are stored on disk are swapped into RAM.

Figure 1: Panel (a) shows all possible positions of the blank for
the Fifteen Puzzle. Panel (b) shows an abstract state-space graph
that is created by the state-space projection function that considers
the position of the “blank” only.

SDD has been shown to be an effective approach to
external-memory graph search in solving problems as di-
verse as the Fifteen Puzzle, the Four-Peg Towers of Hanoi,
multiple sequence alignment, and domain-independent
STRIPS planning. For domain-independent STRIPS plan-
ning, the state-space projection function that is used by SDD
is created automatically, and adapted to the search graph of
each planning domain (Zhou & Hansen 2006b). SDD has
also been used to create external-memory pattern database
heuristics (Zhou & Hansen 2005).

Parallel structured duplicate detection
In the rest of the paper, we show that the kind of local
structure exploited by SDD to create an efficient external-
memory graph-search algorithm, can also be exploited to
create an efficient parallel graph-search algorithm. Our
approach, which we call parallel structured duplicate de-
tection (PSDD), can be used in both shared-memory and
distributed-memory parallelization. In this paper, we give
the details of a shared-memory parallel graph-search algo-
rithm. Thus, we will speak of using this approach to reduce
synchronization overhead rather than communication over-
head. At the end of the paper, we briefly discuss how to use
this approach in distributed-memory parallel graph search,
but we leave the details of this extension for future work.

We start by introducing a concept that plays a central
role in PSDD. Let abstract node y = p(x) be the image of
node x under a state-space projection function p(·) and let
successors(y) be the set of successor abstract nodes of y in
the abstract state-space graph.

Definition 1 The duplicate-detection scopes of nodes x1

and x2 are disjoint under a state-space projection function
p(·), iff the set of successors of x1’s image is disjoint from
the set of successors of x2’s image in the abstract graph, i.e.,
successors(p(x1)) ∩ successors(p(x2)) = ∅.

Theorem 1 Two nodes cannot share a common successor
node if their duplicate-detection scopes are disjoint.

Although this theorem is obvious, it provides an important
guarantee that we can leverage to reduce the number of syn-
chronization operations needed in parallel graph search. The
key idea is this: by using PSDD to localize memory refer-

1218



ences for each processor, we reduce the number of synchro-
nization operations that must be performed by processors
competing for the same data, and this can dramatically sim-
plify coordination of concurrent processors.

To enforce data locality, PSDD partitions the set of gen-
erated and stored nodes into nblocks, one for each abstract
node, as in SDD. Because nodes in the same nblock share
the same duplicate-detection scope, both Definition 1 and
Theorem 1 generalize to nblocks, in addition to holding for
individual nodes. We use the concept of disjoint duplicate-
detection scopes to parallelize graph search by assigning
nblocks with disjoint duplicate-detection scopes to different
processors. This allows processors to expand nodes in paral-
lel without having to synchronize with each other, because it
is impossible for one processor to generate a successor node
that could also be generated by another processor.

Note that when an nblock is assigned to a processor for
node expansions, the same processor is also given exclu-
sive access to all of the nblocks in the duplicate-detection
scope of that nblock. So, we say that the duplicate-detection
scope of the assigned nblock is occupied by the proces-
sor. This means the processor does not need to worry about
other processors competing for the nblocks it needs to ac-
cess while generating successors for the assigned nblock.

For the example of the Fifteen Puzzle, Figure 2(a) shows
an abstract state-space graph with four duplicate-detection
scopes (enclosed by dashed lines) that are disjoint. Because
these are the duplicate-detection scopes of nodes that map
to the abstract nodes B0, B3, B12, and B15 (drawn in double
circles), the corresponding four nblocks can be assigned to
four processors P0 ∼ P3, and processors can expand nodes
in parallel without requiring any synchronization.

PSDD also reduces the complexity of managing concur-
rent access to critical data structures. As we will show, it
only needs a single mutually exclusive (mutex) lock to guard
the abstract state-space graph, and it needs no other locks to
synchronize access to shared data, in particular, the Open
and Closed lists. This both simplifies the implementation of
the parallel search algorithm and avoids the space overhead
for storing multiple mutex locks.1

Because SDD assumes the underlying search algorithm
expands nodes on a layer-by-layer basis, PSDD perform
layer-based synchronization to ensure that all processors
work on the same layer, as is also done in (Korf & Schultze
2005; Zhang & Hansen 2006). To determine when all
nblocks in a layer are expanded, PSDD uses a counter
that keeps track of the number of (non-empty) unexpanded
nblocks in the current layer; each time an nblock is ex-
panded, the counter is decremented by one. The search pro-

1Korf and Schultze (2005) describe an approach to parallel
graph search based on delayed duplicate detection that also uses
only a single lock, which is for synchronizing access to work
queues. But because delayed duplicate detection generates and
stores duplicates before later removing them, it does not need to
enforce mutual exclusion in hash table lookups in the conventional
way, as does PSDD. Korf and Felner (2007) have since shown that
an approach to parallel graph search based on delayed duplicate
detection can be implemented without any locks. Although PSDD
only needs a single lock, it needs at least one lock.

ceeds to the next layer when this counter reaches zero. In our
implementation, the counter is protected by the same lock
that guards the abstract state-space graph, and the proces-
sor that decrements it to zero is responsible for moving the
search forward to the next layer, including initialization of
the counter for the next layer.

Finding disjoint duplicate-detection scopes
To allow a synchronization-free period of node expansions
for an nblock, the search algorithm needs to find duplicate-
detection scopes that are disjoint from the ones currently in
use (i.e., occupied) by some other processor. Given the one-
to-one correspondence between nblocks and abstract nodes,
this task is reformulated as a problem of counting how many
successors of an abstract node are currently in use by other
processors, and choosing the ones that have a count of zero.
An abstract node is being used by a processor if its corre-
sponding nblock is either (1) assigned to the processor for
node expansions or (2) part of the duplicate-detection scope
occupied by the processor. In our implementation, each ab-
stract node stores a counter, denoted σ, that keeps track of
the number of successor abstract nodes that are currently in
use by other processors. The system also keeps a list of ab-
stract nodes with a σ-value of zero for each layer. Initially,
all abstract nodes have their σ-values set to zero, since no
processors are using any abstract nodes at the beginning.

Let y be the abstract node that corresponds to an nblock
that has just been selected for parallel node expansions. Let
σ(y) be the σ-value of y, and let predecessors(y) be the
set of predecessor abstract nodes of y in the abstract graph.
As soon as y is selected for expansions, it is removed from
the list of abstract nodes with a σ-value of zero for the cur-
rent layer. In addition, the following steps are performed to
update the σ-values of the abstract nodes that are affected.

1. ∀y′ ∈ predecessors(y) ∧ y′ �= y, σ(y′) ← σ(y′) + 1
2. ∀y′ ∈ successors(y), ∀y′′ ∈ predecessors(y′) ∧ y′′ �= y,

σ(y′′) ← σ(y′′) + 1
The first step updates the σ-values of all abstract nodes that
include y in their duplicate-detection scopes, since y is as-
signed to a processor for node expansions. The second step
updates the σ-values of all abstract nodes that include any of
y’s successors in their duplicate-detection scopes, since all
of y’s successors are occupied by the processor.

Once a processor is done expanding nodes in y, it releases
the duplicate-detection scope it occupies by performing the
same steps, except in the reverse direction (i.e., decreasing
instead of increasing the σ-values by one). The reason the
σ-value of y is not updated in both steps is to avoid unnec-
essary re-computation, since the σ-value is always the same
(zero) just before and after it is expanded. After the release
of its duplicate-detection scope, y is added to the list of ab-
stract nodes with a σ-value of zero for the next layer, which
prevents it from being selected again for the current layer.
Note that in order to perform these updates, the processor
needs to obtain a mutex lock on the abstract graph to avoid
data corruption. But since the computation involved in these
two steps is inexpensive, each processor only needs to lock
the abstract graph for a very short time.

1219



Figure 2: Panel (a) shows that nodes that map to abstract nodes B0, B3, B12, and B15 have disjoint duplicate-detection scopes, each of
which can be assigned to one of the four processors P0 ∼ P3 for parallel node expansions. Panel (b) shows the σ-value of each abstract
node for the parallel configuration in (a). Panel (c) shows the σ-value of each abstract node after the release of the duplicate-detection scope
occupied by processor P0 in (b). Panel (d) shows a new duplicate-detection scope occupied by P0 and the new σ-values. Abstract nodes
filled with gray are those that have already been expanded.

Example An example illustrates how the σ-values of ab-
stract nodes allow quick identification of disjoint duplicate-
detection scopes. Figure 2(b) shows the σ-value of each ab-
stract node for the disjoint duplicate-detection scopes shown
in Figure 2(a). In Figure 2(b), the four abstract nodes with σ-
values of zero correspond to the nblocks that are currently
being expanded in parallel. Those with non-zero σ-values
have at least one successor that is in use by some proces-
sor, and the count in each abstract node shows how many
of its successors are being used. Now suppose processor P0

has finished expanding all nodes that map to abstract node
B0 and subsequently releases the duplicate-detection scope
it had access to. After the release of abstract nodes B0, B1,
and B4 by processor P0, the σ-values of affected abstract
nodes are updated as shown in Figure 2(c), and abstract node
B5, identified in Figure 2(a), now has a σ-value of zero. Fig-
ure 2(d) shows the updated σ-values after abstract node B5

is assigned to processor P0 for node expansions. In order to
avoid expanding the same abstract node twice in the same
layer of a search graph, PSDD keeps track of which abstract
node it has expanded in a layer, as illustrated by the gray-
shaded node in Figures 2(c) and 2(d).

Because the number of disjoint duplicate-detection scopes
increases with the granularity of the projection function,
PSDD allows many processors to work in parallel. If the
projection function for the Fifteen Puzzle considers the po-
sitions of any two tiles in addition to the position of the
blank, for example, the size of the abstract graph increases
to 16 × 15 × 14 = 3360 nodes. This is large enough for
hundreds of disjoint duplicate-detection scopes, since an ab-
stract node has at most four neighbors in any abstract graph
for the Fifteen Puzzle. Of course, the presence of hundreds
of disjoint duplicate-detection scopes in the abstract graph
does not guarantee that PSDD can use as many processors
to expand nodes in parallel. This is possible only if there are
states in the original search space that map to all (or most of)
these abstract nodes. This may not be the case for easy prob-
lems. But as problem size grows, it becomes more likely,
and so the number of processors PSDD can use in parallel
tends to increase with the hardness of a search problem.

Hierarchical hash table
A conventional graph-search algorithm uses a single hash ta-
ble to store generated nodes. By contrast, PSDD uses a set of
hash tables, one for each non-empty nblock. For efficiency,
PSDD keeps a pool of blank hash tables. A processor can re-
quest a hash table for any nblock that does not yet have one
assigned to it. When an nblock becomes empty, the hash
table assigned to it can be returned to the pool.

In PSDD, finding a hash slot for a search node is a two-
step process. The first step determines which nblock the
node belongs to. The second step computes the hash slot of
the node inside the hash table assigned to the nblock identi-
fied in the first step. This hashing scheme can be viewed as a
two-level hierarchical hash table in which the list of nblocks
is the top-level hash table; the top-level hash function is the
state-space projection function of PSDD. The hash table as-
signed to an nblock is a second-level hash table indexed by
a regular hash function.

This hierarchical organization of the hash table reflects
local structure that is exploited to achieve efficient duplicate
detection. Because only disjoint duplicate-detection scopes
can be assigned to multiple processors, the set of hash tables
used by one processor is guaranteed to be disjoint from the
set of hash tables used by another processor. As a result,
operations on hash tables such as query, insertion, and dele-
tion can be performed simultaneously by multiple proces-
sors without any synchronization.

Managing shared memory
In a shared-memory environment, available memory is
shared by all processors and this can create a tension be-
tween conserving memory and reducing synchronization
overhead. In order to save memory, each processor should
be allocated just enough memory to store the nodes it gen-
erates. But since it is very difficult to accurately predict
memory use in graph search, most practical implementations
allocate memory on an as-needed basis. To appropriately
allocate RAM among all processors, our implementation
maintains a central memory pool from which each proces-
sor can request memory to store newly-generated nodes. In a

1220



multi-threading environment, however, the central memory
pool can be a source of contention, since concurrent node-
allocation requests can occur frequently.

Thus, PSDD uses a memory-allocation strategy in which
each processor (or thread) has a private memory pool. When
the private memory pool is exhausted, it taps into the central
memory pool for refilling, and there is a minimum refill size,
m, for each refill request. Let n be the number of processors.
The amount of memory (measured in terms of nodes) wasted
by this strategy is bounded by O(m · n), which is often a
tiny fraction of the total number of nodes stored by a graph-
search algorithm, for reasonable values of m and n.

External-memory PSDD
We next consider some implementation issues that must be
addressed when integrating our approach to parallel graph
search with external-memory graph search, using structured
duplicate detection as a common framework.

I/O-efficient order of nblock expansions

The order in which nblocks are expanded can have a big
impact on the number of I/O operations needed by external-
memory PSDD. A simple and effective heuristic is to expand
nblocks in order of a breadth-first traversal of the abstract
state-space graph. However, there are two issues with ap-
plying this heuristic to external-memory PSDD. First, it is
not designed for reducing the scope changes from one set
of duplicate-detection scopes to another set, as needed by
external-memory PSDD. Second, the order of the breadth-
first traversal is static, which does not adapt to the nondeter-
ministic search behaviors that are caused by PSDD.

To overcome these issues, we developed a new strategy
for selecting the order of nblock expansions that uses a
more direct approach to reducing the number of I/O opera-
tions. The idea is to store with each nblock a disk-successor
counter that keeps track of the number of successor nblocks
that are currently stored on disk, since the disk-successor
counter of an nblock corresponds to how many nblocks in
its duplicate-detection scope need to be read from disk if
it is selected for expansion. PSDD also maintains a list of
non-empty nblocks that are ordered by their disk-successor
counters. To select the next nblock to expand, the algorithm
simply picks the nblock with the minimum disk-successor
counter. Since disk-successor counters are integers within a
small range (from 0 to the maximum out-degree of the ab-
stract graph), the list can be implemented as an array with
constant-time operations.

I/O-efficient strategy for nblock replacement

Recall that when RAM is full, nblocks that do not belong to
the duplicate-detection scopes of nodes being expanded can
be flushed to disk. Since there are usually multiple “flush-
able” nblocks stored in RAM, PSDD needs a strategy for
deciding which subset of these nblocks to flush. We call
this an nblock-replacement strategy because of its similarity
to a page-replacement strategy for virtual memory. While
SDD can either use an optimal strategy (Zhou & Hansen

SDD PSDD
Problem 1 thread 2 threads 3 threads
logistics-6 1.5 1.8 1.2 0.9
blocks-14 7.4 7.0 4.7 4.3
satellite-6 125.2 72.3 38.7 26.3
freecell-3 161.9 149.0 75.4 59.5
depots-7 204.4 183.1 100.2 76.5
driverlog-11 234.3 187.0 97.0 68.0
elevator-12 247.0 212.0 103.7 74.9
gripper-8 475.0 456.3 253.3 184.8

Table 1: Comparison of running times (in wall clock sec-
onds) for internal-memory versions of structured duplicate
detection (SDD) and parallel structured duplicate detection
(PSDD) with 1, 2, and 3 threads.

2004), or adapt the least-recently used (LRU) strategy (Be-
lady 1966) for this purpose, neither strategy is directly ap-
plicable to PSDD, for the following reasons.

First, in order to use the optimal strategy, the algorithm
needs to know the order in which nblocks will be expanded
in the future. But this is nondeterministic in PSDD because
it may depend on the (relative) speed of each processor. Sec-
ond, it is difficult (if not impossible) to efficiently adapt
the LRU strategy for PSDD because the least-recently used
nblock may not be flushable, if it is assigned to a slower
processor. Moreover, the LRU strategy is based on infor-
mation about the past, and, ideally, a decision about which
nblocks to remove from RAM should be based on informa-
tion about the future.

This motivates the development of a new I/O-efficient re-
placement strategy for PSDD. It decides whether or not to
replace an nblock based on the number of its unvisited (and
non-empty) predecessor nblocks in a layer, since this re-
flects the likelihood of needing the nblock in RAM during
expansion of the remaining nodes in the layer. This strategy
is fairly robust with respect to the uncertainty of the proces-
sor speed, and thus works well for PSDD. Note that the new
strategy also works for SDD, which can be viewed as a spe-
cial case of PSDD for a single processor.

Computational results
We implemented external-memory PSDD with POSIX
threads (Nichols, Buttlar, & Farrell 1996) in a domain-
independent STRIPS planner that uses as its underlying
graph-search algorithm breadth-first heuristic search (Zhou
& Hansen 2006a). The search algorithm performs regres-
sion planning to find optimal sequential plans, guided by
the max-pair admissible heuristic (Haslum & Geffner 2000).
We tested the planner on eight domains from the biennial
planning competition. Experiments were performed on a
machine with dual Intel Xeon 2.66 GHz processors, each
having 2 cores. The machine has 8 GB of RAM and 4 MB
of L2 cache.

Using breadth-first heuristic search, the size of the layer
containing the goal is typically very small. For our experi-
ments, this is an advantage because it means that the nonde-
terministic tie-breaking behavior of PSDD has little or no ef-
fect on the total number of expanded nodes, and the number

1221



SDD PSDD Secs
problem Len RAM Disk Exp Secs 1 thread 2 threads 3 threads 4 threads
logistics-6 25 10,000 157,146 339,112 33.2 18.8 17.9 17.5 17.2
gripper-7 47 500,000 2,528,691 16,031,844 173.4 123.3 77.4 57.1 46.9
blocks-16 52 5,000,000 2,488,778 18,075,779 214.0 198.0 129.3 114.3 105.9
depots-7 21 5,000,000 6,942,229 16,801,408 228.4 209.5 128.9 95.9 89.0
satellite-6 20 400,000 1,966,875 3,484,031 246.3 227.6 156.5 121.7 116.7
driverlog-11 19 3,000,000 12,745,885 18,606,444 443.9 413.7 316.8 287.3 278.1
freecell-4 26 36,000,000 89,513,363 208,743,830 8,475.0 7,584.6 3,952.5 3,016.6 2,700.9
elevator-15 46 6,500,000 121,238,231 430,804,933 14,378.9 14,300.0 7,129.4 4,911.2 3,891.1

Table 2: Comparison of the external-memory versions of structured duplicate detection (SDD) and parallel structured duplicate
detection (PSDD) with 1, 2, 3, and 4 threads. Columns show solution length (Len), peak number of nodes stored in RAM for
both SDD and PSDD (RAM), peak number of nodes stored on disk (Disk), number of node expansions (Exp), and running time
in wall clock seconds (Secs).

of node expansions is virtually the same for both SDD and
PSDD. Therefore the timing results shown in the tables can
be straightforwardly used to compare the node-generation
speed of SDD and PSDD. Because we are primarily inter-
ested in the relative speedup of PSDD over SDD, and not
absolute running times, we used optimal solution costs as
upper bounds in our experiments, and the results shown in
the tables are for the last iteration of breadth-first iterative-
deepening A*.

In our experiments, we first tested the speed of the parallel
algorithm on problems that can fit in RAM. To ensure the
accuracy of our timing results, we did not use all four cores,
since at least one core needs to be reserved for the OS and
other programs running on the same machine. Results are
presented in Table 1. For comparison, they include timing
results for a sequential algorithm that shares the same code
base but uses SDD instead of PSDD. It is interesting that the
parallel version based on PSDD is faster even when it uses
a single thread (i.e, no parallel search), despite the added
overhead for managing threads. Our explanation is that the
hierarchical organization of a set of (relatively) small-sized
hash tables allows the CPU to be more selective in caching
the most relevant part of an otherwise monolithic hash table,
and this leads to improved cache performance.

The results in Table 1 show that speedup from paralleliza-
tion is different for different problems. For small problems
such as logistics-6 and blocks-14, the speedup is less than
ideal for two reasons. First, the overhead of creating and
stopping threads is less cost-effective for small problems.
Second, and more importantly, disjoint duplicate-detection
scopes are more difficult to find for small problems, pre-
venting multiple processors from working on different parts
of the search graph simultaneously. But since this can be
easily detected by PSDD, which immediately releases any
CPU resources it does not need, PSDD can quickly adapt
to the difficulty level of a problem instance, which is use-
ful on systems where the algorithm using PSDD is not the
only program running. For the larger problems in Table 1,
the speedups are much closer to linear. Note that the search
graphs for planning problems have many duplicate paths,
and are especially challenging for duplicate detection.

Table 2 compares running times (in wall-clock seconds)
for SDD and PSDD with up to 4 threads on problems that

do not fit in the amount of RAM given to the algorithms
(specified in the column labeled “RAM”). Since the timing
results for external-memory PSDD using 4 threads are less
negatively affected by the overhead of the OS and other pro-
grams running on the same machine (due to I/O parallelism),
we include these results to give a better sense of scalabil-
ity. One similarity between the results comparing external-
memory versions of SDD and PSDD and the results compar-
ing internal-memory versions is that our approach appears
less effective for small problems, in both cases, but achieves
better scalability for large problems. Another similarity
is that PSDD using a single thread is more efficient than
SDD. Again, improved cache performance partly explains
this. But more importantly, it appears that a single thread
of PSDD is more efficient than SDD because of the im-
proved techniques for determining the order in which to visit
nblocks, and the order in which to replace nblocks, which
are presented in the section on External-memory PSDD.

Because we only used a single disk in our experiments,
the external-memory search algorithm quickly becomes
more I/O-bound than CPU-bound as the number of threads
increases. Using multiple disks, we expect that our results
could be substantially improved.

Conclusion and future work
We have introduced a novel approach to parallelizing graph
search called parallel structured duplicate detection. The ap-
proach leverages the concept of disjoint duplicate-detection
scopes to exploit the local structure of a search graph in
a way that significantly reduces the overhead for synchro-
nizing access to stored nodes in duplicate detection. A
hierarchically-organized hash table supports this approach
and requires only a single mutex lock to efficiently resolve
all contention. Finally, we described I/O-efficient techniques
for integrating parallel graph search with external-memory
graph search.

The degree of parallelism allowed by this approach can
be increased by increasing the number of disjoint duplicate-
detection scopes in the abstract graph. One way to do so is
by increasing the granularity of the projection function, as
described in this paper. An alternative, or complementary,
approach would be to use a strategy of incremental node ex-
pansion, called edge partitioning (Zhou & Hansen 2007).

1222



Although we focused in this paper on shared-memory par-
allelization of graph search, we expect a similar approach to
be effective for distributed-memory parallelization, and we
plan to develop this approach in future work. The key idea
is to exploit the local structure of a search graph to parti-
tion stored nodes in a way that allows different processors to
expand nodes independently, without requiring communica-
tion to remove duplicates, or requiring only limited commu-
nication. Because communication overhead usually causes
more delay than synchronization overhead, parallel struc-
tured duplicate detection is likely to result in even greater
improvement in a distributed-memory environment.

Acknowledgements We thank the anonymous reviewers
for helpful suggestions about how to improve this paper.

References
Belady, L. 1966. A study of replacement algorithms for
virtual storage. IBM Systems Journal 5:78–101.

Dutt, S., and Mahapatra, N. 1994. Scalable load balancing
strategies for parallel A* algorithms. Journal of Parallel
and Distributed Computing 22(3):488–505.

Grama, A., and Kumar, V. 1999. State of the art in par-
allel search techniques for discrete optimization problems.
IEEE Transactions on Knowledge and Data Engineering
11(1):28–35.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proc. of the 5th International Con-
ference on AI Planning and Scheduling, 140–149.

Jabbar, S., and Edelkamp, S. 2006. Parallel exter-
nal directed model checking with linear I/O. In Pro-
ceedings of the 7th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI
2006), 237–251.

Korf, R., and Felner, A. 2007. Recent progress in heuristic
search: A case study of the four-peg towers of Hanoi prob-
lem. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI-07), 2334–2329.

Korf, R., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Proc. of the 20th National Con-
ference on Artificial Intelligence (AAAI-05), 1380–1385.

Kumar, V.; Ramesh, K.; and Rao, V. 1988. Parallel best-
first search of state-space graphs: A summary of results. In
Proceedings of the 7th National Conference on Artificial
Intelligence (AAAI-88), 122–127.

Nichols, B.; Buttlar, D.; and Farrell, J. P. 1996. PThreads
Programming. O’Reilly.

Niewiadomski, R.; Amaral, J.; and Holte, R. 2006. Se-
quential and parallel algorithms for frontier A* with de-
layed duplicate detection. In Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI-06),
1039–1044.

Zhang, Y., and Hansen, E. 2006. Parallel breadth-
first heuristic search on a shared-memory architecture. In
Heuristic Search, Memory-Based Heuristics and Their Ap-
plications: Papers from the AAAI Workshop, 33–38. AAAI
Press. Technical Report WS-06-08.
Zhou, R., and Hansen, E. 2004. Structured duplicate de-
tection in external-memory graph search. In Proceedings
of the 19th National Conference on Artificial Intelligence
(AAAI-04), 683–688.
Zhou, R., and Hansen, E. 2005. External-memory pattern
databases using structured duplicate detection. In Proceed-
ings of the 20th National Conference on Artificial Intelli-
gence (AAAI-05), 1398–1405.
Zhou, R., and Hansen, E. 2006a. Breadth-first heuristic
search. Artificial Intelligence 170(4-5):385–408.
Zhou, R., and Hansen, E. 2006b. Domain-independent
structured duplicate detection. In Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI-06),
1082–1087.
Zhou, R., and Hansen, E. 2007. Edge partitioning in
external-memory graph search. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence
(IJCAI-07), 2410–2416.

1223


