
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Parallel Symmetry-Breaking in Sparse Graphs Parallel Symmetry-Breaking in Sparse Graphs

Andrew V. Goldberg

Serge A. Plotkin

Gregory E. Shannon

Report Number:
87-710

Goldberg, Andrew V.; Plotkin, Serge A.; and Shannon, Gregory E., "Parallel Symmetry-Breaking in Sparse
Graphs" (1987). Department of Computer Science Technical Reports. Paper 614.
https://docs.lib.purdue.edu/cstech/614

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Parallel Symmetry-Breaking in
Sparse Graphs

Andrew V. Goldberg'
Serge A Plotkin**
Gregory E. Shannont

tDepartment of Computer Science
*Stanford University
**MJ.T.

CC-87-38 (December 1987)

Purdue University
West Lafayette, Indiana 47907

This research was supported in part by the Office of Naval Research under
University Research Initiative grant number NOOOI4-86-K-0689.

Parallel Symmetry-Breaking in Sparse Graphs*

Andrew V. Goldbergt

Dept. of Computer Science
Stanford University
Stanford, CA 94305

Serge A. Plotkin!
Lab. for Computer Science

M.I.T.
Cambridge, MA 02139

April 4, 1988

Abstract

Gregory E. Shannon§
Computer Sciences Dept.

Purdue University
We,t Lafayette, IN 47907

We describe efficient deterministic techniques for breaking symmetry in parallel.
These techniques work well on rooted trees and graphs of constant degree or genus.
OUf primary technique allows us to 3-color a rooted tree in O(lg*n) time on an EREW
PRAM using a linear number of processors. We use these techniques to construct fast
linear processor algorithms for several problems, including the problem of (.6. + 1)­
coloring constant-degree graphs and 5-coloring planar graphs. We also prove lower
bounds for 2-coloring directed lists and for finding maximal independent sets in arbi­
trary graphs.

1 Introduction

Some problems for which trivial sequential algorithms exist appear to be much harder

to solve in a parallel framework. When converting a sequential algorithm. to a parallel

a A preliminary version of this paper appeared in the Proc. of the 19th ACM Symp. on Theory of
Computing, May 1987.

tpad of this research was done while the author was with at Lab. for Computer Science, MIT, Cambridge.
Supported in part by a Fannie and John Hertz Foundation Fellowship and DARPA Contract NOOOl4-BO-G­
0622.

1Supported by DARPA Contract NOOOl4-BO-C-0622. Part of the work was done while the author was at
AT&T Bell Laboratories, Murray Hill, NJ 07974.

§Supported in part by Hewlett-Packard's Faculty Development Program, NSF Grant DCR-8320124, and
DNR Contract NOOOl4-B6-K-0689.

1

one, at each step of the parallel algorithm we have to choose a set of operations which

may be executed in parallel. Often, we have to choose these operations from a large set

of symmetrical operations, where interdependencies prevent simultaneous execution of all

the operations in the set. Symmetry-breaking techniques enable the algorithm to select a

large subset of independent operations.

Finding a maximal independent set (MIS) of a graph is a good example of the necessity

of symmetry-breaking. At any step, a parallel MIS algorithm might have many candidate

nodes to add to the independent set. However, due to adj<;1cency constraints, not all of

these nodes can be added simultaneously. A symmetry-breaking technique is therefore

needed to find a large set of nodes to add, as has been done in previous parallel MIS

algorithms [GS87,KW85,Lub86].

Previous symmetry-breaking techniques have focused on randomization. It is often

desirable, however, to have a deterministic algorithm. Karp and Wigderson [KW85], and

Luby [Lub86] proposed methods to convert certain randomized algoritluns into detennin­

istic ones. Their methods, however, significantly increase the number of processors used.

In many cases it is sufficient to break symmetry in sparse graphs. In this paper we

introduce deterministic symmetry-breaking techniques for sparse graphs that use a linear

number of processors. Our primary technique allows us to 3-color a rooted tree in O(lg"'n)

time on a CREW PRAM. This technique was motivated by the deterministic coin-flipping

technique developed by Cole and Vishkin [CV86].

We use our techniques to develop the linear-processor algorithms listed below.

• For graphs whose maximum degree is';, we give an O((lg ';)(';'+Ig"n))-time EREW

PRAM algorithm for (~+l)-coloring and for finding a maximal independent set.

• For planar graphs, we give 7-coloring, MIS, and maximal matching algorithms that

run in O(lgn) time on a CRCW PRAM and in O(lg'n) time on an EREW PRAM.

• We give an O(lg n 19"n)-time CRCW PRAM algorithm for 5-coloring an embedded

planar graph.

The above results improve the running time and processor bounds for the respective

2

problems. The best deterministic linear-processor algorithm for finding MIS [GS87] runs

in G(lg'! n) time on constant-degree graphs, compared to O(lg·n) time of our algorithm.

The 5-coloring algorithms for planar graphs described in [BK87,Na086] use O(lg3 n) time

and the same (large) number of processors as needed by Luby's MIS subroutine [Lub86].

The O(lg3 n) running time of the maximal matching algorithm due to Israeli and Shiloach

[1886] can be reduced to O(lg2 n) in the restricted case of planar graphs, but our algorithm

is faster.

Although in this paper we have limited ourselves to the application of our techniques for

the design of parallel algorithms for the PRAM model of computation, the same techniques

can be applied in a distributed model of computation [Awe85,GHS83]. Moreover, the

n(lg-n) lower bound for the MIS problem on a chain in the distributed. model implies that

our symmetry-breaking technique is optimal in this model [Awe87,Lin87].

Since we can 3-color a rooted tree in O(lg-n) time, it is natural to ask if a rooted tree

can be 2-colored as quickly. We answer this question by giving an O(lgnjlglgn) lower

bOWld for 2-coloring of a rooted tree. We also present an Q(lgnj 19l9n) lower bound for

finding a maximal independent set in a general graph, thus answering the question posed

by Luby [Lub86].

This paper is organized as follows. In Section 2 we present definitions, notation, and

computation model details. In Section 3 we present the algorithm for 3-coloring rooted

trees. In Section 4 we use this algorithm to (.6. + I)-color constant-degree graphs. In

Section 5 we use results of Section 4 to develop algorithms for planar graphs. In Section 6

we prove the lower bounds mentioned earlier.

2 Preliminaries

This section describes the asswnptions about the computational model and introduces the

notation used throughout the paper. We consider simple, undirected graphs with n vertices

and m edges. The maximum degree of a graph is denoted by..6.. The graph induced by a

set of nodes X is denoted by G[X].

3

Given a graph G = (V, E), we say that a subset of nodes I ~ V is independent if no

two nodes in I are adjacent. A coloring of a graph G is an assignment C : V -+ 1+ U {OJ

of nonnegative (not necessarily consecutive) integers (colors) to nodes of the graph. A

coloring is va.lid if no two adjacent nodes have the same color. The bits are numbered from

0, and the i th bit in the color of a node v is denoted by Cv (i). A subset of edges M ~ E

is a matching if each pair of distinct edges in M have no nodes in common.

The following problems are discussed in the paper:

• The node-coloring problem: find a valid coloring of a given graph that uses at most

.6.+1 colors.

• The maximal independent set (MIS) problem: find a maximal independent set of

vertices in a given graph.

• The maximal matching (MM) problem: find a maximal matching in a given graph.

We make a distinction between unTooted and Tooted trees. In a rooted tree, each nonroot

node knows which of its neighbors is its parent.

The following notation is used:

19x
19(1) x
19(i) x

19·x

log2 X

19x
_ IglgU-') x

min{illg(i) x S; 2}

We asswne a PRAM model of computation [BH85,FW78] where each processor is capa­

ble of executing simple word and bit operations. The word width is assumed to be O(1gn).

The word operations we use include bit-wise boolean operations, integer comparisons, and

unary-ta-binary conversion. Each processor P has a unique identifica.tion number O(1gn)

bits wide, which we denote by PE-ID(P). We use adjacency lists to represent the graph,

assigning a processor to each edge and each node of the graph. We use exclusive-read

exclusive-write (EREW) PRAM, concurrent-read exclusive-write (CREW) PRAM, and

concurrent-read concurrent-write (CRCW) PRAM, as appropriate. The write conflicts in

CRCW PRAM are assumed to be resolved arbitrarHy. All lower bounds are proven for a

CRCW PRAM with a polynomial nwnber of processors.

4

Procedure 6-Color-Rooted-Tree(T)
N c _nj

for all v E V in parallel do Cv 01- PE-ID(v);
while N c > 6 do

for all v E V in parallel do begin
if v is the root then begin

iv 01- 0;
bv 01- Cv(O)j

end;
else begin

iv - min{i I Cv(i) '# Cpllrent(v)(iHi

bv - Cv(iv)j
end;
Cv - ivbv;

end;
N, ~ max{C. I v E V} + 1;

end;
end.

Figure 1: The Coloring Algorithm for Rooted Trees

3 Coloring Rooted Trees

This section describes an O(lg-n)-time algorithm for 3-coloring rooted trees. We first de­

scribe an O(lg-n)-time algorithm for 6-coloring rooted trees and then show how to trans~

form a 6-coloring of a rooted tree into a 3-coloring in constant time.

The procedure 6-Color-Rooted-Tree is shown in Figure 1. This procedure accepts a

rooted tree T = (V, E) and 6-colors it in time O(lg"n). Starting from the valid coloring

given by the processor ID's, the procedure iteratively reduces the number of bits in the color

descriptions by recoloring each nonroot node v with the color obtained by concatenating

the index of a bit in which Cv differs from Cpclrent(v) and the value of this bit. The root r

concatenates 0 and Cr[O] to fonn its new color.

Theorem 1 The algorithm 6-Color-Rooted-Tree produce3 a valid 6-coloring of a tree in

O(1g*n) time on a CREW PRAM ulJing a linear number of processorlJ.

5

Proof: First we prove by induction that the coloring computed by the algorithm is valid,

and then we prove the upper bound on the execution time.

Assuming that the coloring G is valid at the beginning of an iteration, show that the

coloring at the end of the iteration is also valid. Let v and w be two adjacent nodes with v

being the parent of w. In the algorithm, w chooses some index i such that Gv(i) I Gw(i)

and v chooses some index j such that GII(j) I Gparent(v)(j). The new color of w is (i, Gw (i))

and the new color of v is (j, Gv(j). If i I j, the new colors are different and we are done.

On the other hand, if i = j, then Gvei) can not be equal to Gw (i) by the definition of i,

and again the colors are different. Hence, the validity of the coloring is preserved.

Now we show that the algorithm terminates after O(lg·n) iterations. Let L k denote

the number of bits in the representation of colors after k iterations. For k = 1 we have

L 1 - flgL1+1
< 2 fIg L1

if flgL1 > 1.

Assume for some k we have Ll _ 1 ~ 2flg(1-1) L1 and flg(l) L1 ~ 2. Then

L l flgL'-11 +1
~ flg(2Ig(1-1) L)l + 1
< 2f1g(')L1

Therefore, as long as pg(k) Ll ~ 2,

Hence, the number of bits in the representation of colors L k decreases until, after O(lg·n)

iterations, fIg!') L1 becomes 1 and L, reaches the value of 3 (the solution of L = flgL1 +1).

Another iteration of the algorithm produces a 6-coloring: 3 possible values of the index iv

and 2 possible values of the bit bv • The algorithm terminates at this point.

Using concurrent-read, each node determines its parent's color in constant time. Given

two colors, Gv and Gw, we can compute the smallest index j such that the j-th bit of Gv
differs from the j-th bit of Cw by computing j = unary-to-binary(IC. - Cwl XOR (IC.-

6

Cwl - 1)). Hence, each node can compute the new color independently in constant time.

Therefore, each iteration takes constant time and the algorithm uses O(lg*n) time over­

all. Note that no conClUTent·write capabilities are required; for constant-degree trees the

concurrent-read capability is not needed either. I

We now describe the algorithm S-Color-Rooted-Tree which 3-colors a rooted tree. The

algorithm first applies 6- Golor-Rooted- Tree to produce a valid 6-coloring of the tree. Then

it executes three stages, each time reducing the number of colors by one.

Each stage works as follows. By shifting down the coloring we mean recoloring each

nonroot node with the color of its parent and recoloring the root with a color different from

its ClUTent color. To remove the color C E {3, 4, 5}, first shift down the ClUTent coloring.

Then, recolor each node of color c with the smallest color different from its parent's and
children's colors.

Theorem 2 Given a rooted tree T, the algorithm 3-Color-Rooted-Tree constructs a valid

9-coloring of Tusing n processors and O(lg*n) time on a GREW PRAM.

Proof: After a shift of colors, the children of any node have the same color. Thus each

node is adjacent to nodes of at most two different colors. Therefore, each stage of the

algoritlun reduces the number of colors by one, as long as the number of colors is greater

than three. Each stage takes a constant time on a CREW PRAM. The theorem follows

from Theorem 1. I

To describe the subsequent algorithms, we introduce the concept of a pseudoforest

[PQ82J. A p8eudoforeat of G = (V, E) is a directed graph G' = (V, E'), such that (u, v) E

E'::::} {u,v} E E and outdegree of any node is at most one. A maximal pseudoforest of

G = (V, E) is a directed graph G' = (V, E'), such that (u, v) E E' =} {u, v} E E and

outdegree of any node in G' is one, unless this node is zero-degree in G. Nodes with

zero out-degree are roots of the pseudoforest. We assume that graphs are represented

by adjacency lists, and therefore a maximal pseudoforest can be constructed in (parallel)

constant time by choosing an arbitrary adjacent edge for every node and directing this
edge outward.

7

The coloring algorithms presented in this section work for pseudoforests as well as for

rooted trees. Therefore, a pseudoforest can be 3-colored in O(lg*n) time on an CReW

PRAM using a linear number of processors. We shall call the procedure for 3-coloring

pseudoforests S-Color-Pseudoforest. Note that an odd cycle is a pseudoforest that can not

be colored in less than 3 colors, and therefore the number of colors used by the procedure

S-Color-Pscudoforcst is optimal in this case.

Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic time.

For example, one can use treefix operations [LM86,MR85) to compute the distance from

each node to the root, and color even level nodes with one color and odd level nodes with

the other color. It is harder to find a 2-coloring of a rooted tree in parallel, however, than it

is to find a 3-coloring of a rooted tree. In section 6 we show a lower bound of il(lg n/ 19l9n)

on 2-coloring of a directed list on a CReW PRAM with a polynomial number of processors,

which implies the same lower bound for rooted trees.

4 Coloring Constant-Degree Graphs

The method for coloring rooted trees, described in the previous section, is a general­

ization of the deterministic coin-flipping teclmique described in [CV86]. The method can

be generalized even further [GP87b] to color constant-degree graphs in a constant nwnber

of colors. In the generalized algorithm, a current color of a node is replaced by a new color

obtained by looking at each neighbor, appending the index of a bit in which the current

color of the node is different from the neighbors' color to the value of the bit in the node

color, and concatenating the resulting strings. This algorithm runs in O(lg*n) time, but

the number of colors, although constant as a function of n, is exponential in the degree of

the graph.

In this section we show how to use the procedure S-Color-Pseudoforest, described in

the previous section, to color a constant-degree graph with (.6.+1) colors.

The algorithm Color- Constant-Degree- Graph which colors a constant-degree graph G =

(V, E) with (.6.+1) colors is presented in Figure 2. The algorithm consists of two phases.

In the first phase we iteratively construct a maximal pseudoforest and remove its edges

8

Procedure Color-Constant-Degree-Grnph.
E' _ {(v.w) I{v.w} E E};
for i = 0 to b. do begin « the first phase)}

for all v E V in parallel do
if3(v,u} E E ' then Ei +- E j + (v,u) ;

E' +- E' - Eii « Ej are edges of a maximal pseudoforest)}
end;
for all v E V in parallel do « initial coloring)}

C(v) _ 0;

for all 0:$ i::; 6. in parallel do « color the pseudoforests)}
Ci +- 3-Color-Pseudoforest(V, Ei)i

for i - 6. down to 0 do begin ({ the second phase})
E ' +--- E' + Eji
for k+---lto2,j+---Oto6.do

V'-V;
for all v E V' in parallel do

ifC(v) = j and C,(v) = k
then begin
C(v) - max{{O.l•...• <'>}- {C(w) I (v.w) E E'}};
V' +--- V' - {v};

endj
end;

endj
end;

end.

Figure 2: The Coloring Algorithm for Constant Degree Graphs

9

from G. This phase continues until no edges remain, at which point we color all the nodes

with one color. Then we color all the pseudoforests with 3 colors in parallel.

In the second phase we iteratively return the edges of the current pseudoforest, each

time recoloring the nodes to maintain a consistent coloring. At the beginning of each

iteration of this phase, the edges E' of the current pseudoforest are added, making the

existing (.6. + I)-coloring inconsistent. The forest E' is already colored with 3 colors. Now,

each node has two colors - one from the coloring at the previous iteration and one from

the coloring of the forest. The pairs of colors form a valid 3(.6.+1)-coloring of the graph.

The iteration finishes by enumerating the color classes, recoloring each node of the current

color with a color from {O, ... 1.6.} that is different from the colors of its neighbors. We

can recolor all the nodes of the same color in parallel because they are independent.

Theorem 3 The algorithm Color-Constant-Degree-Graph coloTtJ the graph with (.6.+1)

colors and runtJ in O((lg.6.)(.6.2 +lg"n» time on an EREW PRAM wing a linear number

of processors.

Proof: At each iteration all edges of the maximal pseudoforest are removed. The definition

of a maximal pseudoforest implies that each node that still has neighbors in the beginning

of an iteration has at least one edge removed during that iteration and therefore its degree

decreases. After at most .6. iterations, E' is empty. The running time of each iteration

is determined by the time required to select an unused edge out of an edge list. On an

EREW PRAM, an unused. edge can be selected in O(1g.6.) time. The pseudoforests are

edge-disjoint and therefore can be colored in parallel. By Theorem 2, this takes O(1g .6.1g"'n)

time on an EREW PRAM. The Ig.6. factor appears because we do not use the concurrent­

read capability; a node must broadcast its color to its children using, for example, recursive

doubling. The total time bound for the first stage is therefore O((lgL»(L> + Ig"n)).

The second phase terminates in at most .6. iterations as well. For each pseudoforest

we iterate over all the colors. Since in this section we assume that .6. is a constant,

each iteration can be done in O(lg.6.) time using word operations; for example, we can

represent colors as bit vectors and use exclusive-or function together with the recursive

doubling teclmique. Hence, one iteration of the second phase takes O(b..lg.6.) time, leading

10

to an overall D((lg ",)("" + 19"n» running time for the second stage of the algorithm and

for the algorithm itself. I

Given a (.6. + I)-coloring of a graph, we can find an MIS of the graph by iterating

over the colors, taking all the remaining nodes of the current color, adding them to the

independent set, and removing them and all their neighbors from the graph. (We refer

to this procedure as Constant.Degree-MIS in the subsequent sections.) The running time

of this algorithm is dominated by the running time of the Color-Constant-Degree-Graph

procedure. The following theorem states this fact fonnally.

Theorem 4 An MIS in con'tant-degree '" graph, can be found in D((lg"')("" + 19"n»

time on an EREW PRAM 'Using a linear number of processors.

Remark: The proofs of Theorems 3 and 4 imply that the algorithms ColoT- Constant­

Degree- Graph and Constant-Degree-MIS have a polylogarithmic running times for graphs

with polylogarithmic maximum degrees. For graphs with arbitrary maximum degree we

can use the following algorithm. First, the graph is partitioned into two subgraphs with

approximately equal number of nodes, and the subgraphs are recursively colored in .6.+1

colors. Then we iterate through all the colors of one of the subgraphs, recoloring each node

with a color different from the colors of all of its neighbors. We can find this color using

sorting in D(lg",) time [CoI86]. This algorithm colors a graph with a maximum degree of

'" with", +1 colors in D('" 19 '" 19 n) time.

The above algorithms can be implemented in the distributed model of computation

[Awe85,GHS83], where processors have fixed connections determined by the input graph.

The algorithms in the distributed model achieve the same O(lg-n) bound as in the EREW

PRAM model. It was recently shown that n(lg-n) time is required in the distributed model

to find a maximal independent set on a chain [Awe87,Lin87J. Our algorithms are therefore

optimal (to within a constant factor) in the distributed model.

In [Sha86], fiat jore:rts are used to develop a linear processor constant-degree MIS

algorithm which used time exponential in.6.. A forest is fiat if each of its trees, when

properly oriented, has a height of at most 1, and any zero-degree node in the forest is zero-

11

degree in the input graph. Using the techniques introduced in this section, we can find a

flat forest of a graph by proceeding as follows. Find a maximal pseudoforest P = G(V, E ').

Note that there exists a flat forest F = (V, Ell), such that E" ~ E'. Use the algorithm

9~Color-P8e'Udofore8tto find a 3-coloring of the pseudoforest P and subsequently find an

MIS I of P. Each node v rt I adds an edge (v, u) to Ell such that u E I. Each node in I

with no adjacent edges in Ell, but some adjacent edges in E ' , chooses one adjacent edge

in E' and adds it to E". The graph F induced by the edges in E" is almost a flat forest ­

each tree has a height of at most 2. Now we split trees of height 2 in F into trees of height

one to produce a flat forest. All operations take constant time except the operation of

finding the 3-coloring of P , which takes O(lg"'n) time. Therefore, we can find a flat forest

in O(lg"n) time on a CREW PRAM using n processors.

5 Coloring and Matching in Planar Graphs

Euler's fonnula [Har72] implies that every planar graph has a constant fraction of nodes of

degree 6 or less. In this section we use this property in conjunction with the techniques de­

veloped above to construct efficient algorithms for coloring and finding maximal matchings

in planar graphs.

First we present the algorithm 1- Color-Planar- Graph which finds a 7-coloring of a

planar graph in O(lg n) time. The algorithm is shown in Figure 3. The first stage of the

algorithm partitions the nodes of the graph into sets Vi, such that the degree of any node

v E Vi in G[Vi + Vi+l + Vi+21 •..J is at most 6 (lI;' consists of all nodes of degree at most

6 in G[V - (V, U Vi u ... U Vi-1)]). Then, the algorithm colors all the subgraphB induced

by the node-sets {'Vi}. These graphs are node-disjoint and therefore the coloring can be

done in parallel. The last stage of the algorithm adds the subgraphs back in reverse order,

updating the coloring.

Theorem 5 The algorithm 7-Color-Planar-Graph construcUJ a valid 7-coloring using n

processor8 and O(lgn) time on a CRCW PRAM.

Proof: By Euler's fonnula, at least a constant fraction of any planar graph's nodes are of

12

Procedure 7~Color-Planar-Graph

V' t- Vi
Vi, V2, ... VS [1gnl t- 0;
it-Oj
while V' =f:. 0 for all v E V'da in parallel

if Degree(v) .:5 6
then begin

Vi t- Vi+Vj

V' t- V' - Vj

end;
it- i + 1;

end;
k +- i -1;
for all 0.:5 i.:5 k do in parallel ((color the pseudoforests))

Ej t- {{v,w} IV,w E Vi i {v,w} E E}i
C; t- Color-Constant-Degree-Graph('V;, Ei);

end;
for i (-- k down to 0 do ((second stage))

VII +- Vii
forjt-Oto6do

for all v E V" do in parallel
ife" = j

then begin
Cu ~ max{{O, ... ,5} - {Cw Iw E V'; {v,w} E E) };
V" t- V" - v;
V' +- V' +Vi

end;
end;

end;
end;

end.

Figure 3: The 7-Coloring Algorithm For Planar Graphs

13

degree 6 or less. Therefore, the first stage partitions the nodes of G into at most O(lg n)

sets Vi. We use concurrent reads and writes to determine whether the degree of a node

is at most 6, and hence each iteration of the first stage is done in constant time. By

Theorem 3, the second stage uses only O(lg*n) time. In the i th iteration of the third stage,

the graph G[Vil is already 7-colored and the maximum degree of each node in Vi in the

graph G[Vi + Vi+! + Vi+2 + ...J is at most 6. Only constant time is then needed to add in

Vi and produce a valid 7-coloring of G[Vi +Vi+l + Vi+2 +...J. Therefore, only O(lgn) time

is used in all three stages. I

Remark: If at the first stage, inst,ead of removing from the graph all the nodes with

degree of at most 6, we remove all nodes with degree of at most c times average degree

(for c > 1), the algorithm described above runs in polylogarithmic time for any graph G

such that the average degree of any node-induced subgraph G' of G is polylogaritlunic in

the size of G'. This class contains many important subclasses including graphs that are

unions of a polylogarithmic number of planar graphs (i.e. graphs with polylogarithmic

thickness [Har72]).

Given a valid 7-coloring of a planar graph, we can find an MIS in the graph by iterating

through colors as in our Constant-Degree-MIS algorithm. With concurrent reads and

writes, only constant time is needed for each color class. Hence, we can find an MIS in a

planar graph in D(lgn) time on a CReW PRAM using a linear number of processors.

The deterministic parallel algorithms for 5-coloring planar graphs, described in [BI<87]

and in [Na086], use U(lg'n) time and D(n') processors. These algorithms require a large

number of processors because they use Luby's MIS algorithm [Lub86]. Using the Constant­

Degree-MIS algorithm described in the previous section, we can reduce the number of

processors to linear, while increasing the running time by a factor of O(lg"'n) [GP87a,

GoI87].

The 5-coloring algorithm presented below is essentially a parallelization of the se­

quential algorithms in [CNS8I,MST80]. Given an embedding (which can be computed

in D(lg' n) time [KRS6]), our algorithm runs in D(lgn Ig·n) time on a CReW PRAM us­

ing a linear number of processors. Given a graph G = (V, E), the algorithm finds a special

14

large independent set I of nodes in G, merges some of the neighbors of I (as described

below) and removes the nodes in I to create a new graph G/, recursively colors G/, and

uses this coloring to color the nodes in G.

The special independent set I is constructed as follows. Let Q be the set of all nodes in

G of degree greater than 42. Let V4. be the set of all nodes of degree 4 or less. Let Vs and V6

be the set of all nodes of degree 5 with at most one neighbor in Q and the set of all nodes

of degree 6 with no neighbors in Q, respectively. Let S = V4U Vi; U V6. Let GS = (S, ES)

be the graph induced by the nodes in S in the graph which is the square of G[V - QJ The

set [is a maximal independent set in the graph G' U G[V - Q). Since G' and G[V - QI
are of constant degree, we can find I using the procedure Constant-Degree-MIS.

In order to construct the graph GI
, the algorithm proceeds as follows. Start with

G' = G. For each node in I n Vi; we find two of its non-adjacent neighbors that have low

degree (42 or less), and merge them into a single supernode. For each node in In V6 we

either merge three of its non-adjacent neighbors into a single supernode, or merge two non­

adjacent pairs of its neighbors into two supemodes. The embedding information is used

as in [CNS81,MSTBO] to find the neighbors that can be merged while preserving planarity

after all nodes in I are removed. Then we remove all the nodes in I to get the graph GI
•

After recursively 5-coloring the graph G/, we obtain the coloring of G as follows. First

we color all the nodes of G that correspond to nodes or supernodes of GI with the same

color they were colored in G I
• Now we add all the nodes in I and in parallel color every

one of them with a color different from the colors of its neighbors.

In order to bOWld the running time of the 5-coloring algorithm we need the following

lemma, which is similar to Lemma 3 in [CNSB1].

Lemma 6 The size of S = V4 U Vi; U V6 is at least a constant fraction of the total number

of nodes in the gTaph.

Proof: Let R = V - S. Denote by Si and Ti the number of nodes of degree i in the sets S

and R , respectively. Let T* = 2:1~7 Ti, and let TQ ;;;:: 2::43 Ti. By Euler's formula, TQ ::; :3n.

We prove the lemma by a COWlting argument. Definitions of TS and Ta imply that

15

2Ts + TS :5 2::43 irjo Euler's formula implies that 3n 2:: m, therefore

S 42 00

6n ~ Eis j + 5rs + 6rs+ Eiri+ E iri
i=1 i=7 i=43

6 42

> Eisi+7Ts+7r6+ EiTj
;=1 i=7

42

> 7r5+7r6+7:Lr;
i=7

6 6

> 7(ESj + rs + ra + r. + rQ) - 7Es; - 7rQ
i=l ;=1

> 7n -7151-7· :3n

Thus 151 2: 3~1· I

Theorem 7 Given a.n embedded plana.r graph, the algorithm 5-Color-Planar-Graph 5­

colors it wing n processors in O(lg-nlgn) time on a CRCW PRAM, and O((lg"'n +
IgLl.) 19n) time on an EREW PRAM.

Proof: Correctness of the algorithm follows from [CNS81] and from the fact that the nodes

in I are independent in G:J U G[V - Q]

Lemma 6 implies that the size of Sis il(n). The graph G:J has a constant maximum

degree and hence the size of the set I is il(n) as well. Therefore the depth of recursion is

at most O(lg n).

On a CRCW PRAM, we can find Sand Q in constant time as in the algorithm 7­

Color-Planar-Graph. The construction of G8 U G takes constant time because G8 has

constant degree. The algorithm COMtant-Degree-MISfinds I in O(lg-n) time. In constant

time nodes in I can merge appropriate neighbors and delete themselves from G to form

G'. Edge lists in G' need not be compacted when we are using the CRCW PRAM. After

recursively coloring GI, we can color G in constant time.

16

On the EREW PRAM, O(lg.6.) additional time per recursion level is needed since we

must compact edge lists of G' (so that the set Sin G' can be found in constant time). I

Remark: Chrobak, Diks, and Hagerup [CDH87] bave recently improved the resnlt of The­

orem 7 by giving an algorithm for 5-coloring planar graphs that runs in O(lg'"n 19 n) time

on an EREW PRAM and does not need an embedding.

Using the techniques described in this section, it is easy to construct a fast algorithm

for finding a maximal matching (MM) in a planar (or a constant-degree) graph. As in the

7-coloring algorithm, the first stage of the MM algorithm separates the nodes of the graph

into sets Vi, such that the degree of any node v E Vi in G[Vi +Vi+! + Vi+2 •...J is at most

6. Then the graphs {G[Vi]} are colored in parallel. The second stage of the algorithm

recursively finds MM in the graph G[V - Vi] and removes the matched nodes to get G[V'],

where Viis the set of the unmatched nodes. The graph G[V'] has no edges and the nodes

Vi in the graph G(V' + Vi] have maximum degree of 6. Hence, in 7 iterations over the

colors of G[ViI we can find the MM of G.

Theorem 8 A maximal matching in a planar graph can be found in O(lg n) time on a

CReW PRAM using a linear number of processorS.

Remark: Using Euler's fonnula, we can extend our algorithms for 7~coloring and MIS in

planar graphs to graphs of bounded genus {. We apply the algorithm 7-Color-Planar­

Graph as before when there are at least c"'(nodes remaining in the residual graph, for some

constant c. The Heawood map-coloring theorem states that any graph can be colored

with O(V7) COIOIS, and its proof implies a polynomial time algorithm for finding such a

coloring [Har72J. Therefore, when less than c"(nodes remain in the residual graph, we

sequentially color it with O(V7) COIOIS. With additional time that is polynomial in {,

we can then O(v"7)-color the graph using the same time and number of processors as for

7-coloring a planar graph. Note, that the above algorithm does not need embedding. The

related result for MIS on bounded-genus graphs follows as before.

17

6 Lower Bounds

In this section we prove two lower bounds for a CReW PRAM with a polynomial number

of processors:

• Finding a maximal independent set in a general graph takes n(lgnj 19l9n) time.

• 2-coloring a directed list takes f!(lgn/lglgn) time.

The first lower bound complements the O(lg n) CReW PRAM upper bound for the

MIS problem that is achieved by Luby's algorithm [Lub86]. The second lower bOtuld

complements Theorem 2 in this paper.

Theorem 9 The running time of any MIS algorithm on a CReW PRAM with a polyno­

mial number of prace,MOTS i3 n(lgnj 19l9n).

Proof: Given an instance of MAJORITY, we construct an instance of MIS in constant

CReW PRAM time. MAJORITY is harder that PARITY [FSS8I), which was proven to

take f!(lgn/ 19l9n) time on a CReW PRAM in [Bea86,BH87]. Therefore the lower bound

claimed in the theorem follows.

Let Xl, X2, ••• I X n be an instance of MAJORITY. We construct a complete bipartite

graph G = (V, E) with nodes corresponding to '0' bits of the input on one side and nodes

corresponding to '1' bits on the other side.

V {I, ... ,n}
E - {{i,j)Jx;;"x,}

To construct this graph, assign a processor Pij for each pair 1 :5 i < j :5 n. Then, each

processor Pij writes 1 into location M ij if Xi =I- X j and writes 0 otherwise.

A maximal matching in a complete bipartite graph is also a maximum. one. By con­

structing a maximal independent set in the line-graph G' of G, one can find a maxi­

mal matching in G. To construct the graph G' assign a processor Pijk for each distinct

i, j, k :5 n. Each Pij1~ writes 1 into location MCi,j),(j,k) if M ij = M jk = 1 and 0 otherwise.

18

The MAJORlTY equals to 1 if and only if there is an unmatched node i E G such that

Xi = 1, which can be checked on a CReW PRAM in constant time. I

Theorem 10 The time to £-color a directed liJt on a CROW PRAM with a polynomial

number of proceJJorJ iJ il(1g n/ 19l9 n).

Proof: We show a constant time reduction from PARITY to the 2-coloring of a directed

list. First, we show how to construct, in constant time, a directed list with elements

corresponding to all the input bits Xi with value of 1. Let Xl, X2, .•• , X n be an instance

of PARITY. We can assume w.l.o.g. that Xl = 1. With each input cell M i (that initially

holds the value of Xi), associate a processor Pi, a set of processors pr with each index

i, 1 :5 k < j < i, a set of cells Mt, 0 :S j < i, and a cell Mf. Initialize all cells that do not

store input bits to O.

In one step, each processor p!k reads the value of M i _ k and, if it equals to I, writes 1

into M/, effectively computing the OR-function on the input values Xi_j, xi-i+l,' .. , Xi_I.

.. .. . I
Assign a processor PI to each Mf, 1 <j < i. Each processor PI reads Mf and Mt+ and

writes (i - j) into Mf if and only if MI =I- M!-l. It can be seen that for alII::; i ::; n, Mf
holds max{j I j < i,x; = I}.

We have constructed a directed list with elements corresponding to all the input bits

Xi with value of 1. Assume this list is 2-colored. Then PARITY equals to 1 if and only

if both ends of the list are colored with the same color, which can be checked in constant

time. I

7 Conclusion and Open Problems

We have presented a fast technique for breaking symmetry in parallel and have shown how

to apply this technique to improve the rUIllling times and processor bounds of a number of

important parallel algorithms. We believe that the efficiency of this technique, combined

with the simplicity of its implementation, makes it an important tool in designing parallel

19

algorithms.

Our results motivate the following open questions.

• We have proved a lower bound for MIS in general graphs. What is the lower bound

for MIS in planar graphs ?

• Beame has proposed the following algorithm for coloring rooted trees of constant de~

gree on PRAM. Run the algorithm 9-Color-Rooted-Tree for O(lglg*n) steps. Next,

each processor collects the colors of all the descendants on distance O(lg-n) or less

and uses this inIonnation and a precomputed lookup table (of size O(lg""nlglg-n))

to compute its final color. Given an !1(lg*n) preprocessing time, we can precompute

the lookup table; after this preprocessing step, the time to 3-color a tree (or a pseud­

oforest) will be O(lglg'"n). Is it possible to 3-color a tree in o(lg"'n) time on PRAM

with no preprocessing?

• Can we compute an MIS in general graphs in o(1gn) time?

• Recently, several papers [CV86,Rei85] that present parallel algorithms with "optimal

speedup" have been published. (The measure of optimality used in these papers is

how close is the processor-time product of the parallel algorithm to the running

time of the fastest known sequential one.) The problems we have been studying in

this paper can be solved in linear sequential time, but the processor-time products

achieved by our algorithms are superlinear (by a 19-n or a polylogarithmic factor).

How can one reduce the processor requirements of the algorithms without increasing

their running time in order to achieve linear time-processor products? Also, will this

improved processor efficiency induce significantly more constraints on the model as

compared to our current algori thrns ?

Acknowledgments

We would like to thank Greg Frederickson, Charles LeisersoD, and David Shmoys for fruitful

and stimulating discussions, and for their valuable comments on a draft of this paper. We

are also grateful to the referee whose extremely thorough comments have significantly

improved the presentation of the paper.

20

References

[Awe85] B. Awerbuch. Complexity of network synchronization. Journal of the Associa­

tion for Computing Machinery, 32(4):804-823, October 1985.

[AweS?] B. Awerbuch. A tight lower bOWld on the time of distI-ibuted maximal indepen­

dent set algorithms. February 1987. Unpublished manuscript.

[BeaS6] P. Beame. Lower Bounds in Parallel Machine Computation. PhD thesis, Uni­

versity of Toronto, 1986.

[BH85] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models

of computation. Journal of Computer and System Sciences, 30:130-145, 1985.

[BH87] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW

PRAM. In Proc. 19th ACM Symp. on TheonJ of Computing, pages 83-93,1987.

[BK87] J. Boyar and H. Karloff. Coloring planar graphs in parallel. J. of Algorithms,

1987. (To appear).

[CDH87] M. Chrobak, K. Diks, and T. Hagerup. Parallel 5-coloring of planar graphs.

In 14th International Colloquium on Automata, Languages, and Programming,

pages 304--313, July 1987.

[CNS81] N. Chiba, T. Nishizeki, and N. Saito. A linear 5-color algorithm of planar graphs.

Journal of AlgoTithmo, 2:317-327, 1981.

[CoI8B] R. Cole. Parallel merge sort. In Proc. 21th IEEE Annual Symposium on Foun­

dations of Computer Science, pages 511-516, 1986.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal

parallel list ranking. Information and Control, 70:32-56, 1986.

[FSS81] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial time

hierarchy. In Proc. 22nd IEEE Symp. on Foundations of Computer Science,
pages 260-270, 1981.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th

A CM Symp. on Theory of Computing, pages 114--118, 1978.

[GHS83) R. G. Gallager, P. A. Humblet, and P. M Spira. A distributed algorithm for

minimum-weight spanning trees. AeM Transactions on Programming Languages

and Sy,tem" 5(1):66-77, Jannary 1983.

21

[G887J

[KR86J

[Go187J

[GP87bJ

[GP87a]

[Har72)

[I886J

A. V. Goldberg. Efficient GTaph Algorithm, fOT Sequential and PaTallel Com­

puters. PhD thesis, M.LT., January 1987.

A. Goldberg and 8. Plotkin. Efficient Parallel AlgoTithm, fOT (L>+l)-ColoTing

and Maximal Independent Set Problem3. Technical Report MITjLCSjTM-320,

MIT, January 1987.

A. Goldberg and 8. Plotkin. Parallel (L> +1) coloring of constant-degree graphs.

Information Processing Letters, 25(4):241-245, June 1987.

M. Goldberg and T. Spencer. A new parallel algorithm for the maximal inde­

pendent set problem. In Proc. 28th IEEE Symp. on Foundations of Computer

Science, 1987. (To appear).

F. Rarery. Graph Theory. Addison-Wesley, 1972.

A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal match­

ing. Information Processing Letters, 22:57-60, January 1986.

P. Klein and J. Reif. An efficient parallel algorithm for planarity. In Proc. a/the

f7 th Annual IEEE Symposium on Foundation.'J of Computer Science, pages 465-
477,1986.

[KW85] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal in­

dependent set problem. Journal of the A.!I8ociation for Computing MachinenJ,

32(4):762-773, October 1985.

[Lin87J N. Linial. Locality as an obstacle to distributed computing. In Proc. 28th IEEE

Symp. on Foundations of Computer Science, pages 331-335, October 1987.

[LM86] C. Leiserson and B. Maggs. Communication-efficient parallel graph algorithms.

In Proc. of International Conference on Parallel Processing, pages 861-868,1986.

[Lub86] M. Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal of Comp., 15(4):1036-1052, November 1986.

[MR85] G. Miller and J. Reif. Parallel tree contraction and its application. In Proc. of

26'th Annual IEEE Sympo!Jium on Foundation!J of Computer Science, pages 478­

489, October 1985.

[MST80] D. Matula, Y. Shiloach, and R. Tarjan. Two Linear-time Algorithms for Five­

coloring a Planar Graph. Technical Report STAN-CS-80~830, Department of

Computer Science, Stanford University, Palo Alto, California, November 1980.

22

[Nao86] J. Naor. Two Parallel Algorithm' in Graph Theory. Technical Report CS­

86-6, Department of Computer Science, The Hebrew University of Jerusalem,

Jerusalem, Israel, June 1986.

[PQ82] J. C. Picard and M. Queyranne. A network flow solution to some nonlinear 0-1

programming problems, with applications to graph theory. Network.9, 12:141­
159, 1982.

[ReiS5] J. Reif. An optimal parallel algorithm for integer sorting. In Proc. of 26'th

Annual IEEE Symposium on Foundations of Computer Science, pages 496-503,
October 1985.

[Sha86] G. Shannon. Parallel Independent Set Algorithms for Sparse Graphs. Techni­

cal Report CSD-TR-634, Computer Sciences Dept., Purdue University, October
1986.

23

	Parallel Symmetry-Breaking in Sparse Graphs
	Report Number:
	

	tmp.1307986960.pdf.guLa_

