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Abstract

Bertsekas, D.P. and D.A. Castailon, Parallel synchronous and asynchronous implementations of the auction
algorithm, Parallel Computing 17 (1991) 707-732.

In this paper we discuss the parallel implementation of the auction algorithm for the classical assignment
problenywe show that the algorithm admits a totally asynchronous implementation and we consider several

implementations on a shared memory machine, with varying degrees of synchronization. We also discuss and
explore computationally the tradeoffs involved in using asynchronism to reduce the synchronization penalty.

Keywords. Assignment problem, auction algorithm; synchronous and asynchronous implementation; computa-

tional results; shared memory machines.

1. Introduction

We consider the classical problem of optimal assignment of n persons to n objects. Given a
benefit aij that person i associates with object j, we want to fmd an assignment of persons to
objects, on a one-to-one basis, that maximizes the total benefit. The auction algorithm, a
method for solving this problem first proposed in [5], and subsequently developed and
extended in [8-14] has been shown to be very effective in practice, particularly for sparse
problems. The algorithm operates like an auction. There is a price for each object, and at each
iteration, unassigned persons bid simultaneously for their 'best' objects thereby raising the
corresponding prices. Objects are then awarded to the highest bidder. For a detailed presenta-
tion of the algorithm, we refer to [11].

i-,f

* This work was supported in part by the Innovative Science and Technology Program of the Strategic Defense

Initiative Office under the supervision of the Office of Naval Research, contract NOOOl4-88-C-O7I8. The authors
would like to thank the Mathematics and Computer Science Division of the Argonne National Laboratory for
providing access to the Advanced Computer Research Facility and training in the use of the Encore Multimax.

0167-8191/91/$03.50 @ 1991 -Elsevier Science Publishers B. V. All rights reserved



708 D.P. Bertsekas, D.A. Castanon

The method is also well suited for implementation on parallel machines. There are two basic
approaches here, as well as a third one that combines the first two. In the first approach, the
bids of several unassigned persons are caJried out in parallel, with a single processor assigned
to each bid; we call this approach Jacobi parallelization in view of its similarity with parallel
Jacobi methods for solving systems of equations. In the second approach, there is only one bid
carried out at a time, but the calculation of the bids is done in parallel by several processors;
we call this approach Gauss-Seidel parallelization. Finally, the third approach is a hybrid

whereby multiple bids are carried out in parallel, and the calculation of each bid is shared by
several processors. This third approach, with proper choice of the number of processors used
for each parallel task, has the maximum speedup potential.

The auction algorithm is also a natural candidate for a totally asynchronous implementation,
whereby the bid calculations may be done with out-of-date object price information and the
highest bidder awards and subsequent price adjustments may be done with out-of-date bid
information. The potential advantage of an asynchronous implementation is a reduction of the
synchronization penalty. This is the delay incurred when several processors synchronize to
calculate in parallel a single person bid, when several processors calculating separate person
bids in parallel wait to make sure that up-to-date price information is available, and when the
processors calculating in parallel the highest bidder awards wait for all bids to come in.
Asynchronous algorithms are discussed in detail in [I5J, which gives many other references.

In this paper, we explore the merits of various synchronous and asynchronous implementa-
tions of the auction algorithm in a shared memory multiple instruction stream, multiple data
stream (MIMD) parallel computer (the Encore Multimax). We prove the validity of an

asynchronous implementation. Such a pJ!oof may also be inferred from the analysis of an
asynchronous implementation of the (.relaxation method [9,I2J, which contains the auction
algorithm as a special case but can also solve general linear network problems. This inference
is, however, very complex. The proof of this paper is based on first principles and is far simpler
because it focuses on the assignment problem and is based on a less complex model of

asynchronous computation.
In this paper we also compare a variety of synchronous and asynchronous implementations

of the auction algorithm, in an effort to quantify the tradeoffs between Jacobi and Gauss-Seidel
parallelization, as well as the effects of asynchronism. Our conclusion is that fairly substantial
speedups (up to about 7 using a maximum of 16 processors) of the auction algorithm can be
obtained on the Multimax, and that successful asynchronous implementations substantially
outperform their synchronous counterparts. There have been several computational studies
with parallel implementations of the auction algorithm as well as other assignment algorithms,
but to our knowledge, the present paper is the first to report on the practical performance of
asynchronous versions in a real parallel machine.

In particular, Kempa et al. [33J have reported on the parallel performance of various
synchronous implementations of the auction algorithm on the Alliant FX/8 computer. They
have experimented exclusively with dense problems and without using scaling. They imple-
mented a synchronous hybrid algorithm which uses the vector processing capability of each of
the Alliant's processors to scan the admissible objects for each bid, and uses multiple
processors to process several bids in parallel. The Alliant FX/8 performs a lot of its
synchronization in hardware, and therefore does not require the careful software synchroniza-
tion which was used in our implementations on the Encore Multimax. For problems compara-
ble to those of the size reported in this paper (e.g. 1000 person dense assignment problems, cost
range [1, 1000)), Kempa et al. obtained total speedups of 8.578 for their hybrid auction
algorithm using 8 vector processors. Such a speedup reflects the increased potential for
Gauss-Seidel parallelism in dense problems and also the vector capability of each processor in
the Alliant FX/8. Kempa et al. did not attempt to explain their overall speedup in terms of the



Parallel implementations of the auction algorithm 709

speedup contributed by the vector processors and the speedup contributed by the multiple
concurrent bids. Thus, it is not clear from their reported results whether an effective combina-
tion of Gauss-Seidel and Jacobi parallelization was occurring.

Castanon et al. [18] have studied the effcctiveness pf different synchronous implementations
of the Gauss-Seidel auction algorithm, and the algorithm of Jonker and Volgenant [31] for
solving dense and sparse assignment problems on different multiprocessor architectures. The
latter algorithm is a two-phase method; the first phase is based on the relaxation method of [6]
and [7], and is in fact the same as the auction algorithm with E = 0; the second phase is a

sequential shortest path method. The work [18] illustrates the superiority of single instruction
stream, multiple data stream (SIMD) architectures for achieving Gauss-Seidel parallelism, with
demonstrated reductions in computation time (relative to the computation time on a single-
processor Encore Multimax) in the o~der of 60 for assignment problems with 1000 persons.
This work did not attempt to combine Gauss-Seidel and Jacobi parallelism for maximal
speedup. Additional work on SIMD architccture was reported by Phillips and Zenios [39], and
by Wein and Zenios [42] with synchronous implementations of a hybrid auction algorithm
using (-scaling on the Connection Machine CM-2 for dense problems.

Kennington and Wang [32] have reported on a parallel implementation of the Jonker and
Volgenant algorithm [31] for dense assignment problems on the 8-processor Sequent Symmetry
S81. In their implementation, multiple processors are used to construct shortest paths from a
single unassigned person. This may be viewed as Gauss-Seidel parallelization for successive
shortest path methods. For a dense 1000 person assignment problems with cost range [1, 1000),
they report a speedup of 3.6 using 8 processors versus using a single processor.

Balas et al. [1] have developed a synchronous parallel successive shortest path algorithm,
which allows for the determination of multiple augmenting paths simultaneously, and have
successfully implemented it on a 14-processor Butterfly Plus computer. Their algorithm may be
viewed as Jacobi parallelization for successive shortest path methods, since it handles multiple
unassigned persons in parallel. For a comparable 1000 person dense assignment problem with
cost range [1, 1000], they obtained a speedup of 2.21 for the successive shortest path part of
their algorithm, and an overall speedup of 2.17 when compared to the sequential version of the
algorithm implemented on the same ~mf'uter. Larger speedups were obtained with much
larger dense problems.

In the next Section we provide an overview of the auction algorithm and in Section 3 we
define and prove the validity of the totally asynchronous version. In Section 4 we discuss
general issues of parallel synchronous and asynchronous implementation, with an emphasis on
shared memory machines and the Encore Multimax in particular. In Section 5 we discuss a
variety of implementations and we report on the results of our computational tests.

2. The auction algorithm

In the assignment problem that we consider, n persons wish to allocate among themselves n
objects, on a one-to-one basis. Each person i must select his/her object from a given subset
A(i). There is a given benefit aij that i associates with each j E A(i). An assignment is a set of

k person-object pairs (i1, A),...,(ik, jk), such that O~k~n, jmEA(im) for all m, and the
persons i1,..., ik and objects A,..., jk are all distinct. The total benefit of the assignment is
the sum L~=lai.J.. of the benefits of the assigned pairs. An assignment is called complete (or
incomplete) if it contains k = n (or k < n, respectively) person-object pairs. We want to find a

complete assignment with maximum total benefit, assuming that there exists at least one
complete assignment. This is the classical assignment problem, studied algorithmically by many
authors [2-4,6,17,21,24,25,28-31,35,36,41], beginning with Kuhn's Hungarian method.
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In the auction algorithm, each object j has a price Pj with the initial prices being arbitrary.
Prices are adjusted upwards as persons 'bid' for their 'best' object, that is, the object for which
the corresponding benefit minus the price is maximal. Only persons without an object submit a
bid, and objects are awarded to their highest bidder.

In particular, the prices Pj are adjusted at the end of 'bidding' iterations. At the beginning
of each iteration, we have a set of object prices and an incomplete assignment, and the

algorithm terminates when a complete assignment is obtained. Each iteration involves a subset
I of the persons that are unassigned at the beginning of the iteration. It has two phases:

Bidding phase.
Each person i E I determines an object j; E A(i) for which a;j -Pj is maximized over j, i.e.

j;=arg max {a;.-p.},
jEA(;) J J
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for any set of prices {Pj I j = 1,..., n}, since the second term of the right-hand side is no less

than

~ (aij,-pj,), r
i=1

,

while the first term is equal to >=7=lPj,' 'th~refore, the optimal total assignment benefit cannot
exceed the quantity

A*= min
Pj. 1 r IIJ= ,...,n ,

,

On the other hand, if the t:-CS property ~1)lbolds upon termination of the auction process, then
by adding Eq. (I) over all i, we see that! I

n n,

L (Ph+ m~ {a;j- Pj}) ~ I~a;h + nt:.
;=1 ] ;-1

Since the left side above cannot be less than A *, which as argued earlier, cannot be less than
the optimal total assignment benefit, we see that the final total assignment benefit L7=la;. is
within nt: of being optimal. },

We note parenthetically, that the preceding derivation is guided by duality theory; the
assignment problem can be formulated as a linear programming problem, and the minimization
problem in the right side of Eq. (2) is a dual problem (see e.g. [11,15,20,38,40».

Suppose ,now that the benefits a;j are all integer, which is the typical practical case (if a;j
are rational, they can be scaled up to integ~ by multiplication with a suitable common positive
integer). Then, the total benefit of any assignment is integer, so if nt: < 1, a complete
assignment that is within nt: of being optimal must be optimal. It follows, that if

1
t:<-

n'

the benefits a;j are all integer, and the t:-~~ condition (I) is satisfied upon termination, then the
assignment obtained is optimal.

There is a standard method for choosing the bidding increments y; so as to maintain the
t:-CS condition (I) throughout the auction process, assuming this condition is satisfied by the
initial prices and the initial assignment (as is trivially the case when no objects are assigned
initially). In this method, t: is a fixed positive number, and the bidding increment y; is given by

y;=t:+v;-w;, (4)

where V; is the best object value,

V;= max {a;.-p.}, (5)
jEA(i) J J

attained for an object j;, and w; is the 'second best' object value

w;= max {a;j-Pj}. (6)
j~h,jEA(i)

We will assume for convenience throughout that A{i) contains at least two objects, so the
maximum in Eq. (6) is well defmed. This choice of the bidding increment is shown in Fig. 1.
Note that we have y; ~ t:, so based on the earlier argument, this choice guarantees termination
of the auction algorithm. The t:-CS property is also maintained if y; has any value between t:
and t: + v; -Wi. However, termination of the auction process is typically faster with the
maximal choice of Eq. (4).

n n !

L Pj+ L m#{aij-pj}j=1 
i-I}

(2)

(3)
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~f ~Values a.. -p;/
of objects'~
for person i ~ Bidding increment Yi of person i for its best

object jj"

Fig. 1. Illustration of the standard choice for the bidding increment "Yi' It is such that if the bid is accepted, the best
object h will be within at most ( from being best. (It will be within exactly ( of being best if and only if at least one

'second best' object receives no bid during the iteration, so its price remains unchanged.)

Note that any nonempty subset I of unassigned persons may submit a bid at each iteration.
This gives rise to a variety of possible implementations, named after their analogs in relaxation
and coordinate descent methods for solving systems of equations or unconstrained optimization

problems (see e.g. [37,15]):
(a) The Jacobi implementation, where I is the set of all unassigned persons at the beginning of

the iteration.
(b) The Gauss-Seidel implementation, where I consists of a single person, who is unassigned at

the beginning of the iteration.
(c) The block Gauss-Seidel implementation, where I is a subset of the set of all unassigned

persons at the beginning of the iteration. The method for choosing the persons in the subset
I may vary from one iteration to the next. This implementation contains the preceding two

as special cases.
Generally, in a serial computation environment, experiments have shown that the Gauss-

Seidel implementation tends to be the fastest, but with a parallel machine, the choice is unclear
because all the bids of the persons in I may be calculated in parallel. It is important to consider
all these different versions because they provide starting points for different synchronous and

asynchronous parallel implementations, to be discussed in Section 4.

2.1. Computational aspects-£ -scaling

The auction algorithm exhibits interesting computational behavior and it is essential to

understand this behavior in order to implement the algorithm efficiently.
We first note that the amount of work to solve the problem can depend strongly on the value

of ( and on the maximum absolute object value

C= maxlaijl. (7)
'.J

Basically, for many types of problems, the number of bidding iterations up to termination
tends to be proportional to C/(. We note also that there is a dependence on the initial prices; if
these prices are 'near optimal', it can be expected that the number of iterations to solve the
problem will be relatively small. This suggests the idea of (-scaling, which consists of applying
the algorithm several times, starting with a large value of ( and successively reducing ( up to an
ultimate value which is less than the critical value l/n. Each application of the algorithm
provides good initial prices for the next application. In practice, it is a good idea to consider
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scaling. For sparse assignment problems, that is, problems where the set of feasible assignment
pairs is severely restricted, scaling seems almost universally helpful. This was established
experimentally at the time of the original proposal of the auction algorithm [5]. There is also a
related polynomial complexity analysis [12,15] that uses some of the earlier ideas of an {-scaling
analysis [26,27] for the {-relaxation method of [9]. For more on this issue, we refer to [10] and
[14], which contain extensive computational results.

Our implementation of {-scaling is as follows: the integer benefits aij are first multiplied by
n + 1 and the auction algorithm is applied with progressively lower value of {, up to the point
where { becomes 1 or smaller (because the aij have been scaled by n + 1, it is sufficient for
optimality of the final assignment to have (~1). The sequence of { values used is

{(k)=[max{l,L1/(}k}j, k=O,l,...,

where L1 and () are parameters set by the user with L1 > 0 and () > 1. (In our implementations,
we used L1 = C/4 and 4 ~ () ~ 8.)

3. The totally asynchronous version of the auction algorithm

One may view a synchronous parallel algorithm as a sequence of consecutive computation
segments called phases. The computations within each phase are divided in some way among
the processors of a parallel computing system. The computations of any two processors within
each phase are independent, so the algorithm is mathematically equivalent to some serial
algorithm. Phases are separated by synchronization points, which are times at which all
processors have completed the computations of a given phase but no processor has yet started
the computations of the next phase. In asynchronous parallel algorithms, the coordination of
the computations of the processors is less strict. Processors are allowed to proceed with
computations of a phase with data which may be out-of-date because the computations of the
previous phase are incomplete. An asynchronous algorithm may contain some synchronization
points but these are generally fewer than the ones of the corresponding synchronous version.

To get a first idea of the totally asynchronous implementation of the auction algorithm, it is
useful to think of a person as an autonomous decision maker that obtains at unpredictable
times information about the prices of the objects. Each unassigned person makes a bid a
arbitrary times on the basis of its current object price information (that may be outdated
because of communication delays). In a shared memory machine context, the role of the
unassigned person is played by one or more processors that retrieve object prices from shared
memory, and calculate a bid for the best object. There is asynchronism because the prices may
have changed while the processors are calculating the bid.

We now formulate the totally asynchronous model, and we prove its validity. We denote
Pj(t) = Price of object j at time t,
rj(t) = Person assigned to object j at time t[rft) = 0 if object j is unassigned],
U(t) = Set of unassigned persons at time t[i E U(t) if rj(t) * i for all objects j].

We assume that U(t), pIt), and ~(t) can change only at integer times t; this involves no loss
of generality, since t may be viewed as the index of a sequence of physical times at which
events of interest occur.

In addition to U(t), Pj(t), and rj(t), the algorithm maintains at each time t, a subset
R(t) c U(t) of unassigned persons that may be viewed as having a 'ready bid' at time t. We

assume that by time t, a person iER(t) has used prices Pj(Tjft» and pfTjj(t» from some
earlier (but otherwise arbitrary) times Tjj(t) and -i';ft) with Tjj(t) ~ Tjj(t) ~ t to compute the
best value

(8)
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a best object j;(t) attaining the above maximum,

j;(t) = arg j~) {O;j -Pj( T;j(t»)}, (9)

the second best value

Assumption 1.

U(t): nonempty = R(tf): nonempty for some tf ~ t.

Assumption 2. For all i, j, and t,

Jim 'Tjj(t) = 00.
t-+ CX)

Clearly an asynchronous auction algorithm cannot solve the problem if unassigned persons
stop submitting bids and if old information is not eventually discarded. This is the motivation

for the preceding two assumptions.
Initially, each person is assigned to at most one object, that is, rj(O) * rj'(O) for all assigned

objects j and j', and it will be seen that the algorithm preserves this property throughout its

course. Furthermore, initially (-CS holds, that is,

max {a;k-Pk(O)} -(~a;j-Pj(O), if i=rj(O).
keA(;)

It will be shown shortly that this property is also preserved during the algorithm.
At each time t, if R(t) is empty nothing happens. If R(t) is nonempty the following occur:

(a) A nonempty subset l(t) c R(t) of persons that have a bid ready is selected.
(b) Each object j for which the corresponding bidder set

Bj(t) = {iEl(t)lj=j;(t)} (12)

is nonempty, determines the highest bid

bj(t) = max .8;(t) (13)
;eBj(t)

and a person ij(t) for which the above maximum is attained

ij(t) = arg max .8;(t). i (14)
;eBj(t)

and has determined a bid

.B;(t) = a;j,(t) -w;(t) + ~. (11)

(Note that ordinarily the best and second best values should be computed simultaneously,
which implies that T;j(t) = T;j(t). In some cases, however, it may be more natural or advanta-

geous to compute the second best value after the best value, with more up-to-date price
information, which corresponds to the case T;j(t) ~ T;j(t) for some pairs (i, j).)

The implication here is that unassigned persons i will enter the set R(t) and become eligible
to bid, following some computations which update j;(t) and .B;(t). However, to maximize the
generality and flexibility of our model, the precise mechanism by which these computations are
done is left unspecified subject to the following two assumptions:
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Price p 1

att H(t)
Update
Price P2

Read Read
Price p 2 Price p 3 Time t

at 't i2 (t) at 't i3 (t) I Computation Time

~~r-1
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CJP, CJ CJ

.~0P2 LJ p D CJ CJ

P3 ---' CJ CJ D DO 0 CJ

t=1 2 3 4 5 6 7 8

Fig. 2. Illustration of asynchronous calculation of a bid by a single processor, which reads from memory the values Pj
at different times Tij(t) and calculates at time t the best object

i;(t)=arg min {aij-P j (Tij (t»},
j E A(i)

and the maximum and second maximum values (here Tij(t) = Tij(t». The values of Pj may be out-of-date because they

may have been updated by another processor between the read time Tij(t) and the bid calculation time t.

Then, the pair (Pj(t), ~(t» is changed according to

(bj( t).

(Pj(t).

if bj(t);;:!: Pj(t) + £

otherwise.
(pj{t+l), ~(t+l»)=

The above description of the algorithm requires an infmite number of iterations; however,
this is merely a mathematical convenience. In practice, the algorithm can be stopped as soon as
the set of unassigned persons U( t) is empty; this can be detected by counting the number of
times that unassigned objects are assigned for the first time. We say that the algorithm
terminates at time t if t is the first time k such that U(k) is empty.

Notice that if T;j(t) = t and U(t) = R(t) for all t, then the asynchronous algorithm is

equivalent to the synchronous version given in Section 2. The asynchronous model becomes
relevant in a parallel computation context where some processors compute bids for some

unassigned persons, while other processors simultaneously update some of the object prices and
corresponding assigned persons. Suppose that a single processor calculates a bid of person i by
using the values aij -Pj( T;)t» prevailing at times T;j(t) and then calculates the maximum
value at time t; see Fig. 2. Then, if the price of an object j E A (i) is updated between times
T;j(t) and t by some other processor, the maximum value will be based on out-of-date
information. The asynchronous algorithm models this possibility by allowing TJt) < t. A
similar situation arises when the bid of person i is calculated cooperatively by several
processors rather than by a single processor.

The following proposition establishes the validity of the asynchronous auction algorithm of
this section.

Proposition 1. Let Assumptions 1 and 2 hold and assume that there exists at least one complete
assignment. Then for all t and all j for which rj(t) * 0, the pair (Pj(t), rj(t» satisfies the (-CS
condition

ij(t»)

~(t»)

Furthermore, there is a finite time at which the algorithm terminates. The complete assignment
obtained upon termination is within n~ of being optimal, and is optimal if ~ < Iln and the benefits
aij are integer.
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Proof. Let (Pj(t), rj(t» be a pair with ~(t) * O. To simplify notation, let i = rj(t). We first
consider times t at which Pj was just updated, i.e., Pj(t) > Pj(t -1) and i * rj(t -1), and
person i submitted a highest bid for object j at time t -1. Then we have by construction

ail -Pj( t) = ail -/3i (t -1) = Wi (t -1) -E

= max {aikiPk(Tik(t)}-E
k*j,kEA(i)

~ max {aik-Pk{t)} -£,
kEA(i)

where the last inequality follows using the fact Pk(t) ~ Pk(t') for all k and t, t' with t ~ t'.
Therefore, the £-CS condition (16) holds for all t at which Pj was just updated.

Next we consider times t for which Pj was not just updated. Let t' be the largest time which
is less than t and for which Pj(t') > Pj(t' -1); this is the largest time prior to t that object j
was assigned to person i. By the preceding argument, we have

aij-Pj(t')~ max {aik-Pk(t')}-£,
kEA(i)

and since Pj(t') = Pj(t), and Pk(t) ~ Pk(t') for all k, the £-CS condition (16) again follows.

We next show that the algorithm terminates in finite time. We first note the following:
(a) Once an object is assigned, it remains assigned for the remainder of the algorithm (possibly

to different persons). Furthermore, an unassigned object has a price equal to its initial

pnce.
(b) Using Eqs. (8) and (10), and the relation Pj( Tij(t» ~Pj( T;j(t», which holds because

Tij(t) ~ T;j(t), we have ai),(t) -Pj,(t) ~ Wi(t), so from Eq. (11) we see that

fJi (t) ~ Pj ( Tij, (t)) + E.

It follows from Eq. (13) that if person i bids for object j at time t, we must have

bj(t)~Pj(Tij(t))+£. i (17)

(c) Each time an object j receives a bi~ bj(t) at time t, there are two possibilities: either
bj(t) < Pj(t) + E, in which case Pj(t + 1) = p)t), or else bj(t) ~ p)t) + E, in which case

Pj(t + 1) ~ p)t) + E and Pj(t) increases by at least E [cf. Eq. (15»). In the latter case we call
the bid substantive. Suppose that an object receives an infinite number of bids during the
algorithm. Then, an infinite subset of these bids must be substantive; otherwise Pj(t) would
stay constant for t sufficiently large, we would have Pj( Tij(t» = Pj(t) for t sufficiently large

because old price infonnation is eventually purged from the system (cf. Assumption 2), and
in view of Eqs. (15) and (17), we would have p)t + 1) ~ Pj(t) + E for all times t at which j
receives a bid, arriving at a contradiction.

Assume now, in order to obtain a contradiction, that the algorithm does not terminate
finitely. Then, because of Assumption 1, there is an infinite number of times t at which R(t) is
nonempty and at each of these times, at least one object receives a bid. Thus, there is a
nonempty subset of objects Joo which receive an infinite number of bids, and a nonempty
subset of persons ]00 which submit an infinite number of bids. In view of (c) above, the prices
of all objects in Joo increase to 00, and in view of (a) above all objects in Joo are assigned to
some person for t sufficiently large. Furthermore, the prices of all objects j ~ Joo stay constant
for t sufficiently large and since old information is purged from the system (cf. Assumption 2),
we also have Pj( Tij(t» = Pj(t) for all i, j ~ Joo, and t sufficiently large. These facts imply that

for sufficiently large t, every object j E A(i) which is not in Joo would be preferable for person

i to every object jEA(i)nJoo. Since the E-CS condition (1) holds throughout the algorithm,
we see that for each person i E]OO we must have A(i) C Joo; otherwise such a person would bid
for an object not in Joo for sufficiently large t.
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We now note that after sufficiently long time, the only bids taking place will be by persons
in ]00 bidding for objects in Joo, so each object in Joo will be assigned to some person from
]00, while at least one person in ]00 will be unassigned (otherwise the algorithm would
terminate). We conclude that the number of persons in ]00 is larger than the number of objects
in JOO. This, together with the earlier shown fact

A(i)CJOO, ViE]OO,

implies that there is no complete assignment, contradicting our problem feasibility assumption.
The optimality properties of the assignment obtained upon termination follow from the £-CS

property shown and our earlier discussion on the synchronous version of the algorithm. 0

4. Synchronous and asynchronous implementations

In synchronous shared memory implementations of the auction algorithm; all bidding and

assignment phases are separated by a synchronization point. There are two basic methods to.
parallelize the bidding phase for the set of unassigned persons I, and a third method which is a
combination of the other two:
(a) Parallelization across bidS' (or Jacobi parallelization). Here the calculations involved in the

bid of each person i E I are carried out by a single processor. If the number of persons in
I, call it I I I, exceeds the number of processors p, some processors will execute the
calculations involved in more than one bid. (This will typically happen in the early stages
of a Jacobi-type algorithm where I is the set of all unassigned persons.) If I I I < p, then
p -I I r processors will be idle during the bidding phase, thereby reducing efficiency. (This
will typically happen in the late stages of a Jacobi-type algorithm.)

(b) Parallelization within a bid (or Gauss-Seidel parallelization). Here the set I consists of a
single person as in the Gauss-Seidel implementation. The calculations involved in the bid
of each unassigned person i are shared by the p processors of the system. Thus the set of

admissible objects A(i) is divided in p groups of objects A}(i), A2(i),..., Ap(i). The best
object, best value, and second best value are calculated within each group in parallel by a
separate processor. We call the calculations within a group a search task. After all the
search tasks are completed (a synchromization of the processors is required to check this)
the results are 'merged' by one of the processors who finds the best value over all best
group values, while simultaneously computing the corresponding best object and size of
bid. (It is possible to do the merging in parallel using several processors, but this is
inefficient when the number of processors is small, as it was in our case, because of. the
extra synchronization and other overhead involved.) The drawback of this method over the
preceding one is that it typically requires a larger number of iterations, since each iteration
involves a single person. This is significant because even though each Gauss-Seidel
iteration may take less time because it is executed by multiple processors in parallel, the

synchronization overhead is roughly proportional to the number of iterations.
(c) Hybrid approach (or block Gauss-Seidelparallelization). In this approach, the bid calcula-

tions of each person are parallelized as in the preceding method, but the number of
searcher processors used per bid is s, where 1 < s < p. We will assume that s divides evenly
p, so we can compute the bids of pis persons in parallel, assuming enough unassigne4
persons are available for the iteration (I I I ~ pis). With proper choice of s, this method
combines the best features and alleviates the 3rawbacks of the preceding two.

Once the bidding phase of an iteration is completed (a synchronization point), the assign-
ment phase is executed. "This phase is carried out by a single processor in our synchronous
implementations. While it is possible to consider using multiple processors to execute the
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assignment phase in parallel, the potential gain from parallelization is modest while the
associated overhead more than offsets this gain in our system.

We have constructed an empirical model for the computation time per iteration of the block
Gauss-Seidel method with p processors and s search tasks per bid. This time is given by

T(p, s)=S(p, s)+M(p, s)+C(p, s)+ V,

where S(p, s) is the time for completing the search tasks, M(p, s) is the time for merging the
results of search tasks, C(p, s) is the time for synchronization and V is the constant overhead
per iteration.

Let us assume for convenience that each set of admissible objects A(i) has the same number
of elements, say n. By counting the number of operations and by assuming perfect load
balancing between the search tasks (i.e., an equal number of objects nls in each of the groups
A}(i),..., As(i)), we have estimated roughly that the search time per iteration is

S(p, s) = Const..( ~ + log~ + log(log~)).

(The logarithmic terms account for the calculations involving the second best value.) The
merging time is proportional to s,

M(p, s)=Const. .s,

while the synchronization time was found experimentally to be roughly proportional to p

S(p, s) =Const. 'p; I!

see the next Section.
It can be seen that, given n, there are optimal values of p and s that minimize the total time

per iteration. For example, if p and s are large, the increase of the synchronization and
merging times may offset the potential gains from parallelization of the search tasks.

Another important consideration is that as p Is increases, the number of bids that can be
calculated in parallel also increases, although not proportionally because near termination, the
number of unassigned persons may be less than p Is. As a result, the number of iterations tends
to decrease by a somewhat unpredictable factor, which is typically less than pis. Because of
this and because of various constants involved in the preceding estimates of the search,
merging, and synchronization time, it is difficult to estimate a priori the optimal values of p
and s to solve the problem. An interesting possibility that we did not try is to change
dynamically s so that the number of unassigned persons is greater or equal to pis throughout

the algorithm.

4.1. An asynchronow implementation

In our asynchronous implementation, the bidding and merging calculations are divided in
tasks, which are organized in a first in-first out queue. When a processor becomes free it starts
executing the top task of the queue, if the queue is nonempty, and otherwise it checks whether a
termination condition is satisfied. The algorithm stops when all processors encounter the

termination condition.
Similarly as in the synchronous block Gauss-Seidel implementation, each set of admissible

objects A(i) is divided in s groups of objects A1(i),..., As(i). The calculation of the bid of a
person i is divided in s tasks. The first s -1 tasks are search tasks involving the groups of
objects A1(i),..., As-l(i). To perform one of these tasks, a processor must calculate and store
in memory the best value, second best value, and best object within the corresponding object
group. The sth task starts with a search and memory storage of the best value, second best
value, and best object within the group As(i), and following this, it completes the bid of person
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i by merging the individual group search results, that is, by finding the best object and bid for
person i based on the currently stored group results. The sth task also includes raising the
price of the best object and changing the assignment of the object (assuming the calculated bid
is larger than the best object's price by at least f). An alternative is to create an extra task that
changes the price and assignment of the objects; this leads, however, to an inefficient
implementation as will be seen in the next Section.

There are two sources of asynchronism here. First, it is possible for some prices to be
changed between the time a search task is completed and the time the results of that task are
used to calculate a person bid. Second, it is possible that the merging task of a person's bid is
carried out before some of the search tasks associated with that bid are completed. In both
cases the bid may reflect out-of-date price information and may prove ineffective in that it
yields a bid that dOes not exceed the corresponding best object's price by at least f.

The advantage of the asynchronous implementation is that processors do not remain idle
waiting to get synchronized with other processors or waiting for merging tasks to be completed.

The extreme special case of the preceding algorithm, where s = 1 and a person's bid is
calculated by a single processor, is called asynchronous Jacobi algorithm. Generally one obtains
more efficient implementations when s > 1, but the optimal value of s depends on the
dimension and the sparsity structure of the problem.

5. Coded implementations and computational results

In this Section we describe the design and performance of six parallel auction algorithm
implementations on the Encore Multimax. These implementations are:
(1) Synchronous Gauss-Seidel auction,
(2) Synchronous Jacobi auction,

(3) Synchronous hybrid auction,
(4) Asynchronous Jacobi auction,
(5) Asynchronous hybrid auction 1,
(6) Asynchronous hybrid auction 2.

We illustrate these algorithms by numerical experiments using a common 1000 person, 20%
dense assignment problem with integer costs selected randomly in the range [1, 1000]. The size
of the problem was large enough to allow for significant speedups using parallel processing.
Additional numerical experiments with a variety of problem sizes have produced qualitatively
similar results. A comparison of the synchronous and asynchronous auction versions is also
given in this Section, based on solution of a broader range of problems.

5.1. 

Synchronous Gauss-Seidel auction algorithm

This algorithm processes a single bid at a time, by executing p search tasks in parallel,
followed by merging the results of the search tasks, as discussed in the preceding Section.
Figure 3 shows that the one-processor version of the Gauss-Seidel auction algorithm spends a
significant portion of its computation time (depending on the problem size and density)
executing the search tasks. Thus, the algorithm has considerable speedup potential through
parallelization of the search, particularly for dense problems.

The design of the synchronous Gauss-Seidel auction algorithm is illustrated in Fig. 4. Two
synchronization points are included in each bidding iteration. The first is a barrier (based on
the barrier monitor developed at ANL/MCS [16]), which serves to delay the start of the search
of admissible objects until the previous price update is completed. The second synchronization
point is an extension of the Argonne monitors for portable parallel prograrnlning [16J. It
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Fig. 3. Percentage of total computation time spent by the one-processor version of the Gauss-Seidel auction in

searching the lists of admissible objects as a function of the density of feasible assignments, for 1000 person assignment

problems, with cost range [1, 1000].

sequences the merging of the search task results and guarantees that the results of the merged
search are identical with the one-processor Gauss-Seidel algorithm.

Figure 5 illustrates the performance of the synchronous Gauss-Seidel auction algorithm. All
of the times reported in the figure are measured in terms of the parent processor (the processor
which executes the sequential part of the algorithm). It is seen that the achievable speedup for
the 1000 person, 20% dense problem is limited to about 3, because the synchronization and
merging time increase with the number of processors at a rate slightly faster than linear.
Generally, for a fixed number of processors, the speedup of the synchronous Gauss-Seidel
auction typically increases as the problem density increases, since then the serial time for
searching (which is parallelized) increases relative to the serial time for merging (which is not
parallelized), as well as the time for synchronization.

Figure 6 illustrates the conjectured theoretical behavior of the total search, synchronization
and computation times, based on fitting the models described in the previous Section with

Fig. 4. Design of the parallel synchronous Gauss-Seidel auction algorithm. Multiple processors are used to search the
list of admissible objects for a person; the results of the searches are merged to compute a person's bid, and the price

and object assignment update is done by a single processor.
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synchronization time as the number of processors increases. This limits the overall speedup to approximately 3 for this

problem.

appropriate constants to match the problem size. Note the close correspondence between the
predictions of Fig. 6 and the empirical results of Fig. 5. The only discrepancy is that the
empirical synchronization time grows sligWy faster than the predicted time with the number of
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Fig. 7. Design of synchronous Jacobi auction algorithm. Multiple processors are used to compute bids for multiple
persons simultaneously. The parent processor then processes sequentially the bids.

processors; this is probably due to increased contention for access to critical sections in the

monitors. Similar phenomena were observed by Dritz and Boyle [22J in their experiments using

the Encore Multimax.

5.2. Synchronow Jacobi auction algorithm

In this algorithm, multiple processors are used to generate bids simultaneously for different
persons. The number of simultaneous bids is equal to the minimum of the number of
processors used and the number of unassigned persons. Each processor computes the bid

associated with a different person. The resulting bids are then processed at a single processor,
called the parent, in order to update the object prices and assignments, and the list of
unassigned persons. The design of the algorithm is illustrated in Fig. 7. Again, there are two
synchronization points per iteration, which are implemented with the extension of the barrier
monitor discussed previously. The synchronization after the compute bids operation is only a
barrier monitor because no merging of the individual computations by each processor is
required (unlike the synchronous Gauss-Seidel auction algorithm). It turns out that this

reduces the overall synchronization overhead.
An important aspect of the synchronous Jacobi auction algorithm is that the amount of

potential parallel work varies across iterations; specifically, it depends on the number of
remaining unassigned persons. When this number is less than the number of available
processors, some of the processors will be idle; see Fig. 8. In order to prevent idle processors
for competing for shared resources such as synchronization locks, the size of the synchroniza-
tion barriers was adaptively modified to match the number of non-idle processors. Idle
processors were diverted to a rest barrier, waiting to rejoin the computation when the number
of unassigned persons grew larger than the number of available processors (at the beginning of

a new (-scaling phase).
Figure 9 illustrates the performance of the synchronous Jacobi auction algorithm. Again,

search time and synchronization time were measured for the parent processor. The search time

per iteration is independent of the number of processors, but the total number of iteration (and
therefore also the total search time) is reduced when the number of processors increases
because then the average number of parallel bids per iteration also increases. Note the relatively
small synchronization time required for the Jacobi auction algorithm when compared to the
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Gauss-Seidel algorithm. This is due to three factors. First, the synchronization after computing
bids is simpler because no merging of the results of the processors is required. Second, the
number of synchronization calls is reduced because the total number of iterations is reduced by
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Fig. 10. Design of the synchronous hybrid auction algorithm with two bids per iteration, and s = p /2 search tasks per

bid.

processing multiple bids in parallel. Finally, the number of processors which contend for a
synchronization lock is reduced adaptively when the number of unassigned persons is less than
the number of processors, leading to simpler synchronization (with reduced contention) at each
iteration.

The resUlts of Fig. 9 reflect a small anomaly: increasing the number of processors from 8 to
10 produces an apparent increase in computation time. The reason is that, due to accidental
reasons, the number of iteration required for convergence with 10 processors increased
significantly over the corresponding number with 8 processors (the sample path of the
algorithm changes with the number of processors).

5.3; Synchronous hybrid auction algorithm

The results obtained with the previous two synchronous algorithms suggest that an efficient
parallel implementation should combine the speedups available from Gauss-Seidel paralleliza-
tion and Jacobi parallelization. In particular, by computing multiple bids simultaneously, and
by using multiple processors to compute each bid, a multiplicative effect may be achievable
whereby the overall speedup is th~ product of the Gauss-Seidel speedup and the Jacobi
speedup. The synchronous hybrid auction algorithm is an attempt to realize this multiplicative
speedup. In this algorithm, unassigned persons are selected two at a time, and two bids are
computed in parallel (Jacobi parallelization with two processors). For each person i, the set of
admissible objects A(i) is searched in parallel by p/~ processors (Gauss-Seidel parallelization).

The overall design of the algorithm is illustrated in Fig. 10. There are three synchronization
points per iteration. An initial barrier is included to delay the start of the search tasks until all
of the object prices are updated from the previous iteration. A separate merge search monitor is
included for each person, and a synchronization barrier is used to wait until both bids are
computed before proceeding to award the auctions. The size of the barriers and monitors were
tailored to the number of processors which rendezvous at each synchronization point. Thus, the
first barrier synchronizes 2s processors, the merge search monitors synchronize s processors,
and the last barrier synchronizes only two processors, thereby keeping the synchronization

overhead to a minimum.
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person, 20% dense assignment problem, cost range [1, 1000].

Figure 11 illustrates the performance of the synchronous hybrid auction algorithm as a
function of the total number of processors used for the same 1000 person, 20% dense

assignment problem described previously. The one-processor time for this algorithm is 44
seconds. The synchronization time is again measured in terms of the parent processor, and
represents the total time that the parent processor spends at the different synchronization
points. The curves in Fig. 11 indicate that the achieved speedup is considerably lower than the

anticipated multiplicative speedup from combining the Jacobi and Gauss-Seidel speedups. For
example from Fig. 11, the actual speedup using 12 processors is under 4. If we multiply the
speedup from Jacobi parallelization with two bids (which is roughly 1.75 based on Fig. 9), and
the speedup from Gauss-Seidel parallelization using 6 processors (which is 2.75 based on Fig.
5), we obtain a predicted speedup of 4.8125. This loss of effectiveness can be traced to the
growth of the synchronization time with the total number of processors used (even though the
total number of iterations has been reduced by a factor of 1.83 due to Jacobi parallelization).
This synchronization time represents the dominant part of the overall computation time when
the number of processors is large, and prevents a multiplicative combination of the speedups
from Gauss-Seidel and Jacobi parallelization.

5.4. Asynchronous Jacobi auction algorithm

This algorithm tries to reduce the overall synchronization overhead by allowing bids to be
computed based on older values of the object prices. Specifically, processors start computing
new bids without waiting for other processors to complete their price updates. Some synchroni-
zation is still required to guarantee that the object prices are monotonically increasing (cf. Eq.
(15)), and to guarantee that the computation of a person bid is not unnecessarily replicated by
multiple processors. This synchronization is implemented using locks on each object and a lock
on the queue of unassigned persons; these locks allow only one processor at a time to modify
the price of a given object, and only one processor at a time to update the queue of unassigned
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persons. Figure 12 illustrates the design of the asynchronous Jacobi auction algorithm. To
reduce contention for the locks when the number of persons in the unassigned persons queue is
lower than the number of processors, excess processors are diverted to a barrier to wait for a

new £-scaling cycle.
The perfonnance of the asynchronous Jacobi auction algorithm is illustrated in Fig. 13 for

three sizes of randomly generated problems: 500 persons with 80% density, 1000 persons with
20% density and 2000 persons with 5% density. The problem densities were selected ,to obtain

Fig. 12. Design of asynchronous Jacobi auction algorithm. Locks on each object and on the unassigned persons queue
are used to guarantee data integrity and preserve complementary slackness.



Parallel implementations of the auction algorithm 727

729
nearly equal sequential run times for all three problems. The curves in Fig. 13 show the
speedup over the sequential processing time obtained by the asynchronous Jacobi auction
algorithm as a function of the number of processors used. The numbers shown represent an
average of three runs; the actual running time of the algorithm varies from run to run because
the order in which different processors complete their bids and acquire the locks affects the
order in which objects are inserted into the unassigned persons queue. A different ordering of
persons produces a different auction process, which affects the number of bids which must be
generated for convergence. In the test runs, the number of bids generated varied by under 4%
from run to run.

Note the increase in speedup achieved by the asynchronous Jacobi auction algorithm
compared to the results obtained for similar problems by the synchronous Jacobi auction
algorithm in Fig. 9; the speedups have been improved from 4.5 to nearly 5.8, which represents
a 29% improvement. The increased speedup is achieved because of the improved load balance
among the processors, as processors do not wait idly for other processors to complete their

bidding process.
Another important point illustrated by Fig. 13 is the; effect of problem size on the speedup

achievable through Jacobi parallelization. Note that the speedups obtained for all three
problem sizes are roughly comparable; the fluctuations in speedup when using large numbers of
processors are due to variations in the number of bids required for convergenCe when different
numbers of processors are used. The reason for this behavior is that, although more bids are
generated for larger problems, the number of iterations for which there are few bidders (e.g. 1
or 2) also increases for large problems, thereby limiting the potential speedup. In contrast, the

potential speedup achievable thr<;>ugh Gauss-Seidel parallelization increases with problem size,
as the number of feasible assignments for each person increases.
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5.5. Asynchronous hybrid auction algorithms

We implemented two asynchronous hybrid auction algorithms. One of the two algorithms is
quite inefficient, but the reasons for this are worth explaining. The design of the algorithms is
illustrated in Fig. 14. Instead of an unassigned person queue, there is a queue of unassigned

11

r
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search tasks and bid tasks. Each unassigned person is represented by s search tasks and one bid
task, ordered consecutively in the queue so that the bid task follows the s search tasks.
Different types of asynchronous algorithms can be generated by controlling the number of
search tasks generated for each unassigned person. As before, a synchronization lock is
required to allow tasks to be read and generated one at a time.

Figure 14 illustrates the processing of a single processor. After reading a task from the task
queue, the processor determines whether it is a search task or a bid task. If it is a search task
for person i, the processor searches the appropriate segment of the object set A(i) and writes a
message in shared memory with the results of its search (the two highest net profit levels and
the object offering the highest net profit). The message is protected by a lock indexed by the
processor index and the person index, which guarantees that the message must be read in its
entirety by the bid task. After writing the message, the processor releases the lock and attempts
to acquire another task.

If the task acquired is a bid task, the processor must read the message left by the search
tasks for this person. Some of these search tasks may still by in process, so the bid processor
may be reading old messages. The proc~ssor locks each message, reads the contents, releases the
lock, and merges the results of the individual search tasks into an overall search result. This is
then used to compute a bid (from person i to object j). The processor then locks object j,
updates the price and assignment of object j, and releases the object. If an unassigned person
results from this operation, the processor then locks the unassigned task queue, inserts s search
tasks and one bid task for the unassigned person at the end of the queue, and releases the

queue.
The algorithm described above will be called asynchronous hybrid auction 1 (or AHA1)

algorithm. The difficulty with this algorithm is that a bid is often computed based on outdated
information, leading to a large increase in the number of losing bids (and therefore the number
of iterations required for convergence). Ideally, the bid task for person i would w~t for the
search tasks for person i to be completed; however, this requires time-wasting synchronization.
An alternative way to accomplish the same effect is to require the processor that executes the
last search task corresponding to a person to also execute the bid task corresponding to that

person immediately after the search task. In this manner, the likelihood that the other search
tasks corresponding to that person are complete by the time the bid task is executed is

substantially increased. We call this version of the algorithm asynchronous hybrid auction 2 (or

AHA2).
Figure 15 illustrates the relative performance (averaged across three runs) of the AHAI and

AHA2 algorithms for the same 1000 person assignment problem. Here the number of search
tasks per bid was two for all the runs reported. Thus, the overhead for merging the search
results is independent of the number of processors used. The AHAI algorithm is nearly twice as
slow as the AHA2 algorithm. The reason is illustrated in Fig. 16, which shows the number of
bids generated by each algorithm up to convergence. The number of bids for the AHAI
algorithm is nearly double! The explanation is that the bid task is often generating the bids
before the search tasks have been completed; these bids based on old information are often
rejected, so that additional bids are required. The results illustrate the importance of careful
management of asynchronous tasks in order to guarantee that the processors are doing useful
work (i.e. work that will not become irrelevant when new information is acquired.)

Figure 17 illustrates the performance of one variation of the AHA2 algorithm for several
1000 person, 20% dense assignment problems with different structure. Three classes of
problems were used in these experiments: randomly generated problems with cost range
[1,1000], symmetric cost problems with cost range [1, 1000] and extended cost problems with
'difficult' cost structure, where each cost element is selected randomly from the range [1, i Xj]
(where i, j are the person and object indices, respectively). In these experiments, the number of
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shown are the average of three different runs. In these problems, the number of search tasks per bid was equal to 2.

,
Figure 17 illustrates that the AHA2 algorithm obtains similar reductions in computation time
for each problem class using parallel processing.

We finally compare in Fig. 18, the performance of the synchronous and the asynchronous
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hybrid auction algorithms on several problems, keeping the number of persons constant and
varying the problem density. The asynchronous algorithm is the more efficient AHA2 version;
the number of search tasks per bid is equal to half the number of processors in each algorithm.
The benefits of asynchronism are clear from the figure.

6. Conclusions

In this paper, we have proved the validity of an asynchronous version of the auction
algorithm, which can serve as a model of asynchronous implementations in a broad variety of
parallel machines. We have also provided the first experimental comparison of a variety of
synchronous and asynchronous versions of the algorithm. Our conclusion is that the better

asynchronous implementations outperform substantially the corresponding synchronous imple-
mentations on a shared memory machine. This is in agreement with other recent studies [19,23J,
which have confirmed the advantage of asynchronous implementations of parallel network flow
algorithms. '
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