
Parallel Tabu Search Heuristics for the Dynamic

Multi-Vehicle Dial-a-Ride Problem

Andrea ATTANASIO1, Jean-François CORDEAU2,
Gianpaolo GHIANI3, Gilbert LAPORTE2

1 Centro di Eccellenza sul Calcolo ad Alte Prestazioni
Università degli Studi della Calabria, 87030 Rende (CS), Italy

attanasio@unical.it

2 Canada Research Chair in Distribution Management, HEC Montréal
3000 Chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

{cordeau, gilbert}@crt.umontreal.ca

3 Dipartimento di Ingegneria dell’Innovazione
Università degli Studi di Lecce, 73100 Lecce, Italy

gianpaolo.ghiani@unile.it

December 18, 2003

Abstract

In the Dial-a-Ride Problem (DARP) users specify transportation requests between
origins and destinations to be served by vehicles. In the Dynamic DARP, requests are
received throughout the day and the primary objective is to accept as many requests as
possible while satisfying operational constraints. This article describes and compares
a number of parallel implementations of a tabu search heuristic previously developed
for the static DARP, i.e., the variant of the problem where all requests are known in
advance. Computational results show that the proposed algorithms are able to satisfy
a high percentage of user requests.

Keywords: Dial-a-Ride problem, parallel computing, metaheuristics.



1 Introduction

The Dial-a-Ride Problem (DARP) arises in contexts where n users specify transportation

requests between origins and destinations, subject to scheduling constraints. These requests

must be satisfied in a cost effective fashion by a fleet of m vehicles, subject to a number

of operational constraints. The most common application of the DARP is encountered in

door-to-door transportation services for the elderly and the handicapped (see, e.g., Madsen,

Ravn and Rygaard (8), Toth and Vigo (10; 11), and Borndörfer et al. (1)). With the ageing

of the population and the need to reduce public expenditures in most western societies, we

believe dial-a-ride services will gain in popularity in coming years and the need to run these

efficiently will also increase.

Dial-a-ride services operate according to one of two modes. In the static mode all requests

are known in advance, typically one day before transportation actually takes place. In the

dynamic mode requests are gradually revealed and assigned to existing vehicle routes in

real-time so that a priori planning is impossible. In practice, the distinction between these

two modes is not always clear cut. Even if planned routes are available, changes may be

necessary due to last minute cancellations. Also, in dynamic environments, a large number

of requests are often known at the start of the planning horizon. There also exist several

versions of the DARP for both modes since the objective, constraints and operating rules

vary from one context to another.

In the last twenty years or so, several models and algorithms have been devoted to the

DARP. For a recent overview, see Cordeau and Laporte (3). With a few exceptions, most

available algorithms are heuristics. Tabu search (TS) – see, e.g., Cordeau and Laporte (4) –

stands out as a very powerful tool for the DARP since it is at the same time highly flexible

and efficient. Flexibility stems from the capacity of handling a large number of variants

within the same search framework. Efficiency is associated with solution quality. It is now

clear that TS is capable of consistently generating high quality solutions on a large variety

of routing problems (see, e.g., Cordeau et al. (2)).

On the negative side the running time of TS algorithms can be rather high. Thus, using

real data from a Danish transporter (with n = 200 and 295), Cordeau and Laporte have

run three versions of their TS algorithm. These versions vary in the the thoroughness of the

exploration of the solution space and yield highly varying running times. The simplest version

yielded computing times varying between 13.21 and 28.40 minutes on a Pentium 4, 2 GHz

computer, while the most thorough version required between 104.48 and 267.82 minutes.

The improvement in solution quality between the two versions is almost 6%. There are two

reasons why it is important to devise faster algorithms. First, there exist several contexts

1



where the problem size is much larger (the number of requests per day in some European and

North-American cities often exceeds 2000). Second, while it makes sense to run an algorithm

for a few hours in a static context, much faster response times are required in a dynamic

environment (see, e.g., (6) and (7)). In fact whenever a user makes a transportation request

by telephone or on the Internet, the operating system should be able to tell, within a few

seconds, whether the request can be accommodated. In addition, if the request is accepted,

it should be embedded in the existing vehicle routes within a relatively short time (no more

than ten minutes, say).

One natural way to speed up computation time is through the use of parallel computing.

We report on the use of a number of parallel implementations of the Cordeau and Laporte (4)

static DARP heuristic in a real-time context. The remainder of this article is organized as

follows. In Section 2, we describe the main features of our version of the DARP. This is

followed by a summary of the single processor static TS heuristic in Section 3, and by its

parallel and dynamic implementations in Section 4. A computational assessment of the

parallel and dynamic implementations is presented in Section 5 and conclusions follow in

Section 6.

2 Problem definition

As is often the case in dial-a-ride contexts, users specify an outbound request from their home

to a destination (e.g., a hospital) and an inbound request for the return trip. To achieve a

fair balance between user convenience and the transporter’s cost, we believe users should be

able to specify windows on the arrival time of their outbound journey and on the departure

time of their inbound journey. The transporter guarantees each user a maximal ride time,

i.e., an upper bound on the time spent by a user in the vehicle. This can either be a constant,

or a value obtained by multiplying the minimal achievable travel time by a preset constant.

Formally, the static DARP is defined as follows. Let G = (V, A) be a complete graph

where V = {v0, v1, . . . , v2n} is the vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc

set. Vertex v0 represents a depot at which is based a fleet of m vehicles, and the remaining

2n vertices represent origins and destinations for the transportation requests. Each vertex

pair (vi, vi+n) represents a request for transportation from origin vi to destination vi+n. With

each vertex vi ∈ V are associated a load qi (with q0 = 0), a non-negative service duration

di (with d0 = 0) and a time window [ei, li], where ei and li are non-negative integers. The

load is equal to 1 for vertices v1, . . . , vn and to −1 for vertices vn+1, . . . , v2n. Service duration

2



corresponds to the time needed to let the client get on or off the vehicle. Let T denote the

end of the planning horizon. In the case of an outbound request, it is assumed that ei = 0

and li = T . Similarly, ei+n = 0 and li+n = T for an inbound request. Each arc (vi, vj) has

an associated non-negative cost cij and a non-negative travel time tij. Finally, let L denote

the maximum ride time of a client. The DARP consists of designing m vehicle routes on G

such that

(i) every route starts and ends at the depot;

(ii) for every request i, vertices vi and vi+n belong to exactly one route and vertex vi+n is

visited later than vertex vi;

(iii) the load of vehicle k does not exceed at any time a preset bound Qk;

(iv) the total duration of route k does not exceed a preset bound Tk;

(v) the service at vertex vi begins in the interval [ei, li], and every vehicle leaves the depot

and returns to the depot in the interval [e0, l0];

(vi) the ride time of any client does not exceed L;

(vii) the total routing cost of all vehicles is minimized.

We denote by Ai the arrival time of a vehicle at vertex vi, by Bi ≥ max {ei, Ai} the

beginning of service at vertex vi, and by Di = Bi + di the departure time from vertex vi.

The time window constraint at vertex vi is violated if Bi > li. However, arrival before ei is

allowed and the vehicle then incurs a waiting time Wi = Bi − Ai. The ride time associated

with request i is computed as Li = Bi+n − Di. If there were no ride time constraints, it

would always be optimal to set Bi = max {ei, Ai}. However, it may sometimes be profitable

to delay the beginning of service at vertex vi so as to reduce the unnecessary waiting time

at vertex vi+n (or at any other vertex visited between vi and vi+n) and thus, the ride time

associated with request i.

In the Dynamic DARP, operational constraints are the same as in the static problem.

However, the primary goal is to satisfy as many requests as possible with the available fleet of

vehicles. Requests are dealt with one at a time in a first come, first served fashion. Whenever

a request can be served without violating any of the constraints, it is accepted and becomes

a part of the problem. Of course, as the day goes on, the degree of flexibility decreases and

the last requests to be formulated are likely to be rejected.

3



3 Sequential tabu search heuristic

The TS algorithm developed by Cordeau and Laporte (4) for the static DARP works as

follows. Starting from an initial solution s0, the algorithm moves at iteration t from st to

the best solution in a neighbourhood N(st) of st. To avoid cycling, solutions possessing

some attributes of recently visited solutions are declared forbidden, or tabu, for a number

of iterations, unless they constitute a new incumbent. As is common in such algorithms,

a continuous diversification mechanism is put in place in order to reduce the likelihood of

being trapped in a local optimum.

As is now often the case in TS implementations, the search mechanism explores infeasible

solutions through the use of a penalized objective of the form

f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s),

where c(s) is the routing cost of solution s and q(s), d(s), w(s) and t(s) represent violations

of vehicle capacity, route duration, time window and user ride time constraints, respectively.

Initially set equal to 1, the coefficients α, β, γ and τ are multiplied or divided by 1 + δ at

each iteration, where δ > 0 is a user-defined parameter. If s is infeasible with respect to a

constraint, the associated parameter is multiplied by 1 + δ; otherwise it is divided by 1 + δ.

An initial solution is obtained by randomly assigning requests to routes while satisfying

constraints (i) and (ii). At each iteration t, the search proceeds to the best non-tabu solution

in the neighbourhood N(st) of the current solution st, with respect to the objective function

f(s)+ p(s), and the coefficients α, β, γ and τ are updated. Every κ iterations, and whenever

a new best solution is identified during the search, intra-route exchanges are performed to

improve f(s).

To define neighbourhoods, an attribute set U(s) = {(i, k) : request i is assigned to vehicle

k} is associated with each solution s. The neighbourhood N(s) of s is made up of all solutions

reachable from s by removing an attribute (i, k) from U(s) and replacing it by (i, k′), where

k′ 6= k. This means that vi and vi+n are removed from route k which is then reconnected by

linking the predecessors and successors of these vertices. Vertices vi and vi+n are inserted

into route k′ so as to minimize the total increase in f(s) by performing simple insertions

(i.e., the ordering of the vertices already in route k′ remains unchanged). To avoid cycling,

reinserting vi and vi+n into route k is tabu for θ iterations, unless such a move would result

in a new best solution among all those possessing attribute (i, k).

A continuous diversification scheme is also applied. To discourage frequently moving the

same attribute, solutions s̄ such that f(s̄) > f(s) are penalized by a factor proportional to the

4



frequency of addition of its distinguishing attributes and a scaling factor. More precisely, let

ρik be the number of times attribute (i, k) has been added to the solution during the search,

divided by the number of iterations performed. If (i, k) denotes the attribute added to s to

obtain s̄, a penalty

p(s̄) = λ c(s̄)
√

nm ρik

is thus added to f(s̄) when evaluating the cost of s̄. The scaling factor c(s̄)
√

nm introduces

a correction to adjust the penalties with respect to the total solution cost and the size of the

problem as measured by the number of possible attributes. Finally, the parameter λ is used

to control the intensity of the diversification. These penalties have the effect of driving the

search process toward less explored regions of the solution space whenever a local optimum

is reached.

When evaluating a neighbour solution, route schedules must be determined. This is

critical when maximum route durations or user ride time constraints are imposed since route

duration and ride times can sometimes be reduced, without changing the sequence of vertices,

by acting on departure times from each location. Consider a route k = (v0, . . . , vi, . . . , vq)

where both v0 and vq correspond to the depot. If time windows can be satisfied, a solution

can be identified by sequentially setting B0 = e0 and Bi = max{ei, Ai} for i = 1, . . . , q. To

reduce route duration and ride times, it may be advantageous to delay departure from the

depot and the beginning of service at origin vertices. For this, one must compute for each vi

the maximum delay Fi that can be incurred before service starts so that no time window in

route k will be violated. Savelsbergh (9) calls Fi the forward time slack of vi. It is computed

as

Fi = min
i≤j≤q

{
lj −

(
Bi +

∑
i≤p<j

tp,p+1

)}
, (1)

which can be rewritten as

Fi = min
i≤j≤q

{∑
i<p≤j

Wp + (lj −Bj)

}
(2)

since

Bj = Bi +
∑

i≤p<j

tp,p+1 +
∑

i<p≤j

Wp.

When time windows must be satisfied, the forward time slack is the largest increase in

the beginning of service at vertex vi that will not cause any time window to become violated.

In our case, since infeasible solutions are allowed during the search, the notion of forward

5



time slack must be slightly modified to represent the largest increase in the beginning of

service at vertex vi that will not cause any increase in time window violations. Hence, the

term (lj −Bj) should be replaced with (lj −Bj)
+ in (2) because even if the time window for

vertex vj cannot be satisfied in the current route, one can nevertheless increase the beginning

of service at vertex vi by as much as
∑

i<p≤j Wp without increasing the violation of the time

window constraint at vertex vj.

When computing the forward time slack of a vertex vi 6= v0, care must also be taken

not to increase the violation of ride time constraints. Indeed, by delaying the beginning of

service at vertex vi, one may increase the ride time for a request whose origin vertex is before

vi and whose destination vertex is at or after vi. As a result, equation (2) becomes

Fi = min
i≤j≤q

{∑
i<p≤j

Wp + (min {lj −Bj, L− Pj})+

}
, (3)

where Pj denotes the ride time of the user whose destination vertex is vj if n + 1 ≤ j ≤ 2n

and Pj = −∞, otherwise.

The impact of deleting vertices vi and vi+n from route k and inserting them at pre-

specified locations in route k′ can thus be assessed by performing the desired insertions and

deletions and then applying the following procedure to each of the routes involved in the

exchange :

1. Set D0 := e0.

2. Compute Ai, Wi, Bi and Di and for each vertex vi in the route.

3. Compute F0.

4. Set D0 := e0 + min {F0,
∑

0<p<q Wp}.

5. Update Ai, Wi, Bi and Di for each vertex vi in the route.

6. Compute Li for each request assigned to the route.

7. For every vertex vj that corresponds to the origin of a request j

(a) Compute Fj.

(b) Set Bj := Bj + min{Fj,
∑

j<p<q Wp}; Dj := Bj + dj.

(c) Update Ai, Wi, Bi and Di, for each vertex vi that comes after vj in the route.

(d) Update the ride time Li for each request i whose destination vertex is after vj.

6



This procedure first minimizes time window constraints violations in steps (1) and (2). It

then minimizes route duration without increasing time window constraints violations in steps

(3)-(6). Finally, in step (7), it sequentially minimizes ride times by delaying the beginning

of service at each origin node as much as possible without increasing route duration, time

window or ride time constraints violations. When applied to a route for which time windows

can be satisfied, the procedure will yield departure and arrival times that minimize route

duration and then minimize the total violations of ride time constraints. Since minimizing

route duration can only help reduce ride times, it is not suboptimal to perform these two steps

sequentially. In addition, treating requests sequentially in step (7) is optimal for minimizing

the violation of ride time constraints because delaying the beginning of service at a given

vertex will never increase the violation of ride time constraints. It could, however, increase

the ride time of a request for which the constraint is satisfied.

Finally, to reduce computation time, the following insertion rule is applied to evaluate the

impact of inserting vertices vi and vi+n in another route. It uses the notion of critical vertex.

A vertex vi is critical if it has a non-trivial time window, i.e., ei 6= 0 or li 6= T . Given that

each user specifies either a desired departure or arrival time but not both, there is always

one such vertex per request i. First, the best insertion position is determined for the critical

vertex. Then, holding the critical vertex in its best position, the best insertion position is

determined for the non-critical vertex. This rule has a dramatic effect on computing times

as it reduces the maximum number of possible exchanges involving request i from O(r2) to

O(r), where r is the number of vertices in route k.

4 Dynamic and Parallel Implementations

Our dynamic and parallel DARP algorithms work as follows. A static solution is constructed

on the basis of the requests known at the start of the planning horizon. When a new request

arrives, the algorithm performs a feasibility check, i.e., it searches for a feasible solution

including the new service request. Once it has been decided whether the new request can

be accepted or not, the algorithm performs a post-optimization, i.e., it tries to improve the

current solution. In the following the main ingredients of our procedure are described.

Parallelization strategy. The parallelization of a TS heuristic can be accomplished in

a number of ways depending on problem structure and hardware at hand. Crainic, Toulouse

and Gendreau (5) classify parallel TS procedures according to three criteria: Search Control

Cardinality, Search Control Type and Search Differentiation. Let p be the number of threads.

7



The first criterion indicates whether the control of the parallel search is performed by a

single processor (1–control, 1-C), or distributed among several processors (p–control, p–

C). The second measure denotes the way (synchronous or asynchronous) communication

is performed among processors. In asynchronous communication, a processor that finds

a new best solution broadcasts a message to the other processors. In the simplest case,

the single solution is sent (collegial communication, C) while in knowledge-based collegial

communication (KC) additional information are transmitted to the receivers. Finally, the

third criterion accounts for the way different searches are carried on. Four alternatives are

available: Single Initial Point - Single Strategy (SPSS) if a single search is performed; Single

Initial Point - Multiple Strategies (SPMS) when each processor carries on a different search

starting from the same initial solution; Multiple Initial Points - Single Strategy (MPSS) if

each processor performs the same search starting from different initial solutions; Multiple

Initial Points - Multiple Strategies (MPMS) if each processor carries on a different search

starting from a different initial solution. In SPMS and MPMS, the searches may be performed

by different algorithms or, more commonly, by the same algorithm with different parameters.

We have implemented a p–C/C/SPMS strategy and a p–C/C/MPSS strategy for solving

the initial static problem and for the post-optimization phase. In the p–C/C/SPMS strategy

each processor performs a different search from the same initial solution. Once a processor

finds a new best solution, it sends it to the other processors that re-initialize their searches.

As in the sequential procedure (see Section 3), every µ iterations, parameters δ, λ, θ are

randomly generated in the intervals [0, δmax], [0, λmax] and [0,θmax], respectively. In our

implementation, δmax, λmax and θmax were chosen in such a way that p/2 processes perform

an intensification and the remaining p/2 processes carry on a diversification.

In the p–C/C/MPSS strategy each processor performs the same search from different

solutions using the best parameter settings identified for the sequential heuristic. Then, in

order to obtain the best diversification effect, every ω iterations each thread broadcasts the

ρik values obtained since the last update. Each other processor then aggregates all values

received and continues its exploration with this information. A slight adjustment has to be

made to the computation of the diversification penalties: instead of dividing by the number

of iterations performed since the beginning of the search, one must divide by the total number

of iterations performed by all searches (this can be approximated by multiplying the number

of iterations by the number of processors).

Static solution construction. We have implemented two different procedures for

generating a static solution. In the first approach (SS1), the static TS of Cordeau and

Laporte (4) is invoked while leaving vehicle capacities unchanged. In the second approach

(SS2), a static problem with reduced vehicle capacities Q′
k := 0.5Qk (k = 1, · · · , m) is defined

8



and the static TS of Cordeau and Laporte (4) is run. If a feasible solution is obtained, we

stop. Otherwise, we reset Q′
k := 0.75Qk (k = 1, · · · , m) and run the TS again. If a feasible

solution is obtained, we stop. Otherwise, we restore the original vehicle capacities Q′
k := Qk

(k = 1, · · · , m) and run the TS again. This procedure is designed in the hope of equally

distributing requests among vehicle routes.

Feasibility check. The feasibility check must be performed in a short amount of time

since users requesting transportation by telephone or on the Internet are usually willing

to wait just a few seconds. All threads are re-initialized using new solutions obtained by

randomly inserting the new request in the current solution. If at least one of the solutions

is feasible, this phase terminates. Otherwise, a parallel TS, in which communication among

threads is suspended, is run. Hence, the feasibility check is made up of p independent threads.

We have implemented two different procedures. In the first approach (Finite Penalty, FP),

we update penalty parameters α = β = γ = τ as in the static TS (4). In the second approach

(Infinite Penalty, IP), we set α = β = γ = τ = ∞ in the hope of reaching feasibility more

quickly.

Post-optimization phase. The aim of this phase if to reduce routing cost as much

as possible. To this purpose, the parallel implementation of the static TS of Cordeau and

Laporte (4)is used.

5 Computational results

The proposed parallel heuristics were implemented on a cluster of eight PCs, each of which

has a Pentium III processor clocked at 700 MHz. Each process was coded in C++ and process

communications was handled by the Message Passing Interface (MPI) software (12).

Except for the IP feasibility check, penalty parameters have been set as follows. In

the SPMS procedures, parameters δmax, λmax and θmax were set equal to 0.01, 0.005
√

nm

and 5 log10 n, respectively, for the p/2 processors performing intensification, and equal to 1,

0.05
√

nm and 15 log10 n, respectively, for the p/2 processors performing diversification. In

all cases, the values of µ and κ were both set equal to 10. In the MPSS procedures, ω = 100

while the remaining parameters were set as in the sequential procedure (3). Moreover, after

a preliminary test, we have set µ = 10 and η = 10000.

The heuristics were tested on a set of 26 instances introduced by Cordeau and Laporte

(4). Twenty of them (instances 1 to 20) were randomly generated on the basis of information

provided by the Montreal Transit Authority, while the remaining six instances are real-life

9



large-scale problems provided by a Danish company. For each instance, half of the requests,

randomly chosen, were considered as static. Each dynamic request i is supposed to become

known Ti instants ahead, where Ti is uniformly distributed in [90,150].

The main goal of our computational experiments was to compare the eight procedures

SPMS-SS1-IP, SPMS-SS1-FP, SPMS-SS2-IP, SPMS-SS2-FP, MPSS-SS1-IP, MPSS-SS1-FP,

MPSS-SS2-IP, MPSS-SS2-FP with p = 1, 4 and 8 threads. In all cases, 30 seconds were

allowed for each feasibility check. Average results on the randomly generated instances are

reported in Table 1 while average results on the real-world instances are reported in Table

2. The meanings of the column headings are as follows:

- INSTANCE: instance number;

- SATREQ: percentage of requests satisfied;

- COST: routing cost of the solution.

Computational results show that the SS1 and SS2 procedures are almost equivalent, as

they were able to satisfy 80.16% and 79.60% of the requests, respectively. The IP procedures

are slightly better than the FP algorithms as they have satisfied 81.59% and 79.17% of

the requests, respectively. Parallel computing can be beneficial in solving real-time vehicle

routing problems as shown by the average percentage of requests satisfied for p=1, 4, 8

(76.84%, 80.79%, 83.51%, respectively). Finally, it is worth noting that randomly generated

instances are much harder to solve than real-world instances (see Tables 1 and 2).

Table 1: Comparison among dynamic DARP procedures - randomly generated instances

SS1-IP SS1-IP SS2-IP SS2-IP SS1-FP SS1-FP SS2-IP SS2-IP
Procedure SATREQ COST SATREQ COST SATREQ COST SATREQ COST

SPMS - 1 thread 66.80 4494.68 61.58 3693.72 71.76 3531.08 56.32 3811.08
SPMS - 4 threads 73.36 4171.36 73.19 4086.97 61.68 4087.46 68.55 3853.25
SPMS - 8 threads 64.96 4237.70 74.39 4703.04 70.63 4068.31 68.09 3995.17
MPSS - 1 thread 62.85 4055.36 57.35 3628.76 65.00 3321.01 55.87 3379.43
MPSS - 4 thread 72.86 4201.69 69.93 3872.07 65.88 4012.68 67.43 3915.53
MPSS - 8 thread 72.64 4268.71 71.53 4424.45 73.44 4249.16 65.49 3973.79

6 Conclusion

We have developed a number of parallel heuristics for the dynamic DARP, based on a tabu

search previously proposed for the static case. Computational experiments indicate that

10



Table 2: Comparison among dynamic DARP procedures - real-world instances

SS1-IP SS1-IP SS2-IP SS2-IP SS1-FP SS1-FP SS2-IP SS2-IP
Procedure SATREQ COST SATREQ COST SATREQ COST SATREQ COST

SPMS - 1 thread 95.69 5086.97 94.32 5084.80 91.65 4941.25 92.54 4212.53
SPMS - 4 threads 94.06 5219.90 95.29 5823.37 89.57 4890.97 90.83 4908.81
SPMS - 8 threads 97.39 5333.58 99.39 5789.58 95.66 5192.30 92.16 5075.51
MPSS - 1 thread 89.35 4776.41 91.66 4797.92 87.21 3700.72 89.46 4060.24
MPSS - 4 threads 92.18 5472.32 91.41 5731.15 95.48 5322.58 91.04 5041.70
MPSS - 8 threads 98.95 5735.35 97.14 5978.11 98.90 4713.78 95.36 5022.77

parallel computing can be beneficial in solving real-time vehicle routing problems. Moreover,

the IP mechanism turns out to provide the best results while the choice of the initial static

solution seems to be irrelevant. As far as future research is concerned, efforts should be

concentrated on incorporating some look-ahead features into route building.

Acknowledgment

This research was partially supported by the Italian National Research Council, by the

Center of Excellence on High-Performance Computing, University of Calabria, Italy, by a

Strategic research grant provided by HEC Montréal, and by the Canadian Natural Sciences

and Engineering Research Council under grants 227837-00 and OGP0039682. This support

is gratefully acknowledged.

References

[1] R. Borndörfer, M. Grötschel, F. Klostermeier, and C. Küttner. Telebus Berlin: Vehicle

scheduling in a dial-a-ride system. Technical Report SC 97-23, Konrad-Zuse-Zentrum

für Informationstechnik Berlin, 1997.

[2] J.-F. Cordeau, M. Gendreau, G. Laporte, J.-Y. Potvin, and F. Semet. A guide to vehicle

routing heuristics. Journal of the Operational Research Society, 53:512–522, 2002.

[3] J.-F. Cordeau and G. Laporte. The dial-a-ride problem: Variants, modeling issues and

algorithms. 4OR - Quarterly Journal of the Belgian, French and Italian Operations

Research Societies, 1: 89-101, 2003. Forthcoming.

11



[4] J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multi-vehicle

dial-a-ride problem. Transportation Research B, 37:579-594, 2003.

[5] T.G. Crainic, M. Toulouse, and M. Gendreau. Towards a taxonomy of parallel tabu

search algorithms. INFORMS Journal on Computing, 9:61–72, 1997.

[6] G. Ghiani, F. Guerriero, G. Laporte, R. Musmanno. Real-Time Vehicle Routing: So-

lution Concepts, Algorithms and Parallel Computing Strategies. European Journal of

Operational Research, forthcoming, 2003.

[7] H. N. Psaraftis. Dynamic vehicle routing: status and prospects. Annals of Operations

Research 61, 143-164, 1995.

[8] O.B.G. Madsen, H.F. Ravn, and J.M. Rygaard. A heuristic algorithm for the a dial-a-

ride problem with time windows, multiple capacities, and multiple objectives. Annals

of Operations Research, 60:193–208, 1995.

[9] M. W. P. Savelsbergh. The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing, 4:146–154, 1992.

[10] P. Toth and D. Vigo. Fast local search algorithms for the handicapped persons trans-

portation problem. In I.H. Osman and J.P. Kelly, editors, Meta-Heuristics: Theory and

Applications, pages 677–690. Kluwer, Boston, 1996.

[11] P. Toth and D. Vigo. Heuristic algorithms for the handicapped persons transportation

problem. Transportation Science, 31:60–71, 1997.

[12] G. William, M. Snir, W. Gropp, B. Nitzberg, and E. Lusk. MPI: The Complete Refer-

ence. MIT Press, Boston, Massachussetts, 1998.

12


