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The algorithm based on integration over Lefschetz thimbles is a promising method to resolve

the sign problem for complex actions. However, this algorithm often meets a difficulty in actual

Monte Carlo calculations because the configuration space is not easily explored due to the infin-

itely high potential barriers between different thimbles. In this paper, we propose to use the flow

time of the antiholomorphic gradient flow as an auxiliary variable for the highly multimodal

distribution. To illustrate this, we implement the parallel tempering method by taking the flow

time as a tempering parameter. In this algorithm, we can take the maximum flow time to be

sufficiently large such that the sign problem disappears there, and two separate modes are con-

nected through configurations at small flow times. To exemplify that this algorithm does work,

we investigate the (0 + 1)-dimensional massive Thirring model at finite density and show that

our algorithm correctly reproduces the analytic results for large flow times such as T = 2.
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1. Introduction

There are many cases where one needs to deal with complex actions. One important example for

high energy/nuclear physics is quantum chromodynamics (QCD) at finite density (see Ref. [1] for

a review on the recent developments). However, since a complex action does not give a real and

positive Boltzmann weight, one cannot directly resort to the traditional Markov chain Monte Carlo

methods to estimate correlation functions. The so-called reweighting algorithm (which absorbs the

phase of the weight into observables) is highly ineffective when the imaginary part of the action

becomes very large (such as in the thermodynamic limit), because one needs to take a sample from

a configuration space where the weights of nearby configurations have almost the same amplitudes

but very different phases. The difficulty of numerical evaluation in such a situation is termed the sign

problem.

There have been many proposals to circumvent the sign problem. One of the approaches that

are currently under intense study is the use of integration over Lefschetz thimbles [2] (see also

Refs. [3–10]), which we will call the Lefschetz thimble algorithm hereafter. There, the original real-

valued variable (say, x = (xi) ∈ R
N ) is complexified according to the antiholomorphic gradient

flow (sometimes called the upward flow in the literature) żi = [∂iS(z)]∗. In the original Lefschetz

thimble algorithm, as will be reviewed in Sect. 2.1, the flow time is taken to infinity to map the

original configuration space to a union of Lefschetz thimbles. Since the imaginary part of the action

is constant on each thimble, the sign problem disappears if the path integral is made over the Lefschetz

thimbles. However, since two different thimbles are separated by an infinitely high potential barrier,

one needs to invent some machinery to incorporate contributions from all relevant thimbles.
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Recently, Alexandru et al. [11] made a very interesting proposal to consider configurations on a

manifold that is obtained from the original configuration manifold by a finite amount of flow time.

This algorithm was a great success in various models [11,12], but reducing the amount of flow time

may also reduce the effectiveness against the sign problem, and one does not know a priori whether

the chosen flow time avoids both the sign problem and the multimodal problem simultaneously.

In this paper, as a versatile tool for Monte Carlo calculations of models with complex actions, we

propose a Lefschetz thimble algorithm where the flow time is used as an auxiliary variable for the

highly multimodal distribution. There can be various methods to realize this idea, and in this paper

we implement the parallel tempering method because of its simplicity, by taking the flow time as

a tempering parameter. There, we consider a set of manifolds corresponding to various flow times.

Two separate modes at large flow times (where the sign problem no longer exists) are then connected

by passing through configurations at small flow times (where the original sign problem exists but

the multimodality is expected to be mild). Since the sample average is taken only with respect to the

largest flow time, we need not worry about the sign problem at small flow times, although we take

into account configurations there.

This paper is organized as follows. In Sect. 2 we first review the basics of the Lefschetz thimble

algorithm based on Refs. [7,11], and then implement the parallel tempering method in the algorithm

by taking the flow time as a tempering parameter. In Sect. 3 we investigate the (0 + 1)-dimensional

massive Thirring model at finite density, and show that our algorithm correctly reproduces the analytic

results for large flow times such as T = 2. Section 4 is devoted to the conclusion and outlook for

future work.

2. Algorithm

2.1. Integration over Lefschetz thimbles (review)

We consider a real N -dimensional dynamical variable, x = (xi) ∈ R
N , with action S(x) that may

take complex values for real-valued x. Our main concern is to evaluate the expectation values of

functions of x:

〈O(x)〉 =
∫

RN dx e−S(x) O(x)
∫

RN dx e−S(x)
. (2.1)

We assume that |e−S(x)| decreases rapidly enough in the limit x → ± ∞, and that e−S(z) and O(z)

are entire functions when regarded as functions of z = (zi) ∈ C
N . The integration region can then

be changed to any other region � in C
N as long as it is obtained as a continuous deformation of

the original region with the boundary fixed at infinity. We consider as such an integration region the

submanifold that is obtained from the following antiholomorphic gradient flow z(t; x) with a flow

time t:

dzi

dt
=

[∂S(z)

∂zi

]∗
, zi|t=0 = xi. (2.2)

In fact, the flow defines a map from the original integration region �0 ≡ R
N to a real N -dimensional

submanifold �t in C
N :

zt : �0 ∋ x 
→ zt(x) ≡ z(t; x) ∈ �t . (2.3)
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We thus see that Eq. (2.1) can be rewritten as

〈O(x)〉 =
∫

�t
dz e−S(z) O(z)

∫

�t
dz e−S(z)

, (2.4)

which can be further rewritten as a reweighted integral over R
N [7] as1

〈O(x)〉 =
∫

RN dx detJt(x) e−S(zt(x)) O
(

zt(x)
)

∫

RN dx detJt(x) e−S(zt(x))

=

〈

e
i
[

arg detJt(x)−SI (zt(x))
]

O
(

zt(x)
)

〉

Seff
〈

e
i
[

arg detJt(x)−SI (zt(x))
]

〉

Seff

. (2.5)

Here, Jt(x) ≡
(

∂zi
t(x)/∂xj

)

is the Jacobi matrix, SR

(

zt(x)
)

(SI

(

zt(x)
)

) is the real (imaginary) part of

S
(

zt(x)
)

, and 〈∗〉Seff
is the expectation value taken with respect to

Seff (x; t) ≡ SR

(

zt(x)
)

− ln
∣

∣detJt(x)
∣

∣. (2.6)

The Jacobi matrix is obtained by solving the combined differential equations with respect to t [7]:2

dzi
t

dt
=

[ ∂S

∂zi
(zt)

]∗
, zi

0 = xi, (2.7)

d(Jt)ij

dt
=

[

Hik(zt) · (Jt)kj

]∗
, (J0)ij = δij, (2.8)

where Hij(z) ≡ ∂2S(x)/∂zi∂zj is the Hesse matrix for the action S(z).

The key point is that the right-hand side of Eq. (2.4) or Eq. (2.5) does not depend on the flow

time t, so that one can set t to an arbitrary value that is convenient for actual calculation. Note that

under the flow the real part SR

(

zt(x)
)

does not decrease while the imaginary part SI

(

zt(x)
)

is kept

constant, because (d/dt)S
(

zt(x)
)

=
∣

∣∂zi S
(

zt(x)
)∣

∣

2 ≥ 0. In the original Lefschetz thimble algorithm,

one takes the limit t → ∞, in which �t approaches a union of connected components (Lefschetz

thimbles), and the action has a constant imaginary part on each thimble.3 In a generic situation the

phase change coming from Jt(x) is sufficiently mild, so that the Monte Carlo calculation for the

expression (2.5) is free from sign problems. However, two different thimbles are also disconnected

in the sense of Monte Carlo sampling because SR increases indefinitely near the boundary of each

thimble. This multimodality of distribution makes the Monte Carlo calculation impractical, especially

when contributions from more than one thimble are relevant to estimating expectation values.

1 One may also take as an integration region the tangent space to the critical point of the dominant thimble

[7] if the integral can be well approximated by the integration around the critical point.
2 The second equation is obtained by differentiating the first equation with respect to xj ∈ R;

d(Jt(x))ij

dt
=

d

dt

(∂zi
t(x)

∂xj

)

=
∂

∂xj

[ ∂S

∂zi
(zt(x))

]∗
=

[ ∂2S

∂zi∂zk
(zt(x))

∂zk
t (x)

∂xj

]∗
=

[

Hik(zt(x)) (Jt)kj(x)
]∗

.

3 Generically there is a single critical point zσ on each connected component Jσ , and Jσ is obtained as the

set of orbits flowing out of zσ . The complementary submanifold to Jσ in C
N consists of orbits that flow into

zσ , and will be denoted by Kσ . The integrations in Eq. (2.5) are dominated by points near the intersection of

Kσ and R
N .
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A very interesting proposal made in Ref. [11] is to use a finite amount t, which is chosen to be

large enough to avoid the sign problem but also not too large in order to enable exploration in the

configuration space. However, one does not know a priori whether the adopted value of t is actually

free from the two obstacles (the sign and multimodal problems) simultaneously. We will show that

one can solve both simultaneously if we implement the parallel tempering method in their algorithm

with the flow time as a tempering parameter.

2.2. Implementation of parallel tempering

The basic idea of the parallel tempering algorithm [13–15] is the following. Suppose that we want to

estimate expectation values with action S(x; λ), where x ∈ R
N is a dynamical variable and λ is the

parameter (such as the temperature) that we want to use for a Monte Carlo calculation. The point is

that, even when the distribution is multimodal for the original λ (e.g., when λ represents a very low

temperature), the multimodality can be made mild if one takes another value λ̃ (e.g., λ̃ corresponding

to a very high temperature). So, if the configuration space is enlarged such that the parameter can

change gradually between λ and λ̃, two separate configurations for the original λ will be connected

by passing through configurations at parameters near λ̃. The parallel tempering algorithm enables the

move of configurations among different λ by enlarging the configuration space from R
N = {x} to the

set of A+1 replicas, (RN )A+1 = {(x0, x1, . . . , xA)}. We there assign λα to replica α (α = 0, 1, . . . , A),

such that λ0 = λ̃ and λA = λ and that λα and λα+1 are sufficiently close to each other.4 We set up an

irreducible, aperiodic Markov chain for the enlarged configuration space such that the probability

distribution for (x0, x1, . . . , xA) eventually approaches the equilibrium distribution proportional to

∏

α

e−S(xα ;λα). (2.9)

We finally take sample averages only with respect to a sample taken from α = A. The simplest

algorithm to realize this idea5 is to swap two configurations of two adjacent replicas α and α + 1,

(i.e., to update the configuration (xα = x, xα+1 = x′) to (xα = x′, xα+1 = x)) with the probability

wα(x, x′) = min

(

1,
e−S(x′;λα)−S(x;λα+1)

e−S(x;λα)−S(x′,λα+1)

)

, (2.10)

which obviously satisfies the detailed balance condition

wα(x, x′) e−S(x;λα)−S(x′,λα+1) = wα(x′, x) e−S(x′;λα)−S(x,λα+1). (2.11)

Our proposal is to take the flow time t as such a tempering parameter. The basic algorithm is then

as follows.6

• Step 0. Fix the maximum flow time T , which should be sufficiently large such that the sign

problem disappears there, and pick up flow times {tα} from the interval [0, T ] with t0 = 0 <

4 The computational cost required for the parallel tempering method can be roughly estimated to be pro-

portional to (A + 1)/X , where X is the minimum of the acceptance rates for all pairs of adjacent replica (see

Step 3 below). In this paper, we will set the parameters A and λα such that the minimum acceptance rate is

well above 50% (see Fig. 5).
5 Of course, there can be many variations on this algorithm.
6 To make discussions simple, we only take the flow time as a tempering parameter. The algorithm can be

readily extended such that other parameters are included as extra tempering parameters.
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t1 < · · · < tA = T . The values of A and tα are determined manually or adaptively to optimize

the acceptance rate in Step 3 below.

• Step 1. Choose an initial value xα ∈ R
N for each replica α, and numerically solve the differential

equations (2.7) and (2.8) to obtain the triplet (xα , ztα , Jtα ).

• Step 2. For each α, construct a Metropolis process to update the value of x. Explicitly, we take a

value x′
α from xα using a symmetric proposal distribution, and recalculate the triplet (x′

α , z′
tα

, J ′
tα

)

using x′
α as the initial value. We then update xα to x′

α with the probability min(1, e−�Seff ,α ), where

�Seff ,α ≡ Seff (x
′
α , tα) − Seff (xα , tα)

= SR(z′
tα

) − ln
∣

∣detJ ′
tα

∣

∣ − SR(ztα ) + ln
∣

∣detJtα

∣

∣ (2.12)

(recall that Seff (x; t) = SR

(

zt(x)
)

− ln
∣

∣detJt(x)
∣

∣, Eq. (2.6)). We repeat the process sufficiently

many times such that local equilibrium is realized for each α.

• Step 3. Starting from α = 0 through α = A − 1, swap the values of x between two adjacent

replicas α and α + 1 with the probability

wα(xα , xα+1) ≡ min

(

1,
e−Seff (xα+1; tα)−Seff (xα ; tα+1)

e−Seff (xα ; tα)−Seff (xα+1; tα+1)

)

. (2.13)

• Step 4. After repeating Steps 2 and 3 sufficiently many times, get a triplet (xA, ztA=T , JtA=T )

from α = A as an element of a sample.

• Step 5. After repeating Steps 2 to 4, we obtain a sequence of triplets {(x(a)
A , z

(a)
tA=T , J

(a)
tA=T )}},

which we use to estimate the expectation value:

〈O(x)〉 ≈

∑

a e
i
[

arg detJ
(a)
T −SI (z

(a)
T )

]

O
(

z
(a)
T

)

∑

a e
i
[

arg detJ
(a)
T −SI (z

(a)
T )

] . (2.14)

Note that the action with t0 = 0 is the original action for which the sign problem exists. However, as

can be seen from Eq. (2.14), the sample average is taken only with respect to the action with tA = T ,

so that we need not worry about the original sign problem, although we include configurations near

tA = 0. Also, tA = T can be taken to be sufficiently large such that the sign problem disappears if we

complement intermediate flow times sufficiently (with larger A). Thus, this simple algorithm solves

the two obstacles simultaneously: the original sign problem at t0 = 0 is resolved at tA = T while

the multimodal problem at tA = T is resolved by passing through configurations near t0 = 0.7

3. Example

In this section we investigate the (0 + 1)-dimensional massive Thirring model at finite density

[10,16,17] to exemplify that the algorithm given in the previous section does work.

The (0+1)-dimensional massive Thirring model is defined from the standard (1+1)-dimensional

massive Thirring model by dimensional reduction. With an auxiliary field φ(τ), the continuum

representation of the grand partition function Z = tr e−β(H−µQ) is given by the path integral

Z =
∫

PBC

[dφ(τ)]
∫

ABC

[dψ̄(τ )dψ(τ)] e−S[φ,ψ̄ ,ψ], (3.1)

7 We have implicitly assumed that the action at t0 = 0 does not cause a multimodality in the configuration

space. If this is not the case, we further introduce other parameters (such as the coefficient of the action) as

extra tempering parameters or prepare flow times {tα} such that t0 < 0.

5/11

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



PTEP 2017, 073B01 M. Fukuma and N. Umeda

where the Euclidean action takes the form

S[φ, ψ̄ , ψ] =
∫ β

0

dτ

[

−ψ̄
(

γ 0(∂0 + iφ + µ) + m
)

ψ +
1

2g2
φ2

]

,

[

γ 0 =
(

0 1

1 0

)

]

, (3.2)

and the φ integral (the ψ , ψ̄ integral) obeys the periodic (antiperiodic) boundary condition. In

realizing the model on the lattice, we discretize the Euclidean time as τ = na (n = 1, . . . , N )

with β = Na (N : even), and follow the prescription of Ref. [17], where φ(τ) = φn is treated as a

U (1) gauge potential and is combined with the chemical potential µ to become a link variable of

a complexified gauge group, e(iφ(τ)+µ)a = eiφnaeµa ≡ Un eµa, as proposed in Ref. [18]. Then, by

using a staggered fermion formulation, the grand partition function is given by

Z =
∫

(dU ) e−S(U ,χ̄ ,χ), (3.3)

where (dU ) =
∏

n(dUn) ≡
∏

n[d(φna)/2π ] (with φna ∈ (−π , π ]) and

S(U , χ̄ , χ) = −
N

∑

n,ℓ=1

χ̄n Dnℓ(U ) χℓ +
1

2g2a

N
∑

n=1

[

1 −
1

2
(Un + U−1

n )

]

(3.4)

with Dnℓ(U ) ≡ (1/2)
(

Uneµaδn+1,ℓ−U−1
n−1e−µaδn−1,ℓ−UN eµaδn,N δℓ,1+U−1

N e−µaδn,1δℓ,N

)

+ma δnℓ.

We henceforth set a = 1 and treat m, µ, and g2 as dimensionless parameters.

After carrying out the fermion integration, we obtain

Z =
∫

(dU ) det D(U ) e−(1/2g2)
∑

n[1−(1/2)(Un+U−1
n )], (3.5)

which can be calculated analytically [17] as

Z =
e−Nα

2N−1

[

cosh(Nµ) I N
1 (α) + ρ+ I N

0 (α)
]

, (3.6)

where α ≡ 1/(2g2), 2ρ± ≡ (
√

m2 + 1 + m)N ± (
√

m2 + 1 − m)N , and In(α) is the modified Bessel

function of the first kind of order n. Using this expression, we obtain the analytic form of the chiral

condensate as

〈χ̄χ〉 =
1

N

∂ ln Z

∂m
=

ρ− I N
0 (α)

√
m2 + 1

[

cosh(Nµ) I N
1 (α) + ρ+ I N

0 (α)
]

. (3.7)

We now numerically evaluate the chiral condensate by using the complex action

S(U ) ≡
1

2g2

∑

n

[

1 −
1

2
(Un + U−1

n )

]

− ln det D(U ) (3.8)

as

〈χ̄χ〉 =
〈 1

N
tr

(

D−1(U )
∂D(U )

∂m

)〉

=
〈 1

N
tr D−1(U )

〉

, (3.9)

where

〈O(U )〉 ≡
∫

(dU ) e−S(U ) O(U )
∫

(dU ) e−S(U )
. (3.10)
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Fig. 1. φ(t) = (1/N )
∑

n φn(t) at flow times t = 0, 0.1, 0.2, . . . , 1.9, 2.0 from bottom to top. The parameters

are set to N = 8, m = 1, µ = 1.3, g2 = 1/2. The full circles are the critical points of S, and the empty circles

are the log singularities of S.

It is easy to check that [det D(U ; µ)]∗ = det D(U ; −µ), so that the second term of Eq. (3.8) is

complex-valued for real µ, and the sign problem should arise when N is large.

We follow the steps given in Sect. 2.2 with the complexification of the variables φn ∈ (−π , π ]. We

first set the largest flow time to T = 2, and prepare flow times {tα} (α = 0, 1, 2, . . . , 20) with equal

separations as t0 = 0, t1 = 0.1, t2 = 0.2, . . . , t20 = 2.0.8 Figure 1 shows φ(t) ≡ (1/N )
∑

n φn(t)

at flow times t = tα with the φn(0) set to the same value. As Step 1 of our algorithm, we make a

cold start (φn = 0) for every replica α, and numerically solve the differential equations (2.7) and

(2.8) with the adaptive 4th-order Runge–Kutta method to obtain the triplet (xα , ztα , Jtα ). We repeat

the Metropolis process twenty times in Step 2,9 which is followed by a single sequence of swapping

of Step 3. We then repeat Steps 2 and 3 ten times (as Step 4). With the first 5 data points discarded as

initial sweeps, we estimate correlation functions with 104 data points. Figure 2 shows the absolute

value of the denominator in Eq. (2.14) (divided by the sample size) as a function of µ with the other

parameters set to N = 8, m = 1, g2 = 1/2. The blue points are the result for the flow time T = 0.

They correspond to the usual reweighting calculus, and show that the sign problem actually exists

for µ � 1.0. The green (red) points are the result for the flow time T = 2 without (with) the parallel

tempering implemented. The results show that the sign problem disappears at T = 2.

Figure 3 shows the chiral condensate 〈χ̄χ〉 as a function of µ. The other parameters are again set

to N = 8, m = 1, g2 = 1/2. The dotted line represents the analytic result (3.7). The blue points are

the result for the flow time T = 0 and exhibit large statistical errors, reflecting the sign problem.

The green points are the result for the flow time T = 2 without the parallel tempering implemented.

8 The fermion determinant at flow time t = 0 is given by det D = (1/2N ) [ζ +ζ−1 +(
√

2+1)N +(
√

2−1)N )]
where ζ ≡ ei

∑

n φn+Nµ. Note that det D vanishes at
∑

n φn = π (mod 2π) when µ = log(
√

2 + 1) ∼ 0.881,

which gives a multimodal distribution even at t = 0. However, this can be handled without introducing another

tempering parameter, because each mode has a rather wide distribution (with not-too-small values near the

boundary) and thus the whole configuration space can be easily explored by setting the interval of proposal

distribution to be a large value, as in this paper.
9 As a proposal distribution we use the uniform distribution within the interval [−ǫ, ǫ], where ǫ is chosen

randomly from {1, 10−1, 10−2, . . . , 10−[2tα+1]} ([k] is the floor of k).
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Fig. 2. The absolute value of the denominator in Eq. (2.14) (divided by the sample size) as a function of µ

with the other parameters set to N = 8, m = 1, g2 = 1/2. The blue points are the result for the flow time

T = 0 and show that the sign problem actually exists for µ � 1.0. The green (red) points are the result for

the flow time T = 2 without (with) the parallel tempering (PT) implemented, and show that the sign problem

disappears at T = 2.

Fig. 3. Chiral condensate 〈χ̄χ〉 as a function of µ with the other parameters set to N = 8, m = 1, g2 = 1/2.

The dotted line represents the analytic result (3.7). The blue (green) points are the result for the flow time

T = 0 (T = 2) without the parallel tempering implemented. The red points are the result for the flow time

T = 2 with the parallel tempering implemented.

They have small statistical errors, but exhibit statistically significant discrepancies from the analytic

result. This should be attributed, as discussed in detail in Ref. [11], to the fact that the dominant

contributions come only from a single thimble for such large T . The red points are the result for the

flow time T = 2 now with the parallel tempering implemented. They show a good agreement with

the analytic result, which implies that contributions from various thimbles are correctly taken into

account through the parallel tempering. This can be confirmed by Figs. 4 and 5. Figure 4 exhibits

the histogram of φ = (1/N )
∑

n φn at T = 2. We see that the configurations are concentrated on a

single thimble if the parallel tempering is not implemented (left), while they are spread out on various

thimbles if the parallel tempering is implemented (right). Figure 5 shows the average acceptance
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Fig. 4. Histograms of φ = (1/N )
∑

n φn at the flow time T = 2 without/with the parallel tempering

implemented (left/right). The parameters are set to N = 8, m = 1, µ = 1.3, g2 = 1/2.

Fig. 5. Average acceptance rate for the swap between replicas α and α + 1 in Step 3. The parameters are set

to N = 8, m = 1, µ = 1.3, g2 = 1/2.

rates for the swaps between replicas α and α + 1 in Step 3. We see that the swapping is carried out

very well because the average acceptance rate is more than 50% for all pairs (α, α + 1).

4. Conclusion and outlook

In this paper, as a versatile tool for Monte Carlo calculations of models with complex actions, we

have proposed a Lefschetz thimble algorithm where the flow time is used as an auxiliary variable

for the highly multimodal distribution. In particular, we implemented the parallel tempering method

by taking the flow time t as a tempering parameter. There, we prepare flow times {tα} such that

t0 = 0 and tA = T . The largest flow time T can be taken to be sufficiently large such that the sign

problem disappears there. Although the algorithm includes configurations at t0 = 0, the original

sign problem at t0 = 0 does not enter the calculation because the sample average is taken only with

respect to tA = T , where the sign problem disappears. We have investigated the (0 + 1)-dimensional

massive Thirring model at finite density to exemplify that the algorithm does work, and showed that

contributions from multi thimbles are correctly taken into account even for such a large flow time as

T = 2.

We should investigate to what extent this algorithm is actually versatile. One interesting class of

models, for which we can readily test our algorithm before applying it to QCD at finite density, is

that of various types of large-N random matrix models with complex actions. In fact, if the free

energy is calculated by an integration over matrices themselves (not over their eigenvalues), the

classical solutions and the corresponding Lefschetz thimbles do not have a useful meaning because

the quantum corrections are of the same order as the leading term. It thus provides us with a good

test of versatility to check whether correct results are obtained for such models where the thimble
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structure or its usefulness is not clear. As a related model, the numerical study of the triangle–hinge

model [19–21] should also be interesting. The model is a sort of matrix model that generates 3D

random volumes as a collection of triangles and hinges. In order to restrict the resulting configurations

to tetrahedral decompositions, one needs to introduce a special form of interaction [19], which makes

the action complex-valued (M. Fukuma, S. Sugishita, and N. Umeda, manuscript in preparation). A

numerical study was made for a simplified model (with no restriction to tetrahedral decompositions),

and the existence of a third-order phase transition is confirmed (manuscript in preparation). It is thus

interesting to see whether the phase transition still exists when the restriction is imposed.

Besides the Lefschetz thimble algorithm, the complex Langevin algorithm [22,23] is also under

intense study as a promising method to solve the sign problem. Recently, a very interesting proposal

was made by Bloch [24] (see also Ref. [25]) to evaluate correlation functions by reweighting complex

Langevin trajectories using such parameters that satisfy known validity conditions [26,27] to be

free from wrong convergence problems [26–30]. It should be interesting to compare the extent of

versatility between the reweighted complex Langevin algorithm and our parallel tempering algorithm

with the flow time as a tempering parameter.

A study along these lines is now in progress and will be reported elsewhere.
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