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This paper applies parallel tempering within a Bayesian formulation for strongly nonlinear

geoacoustic inverse problems. Bayesian geoacoustic inversion consists of sampling the posterior

probability density (PPD) of seabed parameters to estimate integral properties, such as marginal

probability distributions, based on ocean acoustic data and prior information. This sampling is usu-

ally carried out using the Markov-chain Monte Carlo method of Metropolis–Hastings sampling.

However, standard sampling methods can be very inefficient for strongly nonlinear problems

involving multi-modal PPDs with the potential to miss important regions of the parameter space

and to significantly underestimate parameter uncertainties. Parallel tempering achieves efficient/

effective sampling of challenging parameter spaces with the ability to transition freely between

multiple PPD modes by running parallel Markov chains at a series of increasing sampling tempera-

tures with probabilistic interchanges between chains. The approach is illustrated for inversion of

(simulated) acoustic reverberation data for which the PPD is highly multi-modal. While Metropo-

lis–Hastings sampling gives poor results even with very large sample sizes, parallel tempering

provides efficient, convergent sampling of the PPD. Methods to enhance the efficiency of parallel

tempering are also considered.VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4757639]

PACS number(s): 43.30.Pc, 43.60.Pt [ZHM] Pages: 3030–3040

I. INTRODUCTION

Knowledge of seabed geoacoustic properties in shallow-

water environments is important for a variety of sonar, geo-

physical, and geotechnical applications. Because direct

measurements (e.g., coring) can be difficult and expensive,

inferring in situ information about seabed model parameters

from the inversion of ocean acoustic data has received much

attention, e.g., Refs. 1–21. Although earlier inversion

approaches sought only optimal parameter estimates by min-

imizing data misfit using nonlinear (numerical) optimiza-

tion,1–7 more recently, Bayesian inversion has been applied

to provide quantitative uncertainty analysis for a variety of

geoacoustic problems, including the inversion of full-field,8–14

reflection,15–17 dispersion,18,19 and reverberation20,21 data.

In Bayesian inversion,22–24 model parameters are con-

sidered random variables constrained by measured data and

prior information with the goal of estimating integral proper-

ties of the multi-dimensional posterior probability density

(PPD), such as marginal probability distributions. For non-

linear problems, such as geoacoustic inversion, numerical

methods must be applied to estimate these integrals. In par-

ticular, the Markov-chain Monte Carlo (MCMC) method of

Metropolis–Hastings sampling (MHS)23,24 has been applied

in virtually all Bayesian geoacoustic inversions to date. In

MHS, a Markov chain is constructed that samples the PPD

by repeatedly perturbing the model parameters and applying

a probabilistic condition (the Metropolis criterion) to accept/

reject perturbations. However, MHS can be very inefficient

for strongly nonlinear problems where the PPD includes

multiple isolated regions of high probability (multiple

modes). MHS is generally poor at transitioning between

modes and prone to become trapped in local high-probability

regions, potentially missing important regions of the parame-

ter space and underestimating parameter uncertainties.

Multi-modal PPDs have been observed in the inversion of

full-field,8–10,13 reflection,15 dispersion,19 and reverbera-

tion20 data and may, in fact, be more prevalent than indicated

in the literature given the limitations of MHS which is typi-

cally applied to these problems.

The method of parallel tempering25–27 provides an alter-

native MCMC approach that can be much more efficient/

effective than MHS for problems involving multi-modal

PPDs. Parallel tempering is based on running multiple Mar-

kov chains at a series of sampling temperatures T� 1, such

that for T> 1, lower-probability models are accepted (accord-

ing to the Metropolis criterion) to more widely search the pa-

rameter space and increase the possibility of bridging isolated

modes. The Metropolis criterion is also applied to provide

probabilistic interchange between chains at different tempera-

tures, thereby providing low-temperature chains access to all

regions of the space. Because chains at T> 1 provide biased

sampling, usually only the T¼ 1 chain is used for integral
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estimates. However, schemes to improve parallel-tempering

efficiency by weighting samples collected at T> 1 to remove

the bias28 and by running multiple chains at each temperature

with the number of chains decreasing with T (because higher-

temperature chains mix faster) are also considered here.

This paper compares MHS and parallel tempering for

the geoacoustic inversion of (simulated) reverberation data;

however, the approach is applicable to any nonlinear inverse

problem. The reverberation inversion is shown to involve a

highly multi-modal PPD, although the multi-modality might

not be detected with limited sampling using MHS. Parallel

tempering effectively samples the multiple modes and is

found to be orders of magnitude more efficient than MHS,

providing a convergent solution in a reasonable sample size

while MHS is not close to convergence even for an

extremely large sample.

II. THEORYAND ALGORITHMS

A. Bayesian inversion

This section describes a Bayesian approach to geoacous-

tic inversion;9,14 more general treatments of Bayesian theory

can be found elsewhere.22–24 Let d be a vector of N acoustic

data and let m be a vector of M seabed model parameters. In

a Bayesian approach, these quantities are considered random

variables that obey Bayes’ rule

PðmjdÞ ¼
PðdjmÞPðmÞ

PðdÞ
: (1)

In Eq. (1), P(m) is the prior probability density, representing

the available parameter information independent of the data.

P(d|m) is the conditional probability of d given m. Inter-

preted as a function of d, this term represents the residual

error distribution. However, when d represents the (fixed)

observed data, the term is interpreted as the likelihood of m,

which can generally be written LðmÞ / exp½�EðmÞ�,
where E(m) is the data misfit function (considered in the fol-

lowing text). P(m|d) represents the state of information for

m given data and prior and is known as the PPD. Equation

(1) can be written

PðmjdÞ ¼
exp½�/ðmÞ�

Z
; (2)

where a generalized misfit, combining data and prior, is

defined

/ðmÞ ¼ EðmÞ � logePðmÞ; (3)

and the normalization term (referred to as the partition func-

tion) is given by

Z ¼

ð

exp½�/ðmÞ�dm: (4)

To interpret the PPD for multi-dimensional problems gener-

ally requires estimating properties defining parameter values,

uncertainties, and inter-relationships, such as the maximum a

posteriori (MAP) model parameters, mean model parameters,

model covariance matrix, and marginal probability distribu-

tions, defined, respectively, as

m̂ ¼ arg max
m

PðmjdÞ ¼ arg min
m

/ðmÞ; (5)

�m ¼

ð

mPðmjdÞdm; (6)

Cm ¼

ð

ðm� �mÞðm� �mÞTPðmjdÞdm; (7)

PðmijdÞ ¼

ð

dðmi � m0
iÞPðm

0jdÞdm0; (8)

with higher-dimensional marginals defined in a manner

similar to Eq. (8). For nonlinear inverse problems general

solutions to Eqs. (5) to (8) do not exist, and numerical opti-

mization and integration (sampling) methods are required.

This paper considers data with uncorrelated Gaussian-

distributed random errors of (unknown) standard deviation

r, leading to likelihood function

Lðm; rÞ ¼
1

ð2pr2ÞN=2
exp �

jd� dðmÞj2

2r2

" #

: (9)

A maximum-likelihood estimate for r can be determined by

setting @L/@r¼ 0, leading to

r̂ðmÞ ¼ ½jd� dðmÞj2 =N�1=2; (10)

which, when substituted into Eq. (9) with additive constants

neglected, leads to misfit (negative log-likelihood) function8,11

EðmÞ ¼ N logejd� dðmÞj: (11)

Equation (11) treats r is an implicit unknown parameter in

the inversion, automatically applying the maximum-

likelihood estimate corresponding to the current model pa-

rameters m when optimizing or sampling over m [i.e., r̂ðmÞ
varies as m varies in the inversion]. The r̂ values sampled in

this manner can be computed using Eq. (10). In practical

applications where the form of the error distribution may not

be known independently, an assumption of Gaussian errors

should be validated a posteriori by examining data residuals.

This procedure has been carried out for measured reverbera-

tion data and validated the Gaussian assumption for the data

set considered.20

B. Metropolis–Hastings sampling

MCMC methods23,24 are generally used to sample the

PPD to evaluate integrals such as Eqs. (6) to (8), which are

of the general form

I ¼

ð

f ðmÞPðmjdÞdm: (12)

The common MCMC approach in Bayesian geoacoustic

inversion is MHS, which draws samples by perturbing the

model mi ! miþ 1 and accepting the perturbed model with

probability
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p ¼ min 1;
Pðmiþ1jdÞ

PðmijdÞ

Qðmi;miþ1Þ

Qðmiþ1;miÞ

� �

; (13)

where Q(miþ 1; mi) represents the proposal distribution used

to generate miþ 1 given mi. If the perturbed model is not

accepted, the current state is repeated: miþ 1¼mi. If the pro-

posal density is symmetric, Q(mi; miþ 1)¼Q(miþ 1; mi), the

acceptance condition simplifies to the Metropolis criterion

p ¼ minf1; exp½/ðmiÞ � /ðmiþ1Þ�g: (14)

Drawing K models with MHS, the integral can be estimated

I �
1

K

X

K

k¼1

f ðmkÞ: (15)

An advantage of MHS is that PPD sampling does not require

calculating the partition function Z, Eq. (4), as it cancels out

in the acceptance criterion.

The (symmetric) proposal distribution used here applies

Gaussian-distributed perturbations in a principal-component

(rotated) parameter space, which minimizes inter-parameter

correlations.3,29–31 The rotation matrix and perturbation sizes

(principal-component standard deviations) are computed

from an eigenvalue decomposition of the model covariance

matrix. The covariance matrix, Eq. (7), is estimated from an

initial burn-in sampling, which is itself initiated using a line-

arized covariance estimate31 (burn-in samples are discarded).

C. Parallel tempering

Strongly nonlinear problems in which the PPD involves

multiple isolated modes in high dimensions can be particu-

larly challenging for MHS. The method of parallel temper-

ing25–27 provides an effective alternative approach for such

problems based on running a series of parallel interacting

Markov chains at sampling temperatures T¼ 1 and T> 1 to

sample from distributions proportional to exp½�/ðmÞ = T� by
generalizing the Metropolis criterion to

p ¼ minf1; exp½ð/ðmiÞ � /ðmiþ1ÞÞ = T�g: (16)

According to Eq. (16), for T> 1 MHS samples from

P(m|d)1/T, and lower-probability models are accepted. Hence

high-T chains provide wider sampling of the parameter space

and the possibility of bridging isolated modes, while low-T

chains provide more precise local sampling but are prone to

become trapped in localized regions of the space. Parallel

tempering improves sampling by providing interchange

between chains at different temperatures. Including higher-T

chains ensures that the lower-T chains can access all regions

of the space while still providing efficient local sampling,

resulting in a robust ensemble sampler. Because chains at

T> 1 provide biased PPD sampling (sample from the PPD

raised to the power 1/T rather than the PPD), usually only

the samples collected by the T¼ 1 chain are retained

although an alternative is also considered in this paper.

To derive the interchange probability in parallel temper-

ing,25,26 consider independent Markov chains at temperatures

Ti and Tj with current models mi and mj, respectively. The

probability of this joint configuration is equal to the product

of the probabilities of the constituent configurations, which is

proportional to exp½�/ðmiÞ = Ti � /ðmjÞ =Tj�. At a given

Monte Carlo step, the joint system can be updated by inter-

changing the two models, or, equivalently, by interchanging

temperatures. The probability of the joint configuration after

interchange is exp½�/ðmjÞ = Ti � /ðmiÞ = Tj�. Hence accord-
ing to the Metropolis criterion, this interchange is accepted

with probability

p ¼ min 1;
exp½�/ðmjÞ = Ti � /ðmiÞ = Tj�

exp½�/ðmiÞ = Ti � /ðmjÞ = Tj�

� �

¼ minf1; exp½ð/ðmiÞ � /ðmjÞÞð1 = Ti � 1 =TjÞ�g:

(17)

As in MHS, the partition functions at each temperature can-

cel out in the acceptance criterion of parallel tempering and

need not be computed.

Employing Nc Markov chains in parallel tempering

requires of the order of Nc times more computational effort

than a single unit-temperature chain. However, for strongly

nonlinear problems, the improved mixing due to interchanges

between chains at different temperatures can more than com-

pensate for this computational overhead, providing more effi-

cient overall sampling. An efficient parallel tempering

algorithm requires an appropriate choice of the number of

chains and sampling temperatures of those chains. Common

practice is to use a lowest temperature of T¼ 1 and a highest

temperature such that the chain does not become trapped in

locally optimal regions of the parameter space but is still sen-

sitive to the structure of the PPD. Sampling temperatures are

usually chosen to increase logarithmically such that a reasona-

ble acceptance rate (e.g., 25% between adjacent tempera-

tures26) is achieved for proposed interchanges. Interchanges

can be attempted between adjacent temperatures or between

randomly selected temperatures. Interchange attempts are not

computationally expensive as they do not require solving the

forward problem (i.e., computing acoustic data for a given

model) because predicted data for both chains have already

been computed in accepting the current models.

This paper considers two approaches to attempt to

improve efficiency in parallel tempering. The first is based on

the observation that because high-T chains inherently mix

more rapidly than low-T chains, it may be advantageous to

apply proportionally less computational effort at higher tem-

peratures. One way to accomplish this is to include multiple

parallel chains at each temperature and to decrease the num-

ber of chains logarithmically with increasing T. For example,

Sec. III considers parallel tempering using 16, 8, 4, and 2

chains at temperatures of T¼ 1, 2, 4, and 8, respectively. In

this case, 16 of 30 chains sample at T¼ 1 rather than 1 of 4

chains if only a single chain was included at each

temperature.

The second attempt to increase efficiency is based on

weighting the samples collected at temperatures T> 1 to

remove the sampling bias,28,31 and including these in PPD in-

tegral estimates. For example, in the case referred to in the
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preceding text, if the T¼ 2 chains are included, 24/30 chains

contribute to the estimate. To derive the appropriate weight-

ing,28 Eqs. (2) and (12) are combined to write the PPD integral

I ¼

ð

f ðmÞ
exp½�/ðmÞ�

Z
dm: (18)

This result (i.e., an exact integral) is unchanged by

multiplying the integrand by 1 ¼ exp½�/ðmÞ = T� = ZT
�ZT = exp½�/ðmÞ = T�, leading to

I ¼
ZT

Z

ð

f ðmÞexp½�/ðmÞð1� 1 =TÞ�

�
exp½�/ðmÞ = T�

ZT
dm; (19)

where

ZT ¼

ð

exp½�/ðmÞ =T�dm: (20)

According to Eq. (19), drawing K models from

exp½�/ðmÞ = T� =ZT via MHS at temperature T provides an

unbiased integral estimate28

I �
X

K

k¼1

f ðmkÞexp½�/ðmkÞð1� 1 =TÞ� =

X

K

k¼1

exp½�/ðmkÞð1� 1 = TÞ�: (21)

Defining weights

ak ¼ exp½�/ðmkÞð1� 1 = TÞ�; (22)

this result can be written concisely as a weighted average

I �
1

X

K

k¼1

ak

X

K

k¼1

akf ðmkÞ: (23)

For T¼ 1, Eq. (23) simplifies to standard MHS, while for

T ! 1, it becomes uniform Monte Carlo integration, repre-

senting wide, but highly inefficient, sampling. Note that the

denominator of Eq. (23) simply represents normalization; for

computation of marginal distributions, this can be replaced

with the normalization requirement of unit area.

Using the sample weighting of Eq. (21), chains sampled

at T> 1 provide unbiased information. The requirement is

that the sample summation at each temperature must be nor-

malized before being averaged with normalized results at

other temperatures. This means that only chains that have

converged to reasonably stable integral estimates should be

included in the average; high-temperature chains that are

undersampled (after weighting) can degrade results.

III. REVERBERATION INVERSION

A. Inversion scenario

This section illustrates and compares the various sam-

pling approaches described in the preceding text for Bayes-

ian geoacoustic inversion of reverberation data. The scenario

considered here is based on simulated (noisy) reverberation

data. Simulation provides a number of advantages for such

comparisons in that an appropriate model parameterization

is known, and the error statistics are also known and con-

trolled. Hence characteristics of the inversion, such as PPD

multi-modality, arise solely from the physics of the forward

problem and are not an artifact of a poor choice of parame-

terization or unaccounted-for sources of error.

The (range-independent) seabed model assumed for the

reverberation inversion problem is illustrated in Fig. 1. The

seabed is represented by an upper sediment layer of thick-

ness h, sound velocity V1, density q1, and attenuation a1,

overlying a semi-infinite basement with corresponding pa-

rameters V2, q2, and a2. Acoustic backscatter occurs at rough

interfaces at the top and bottom of the sediment layer and at

heterogeneities within the volume of the sediments. The spa-

tial roughness of the upper and lower interfaces is assumed

to be isotropic and characterized by a two-dimensional

power-law spectrum32

RiðkÞ ¼
wi

jkjci
; (24)

where k is the horizontal wave vector, wi is the spectral

strength, and ci is the spectral exponent with i¼ 1, 2 corre-

sponding to the upper and lower interfaces, respectively. The

volume-scattering intensity cross-section33 for the sediments

is represented by SV.

FIG. 1. Schematic diagram of the two-layer seabed model indicating

unknown parameters.

TABLE I. True values, prior bounds, and MAP estimate for seabed

parameters.

Parameter and Units True value Prior bounds MAP

h (m) 5 [0, 10] 4.09

V1 (m/s) 1470 [1450, 1650] 1451

V2 (m/s) 1660 [1500, 1800] 1579

q1 (g/cm
3) 1.4 [1.2, 2.0] 1.29

q2 (g/cm
3) 1.8 [1.4, 2.2] 1.54

a1 (dB/m/kHz) 0.05 [0.01, 0.5] 0.078

a2 (dB/m/kHz) 0.1 [0.01, 0.5] 0.192

c1 3 [2.5, 3.9] 2.60

c2 3 [2.5, 3.9] 3.44

w1 (m
4� c1) 0.02 [10� 8, 0.1] 0.023

w2 (m
4� c2) 0.02 [10�8, 0.1] 0.082

SV (m
�3) 10�6 [10�9, 10�4] 4.7� 10�7

J. Acoust. Soc. Am., Vol. 132, No. 5, November 2012 Dosso et al.: Parallel tempering for nonlinear inversion 3033

A
u

th
o

r'
s
 c

o
m

p
li
m

e
n

ta
ry

 c
o

p
y



The forward model used to compute reverberation data

assumes an iso-velocity water column with the lower bound-

ary defined in terms of the plane-wave reflection coefficient

for a layered seabed, including effects of beam displacement.

Reverberation is predicted using energy flux theory34 with

independent scattering mechanisms assumed for the top and

bottom sediment interfaces and for the sediment volume.

Scattering35 is modeled using the Born approximation,

applying perturbation theory for interface scattering and

uncorrelated point scatterers for volume scattering.

The particular case considered here involves a 100-m

water column of sound velocity 1512m/s and density

1.03 g/cm3 (water-column properties are assumed known).

The true parameter values for the seabed model and the

bounds for uniform prior distributions used in inversion are

given in Table I. Note that wide prior bounds are chosen that

limit parameter values to physically reasonable values.

Simulated reverberation data are computed at a frequency of

2000 Hz for N¼ 30 ranges from 0.5 to 15 km, assuming a

signal pulse-length of 0.1 s and an idealized broadside beam

width of 10� (no sidelobes) for a towed horizontal receiver

array. Gaussian-distributed random errors of standard devia-

tion r¼ 1 dB are added to form the noisy data set shown in

Fig. 2 (previous inversions of measured reverberation data

indicated Gaussian errors of this magnitude according to sta-

tistical residual tests20). The fit to the data and estimated

standard deviation computed for the MAP model, deter-

mined using using numerical optimization (an adaptive

hybrid algorithm combining simulated annealing with the

downhill simplex method7) are also shown. The parameter

values for the MAP model are given in Table I.

B. Inversion results

This section considers three approaches to sampling the

PPD of the geoacoustic model for the reverberation data in

Fig. 2. The first approach is standard MHS based on one

Markov chain at sampling temperature T¼ 1 as described in

Sec. II B. The second approach is parallel tempering (Sec.

II C) based on one Markov chain at each of four tempera-

tures T¼ 1, 2, 4, and 8, with samples from the T¼ 1 chain

(i.e., 1 of 4 chains) applied to PPD integration. For brevity,

this approach is referred to as PT1. The third approach is

FIG. 2. Simulated noisy reverberation data (circles) and modeled data (solid

line) computed for the MAP model. Error bars indicate the maximum-

likelihood standard-deviation estimate [Eq. (10) evaluated at the MAP

model].

FIG. 3. Marginal probability distri-

butions. Top, middle, and bottom

distributions in each panel corre-

spond to results from MHS, PT1,

and PT2, respectively. MHS results

used 2� 106 samples; PT1 and PT2

each used 106 total samples (all

chains). True parameter values are

indicated by dotted lines, MAP esti-

mates by dashed lines. Note that plot

bounds correspond to prior bounds,

and each panel is normalized inde-

pendently for display purposes.
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parallel tempering based on 16, 8, 4, and 2 chains at T¼ 1, 2,

4, and 8, respectively, with samples from the T¼ 1 and T¼ 2

chains (24/30 chains) applied to marginal estimates [the

T¼ 2 samples are weighted according to Eq. (21)]. This

approach is referred to as PT2. Both parallel-tempering

schemes apply interchanges between sampling temperatures

selected at random with an average acceptance rate of

approximately 20%. For a consistent comparison, the burn-

in sampling (12 000 samples) for all three approaches was

initiated at the MAP estimate (Table I).

Results for the three inversion approaches are shown in

Fig. 3 in terms of marginal probability distributions for the

data standard deviation, r, and for the 12 seabed parameters.

The similarity in distributions for r indicates all three

approaches sample models with the same level of misfit.

Considering the seabed parameters, two immediate observa-

tions can be made from Fig. 3. First, only a subset of the pa-

rameters are meaningfully resolved by the reverberation data

(it is still worth including all parameters in the inversion, as

the Bayesian approach integrates over all parameters,

accounting for their sensitivity). Second, the inversion

results for the two parallel-tempering approaches are essen-

tially identical while the results for MHS differ significantly

for some of the sensitive parameters (e.g., h, V1, a1). The

results in Fig. 3 are based on large sample sizes: MHS used

2� 106 samples, while the two parallel-tempering

approaches each used total sample sizes of 106 (including all

chains). It is worth emphasizing here that the goal of Bayes-

ian inversion is to properly represent parameter probabilities

over the entire parameter space; the fact that MHS marginals

for some parameters (a1 and SV) in Fig. 3 appear more con-

centrated near their true values does not represent a superior

solution but rather is an indication that MHS was trapped

and did not properly sample the space (i.e., all regions with

good misfit were not visited).

To examine the three inversion approaches in more

detail, it is useful to consider joint marginal probability dis-

tributions for selected parameters at various stages in the

sampling. Figure 4 shows joint marginals for combinations

of h, V1, and a1 as computed using MHS for five sample

sizes ranging from 105 to 2� 106 (sample size increases

with row from top to bottom). The joint marginals for h and

V1 (left column) indicate a strongly nonlinear inverse prob-

lem involving multiple PPD modes and correlated parame-

ters. MHS makes infrequent transitions between modes, such

that only one mode is visited in the first 105 samples (top

row); if the inversion was limited to this sample size, the

multi-modality of the problem would not be detected. New

FIG. 4. (Color online) Joint marginal probability distributions for selected parameters computed using MHS for five different numbers of samples correspond-

ing to the five rows (total number of samples indicated on the left panel of each row). Note that the plot width for V1 is less than the prior bounds. Lighter/

warmer shading indicates high probability while darker/cooler shading indicates low probability. Each panel is normalized independently.
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modes are gradually visited as the sample size increases,

with four modes detected at a practical sample-size limit of

2� 106 (bottom row), representing �1 week of computation

time on a 2.4-GHz desktop PC. The joint marginals for V1

and a1 (center column) and for h and a1 (right column) are

relatively consistent and confined to small regions of the pa-

rameter space for up to 106 samples (top four rows), then

begin to extend into wider regions by 2� 106 samples (bot-

tom row) as a new mode is visited. From the behavior in Fig.

4, it appears unlikely that all modes have been visited even

with 2� 106 samples, and it is clear the sampling is not close

to convergence (typically requiring many visits to all

modes).

Figure 5 shows joint marginal PPDs for the same param-

eters computed using PT1 for four total sample sizes (all

chains) from 105 to 106 (in each case only samples from the

T¼ 1 chain, representing one-quarter of the total samples,

are used in the marginal estimates). The first row of this fig-

ure shows that the multi-modality of the joint marginals are

mapped out far better with 105 total samples using parallel

tempering than with 2� 106 samples using MHS (Fig. 4,

bottom row). In particular, in Fig. 5 at 105 samples, the joint

marginal for h and V1 already extends to more modes and

the joint marginals for V1 and a1 and for h and a1 extend

over wider regions of the parameter space. This structure is

not apparent with MHS in Fig. 4 for sample sizes up to 20

times larger. Although it appears all modes have been visited

using 105 total samples in the top row of Fig. 5 (in compari-

son to results for larger samples in lower rows), the sampling

is sparse in that the marginals are computed from only the

25 000 samples of the T¼ 1 chain. The lower rows in Fig. 5

show how the marginal distributions fill in with larger sam-

ple sizes.

Figure 6 shows joint marginal PPDs computed using

PT2. The marginals generally resemble those shown in Fig.

5 for PT1, with all modes in the h-V1 marginal and the full

extent of the V1-a1 and a1-h marginals sampled at an early

stage. However, the marginal distributions fill in somewhat

faster in Fig. 6 as a higher proportion of the total samples

contribute (24/30 in Fig. 6 versus 1/4 in Fig. 5). While the

difference between results for the two parallel tempering

schemes is far smaller than the difference between MHS and

parallel-tempering, approaches such as PT2 that make use of

a higher proportion of samples may be worthwhile. The

close agreement between marginal distributions for the two

parallel-tempering schemes is strong evidence that the sam-

pling has converged. Further, the fact that these is little prac-

tical difference in results between 105 and 106 samples in

Fig. 6 indicates that extremely large sample sizes are not

required to map the complicated multi-modal PPD structure

using parallel tempering.

Because samples collected for T> 1 are included in

PT2, the sampling at non-unity temperatures should be con-

sidered. Figure 7 shows two-dimensional histograms of the

raw (unweighted) samples collected at temperatures T¼ 1,

2, 4, and 8 for a total of 2� 105 samples (all chains) in each

case. As T increases, the sampled structure broadens (less

probable models are accepted) until at T¼ 8, the underlying

PPD structure is barely discernible, illustrating how high-T

chains can bridge isolated modes at the expense of

FIG. 5. (Color online) Joint marginal probability distributions for selected parameters computed using PT1. Total number of samples (all chains) indicated on

left panels.
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FIG. 6. (Color online) Joint marginal probability distributions for selected parameters computed using PT2. Total number of samples (all chains) indicated on

left panels.

FIG. 7. (Color online) Histograms of samples for selected parameters collected at various temperatures using PT2 (samples not weighted). Sampling tempera-

tures indicated on left panels. Total number of samples (all chains) in each case is 2� 105.
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inefficient, biased sampling. Figure 8 shows joint marginal

PPDs computed from the samples in Fig. 7 by applying the

weighting of Eq. (23) The marginal distributions at each

temperature represent the true PPD structure but become

increasingly under-sampled at higher temperatures. This plot

shows that the T¼ 1 and 2 chains give virtually identical

results, indicating sufficient convergence to include in the

marginal estimates in PT2. The chains at T¼ 4 differs

slightly from the lower temperature chains (appears slightly

under-sampled), while the T¼ 8 chain is strongly under-

sampled; hence, results at these two higher temperatures are

not included in the PT2 results.

FIG. 8. (Color online) Joint marginal probability distributions for selected parameters computed from Markov chains at various temperatures using PT2 [same

samples as Fig. 7, but weighted according to Eq. (21)]. Sampling temperatures indicated on left panels. Total number of samples in each case (all chains) is

2� 105.

FIG. 9. Chain mixing at T¼ 1 for MHS (top row), PT1 (middle row), and PT2 (bottom row, one chain shown). Horizontal axes indicate the total number of

samples considered by the algorithm (i.e., chains in middle and bottom rows include 1/4 and 1/30 as many samples as the top row, respectively).
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As a final comparison of the three sampling approaches,

Fig. 9 considers Markov-chain mixing (i.e., how rapidly the

chain wanders the parameter space and converges to a sta-

tionary distribution). The top row of Fig. 9 shows the first

105 samples for sediment parameters h, V1, and a1 collected

using MHS. MHS moves slowly in small steps over the pa-

rameter space with particularly small variations in a1. No

transitions between PPD modes occur in this section of the

sampling (upper row of Fig. 4). The middle row of Fig. 9

shows chain mixing for PT1. Although the algorithm consid-

ered 105 total samples, only the 2.5� 104 samples of the

T¼ 1 chain are plotted. Nonetheless the chain mixes far bet-

ter than the MHS chain with many transitions between

modes and wide sampling of all parameters. Finally, the bot-

tom row of Fig. 9 shows one of the T¼ 1 chains for PT2,

consisting of 3333 samples. Even for this small sample, the

chain mixes very well, jumping continuously between modes

and varying rapidly for all parameters.

IV. SUMMARYAND DISCUSSION

This paper considered parameter sampling approaches

in a Bayesian formulation of strongly nonlinear geoacoustic

inverse problems. It was shown that the common practice of

Metropolis–Hastings sampling can be impractically slow for

problems in which the posterior probability density includes

multiple modes. Further, multiple modes can go undetected

with insufficient sampling, which can result in high-

probability regions of the parameter space being neglected

and parameter uncertainties under-estimated. Parallel tem-

pering, which applies multiple Markov chains at sampling

temperatures T� 1 with probabilistic interchange between

chains, was shown to greatly improve sampling of multi-

modal PPDs.

Two parallel tempering schemes were considered: PT1,

based on one Markov chain per temperature with the sam-

ples collected by the T¼ 1 chain applied to estimate PPD

integrals, and PT2, based on multiple chains per temperature

with the number of chains decreasing with T (because high-T

chains mix faster), and including (weighted) samples col-

lected at T> 1, provided these chains have converged suffi-

ciently. PT2 has the advantage that a higher proportion of

the chains are used in estimating PPD integrals than PT1

(24/30 versus 1/4 in the case considered here).

MHS and the two parallel-tempering schemes were

illustrated and compared for an inversion scenario of esti-

mating seabed geoacoustic parameters from shallow-water

reverberation data that was characterized by a highly multi-

modal PPD. The rigorous quantification of convergence rates

for nonlinear sampling algorithms is a difficult problem and

is not pursued in this paper. Nonetheless it is clear from the

inversion results here that parallel tempering can be orders

of magnitude more efficient than standard MHS for difficult

multi-modal problems, providing convergent results with a

reasonable sample size to problems which MHS cannot

address in a practical sense. Finally, PT2 appeared to provide

a modest qualitative improvement in sampling over PT1 for

the case considered here.
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