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Abstract

.

An evaluation of recently proposed parallel text search methods does not
support the notion that the parallel methods provide large-scale gains in
either reti'ieval effectiveness or efficiency, compared with alternative avail-

able search strategies using serial processing machines.

1. Boolean Text Retrieval Methods

Since punched card days, text searches have been conducted automati-
cally by comparing the content attributes, or terms, assigned to the text
items with the term combinations included in the query statements. In con-
ventional retrieval environments, the search requests are normally
represented by Boolean statements, consisting of search terms interrelated by
the Boolean operators and, or and not, and the retrieval system is designed
to select those stored items which are identified by the exact combination of
search terms specified in the available queries. Thus given a four-term
query statement such as "(A and B) or (C and D)", the retrieved items will
contain either the term pair A and B, or the pair C and D, or both pairs.

The terms characterizing the stored texts may be assigned manually by
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trained personnel; élternatively, so-called automatic indexing methods may
be used where the term assignment is handled automatically. In some sys-
tems, the content analysis, or indexing operation, is entirely avoided by
using for content identification certain words contained in the texts of the

corresponding documents. [1-3]

In operational retrieval situations, the queries are ‘generally submitted
using console terminal equipment, and responses are received while the
users wait at the terminals. [4-5] In many cases, the size of the searchable
collection may be quite large, often exceeding a million or more items.
Responses are nevertheless obtained in real time because auxiliary indexes
are used which specify for each search term the lists of document identifiers
containing each particular term. Thus given lists of document references
corresponding to terms A and B, respectively, responses to queries such as
(A and B), or (A or B), are easily obtained by manipulating the record iden-

tifier lists stored in the auxiliary index.

Table 1 shows a typical example, consisting of two ordered lists of docu-
ment references for the two terms A and B. A single, ordered and merged
(A,B) list can be constructed by successive comparison of pairs of items from
the separate A and B lists, and traversal of the merged list then provides
responses to query (A and B) consisting of all duplicated items, or query (A
or B), consisting of the unique items from the merged list. The merged

(A,B) list and the set of query responses are shown in the middle of Table 1
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for the original sample A and B lists.

The retrieval performance of the existing Boolean text search systems
varies widely depending on the type of search request actually submitted
and on the homogeneity of the collection being searched. [6-7] When very
specific queries are processed, only a few items may-be obtained, but most of
the retrieved items.are likely to be useful: On the othef' hand, when the
queries are broadly formulated, many more stored items are retrieved,
including both relevant items as well as extraneous ones that may not prove
useful to the requestor. When the stored collection covers a well-defined
subject area, the retrieval performance is generally better than for collec-

tions covering many different topic areas.

The conventional retrieval environment has been widely accepted,
because the Boolean formulations can be used to express term relationships,
such as for example synonym relations identified by or operators ("minicom-
puters or microcomputers or handheld calculators"), and term phrases speci-
fied by and operators ("information and retrieval"); furthermore fast
responses are obtained even for very large document collections. Unfor-
tunately, the Boolean environment also proves disadvantageous in many
cases, most importantly because nonexpert users find it difficult to generate
effective query formulations that produce the proper amount of output and
the expected proportion of relevant materials. Furthermore, in the Boolean

environment it is difficult to distinguish important query terms from less
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important ones by assigning weights or other importance parameters to the
query terms. In the conventional Boolean system all terms afe treated as
equally important and all retrieved documents are assumed to be equally
useful. The order in which the retrieved items are presented to the user
population is thus arbitrary, and does not normally correspond to any

presumed order of importance of the items. [8-10]

Alternative retrieval models have been considered in an attempt to
overcome the limitations of the conventional Boolean approach. The best

known of these is the vector processing system.

2. The Vector Processing System

With the introduction of large-scale computers in the 1950, it became
possible to use more sophisticated text processing operations than was possi-
ble in the earlier punched card environment. In particular, complex query-
document comparison operations could be implemented reflecting the degree
of similarity between query formulations and stored texts, and replacing the
earlier simple matches between assigned query and document terms. In the
vector space model, the information items are identified by sets of attributes,
or terms, as in the Boolean system. However, instead of assuming that all
terms are equally important or valuable, term weights are used to distih-
guish the degree of importance of the terms. Assuming that the system sup-

ports t distinct terms usable for content identification, a given document D,
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can then be represented as a t-dimensional vector of pairs of the form

D; = (d;j, wg; digwgy ..; dy, dzd!‘) (1)
where d;; represents the jth term assigned to document D;, and wy is the
correspohding term weight. In principle, all t terms could appear in each
term vector, a 0 weight being used for terms that are not present in a given
document, and larger weights between 0 and 1: designating the terms actu-

ally assigned to the items. [11-12]

In the vector processing system, the Boolean query formulations are

replaced by weighted term sets of the form
Q = (qrwgi; qo,Wqs - gy, (2)

where once again t distinct terms are assumed to exist, and a 0 weight is
used for terms that are absent. When the stored texts and user information
requests are represented as weighted term vectors, a global, composite meas-
urement can be used to represent the similarity between a query-document
pair, based on the weights of the corresponding matching terms. A typical,
composite vector similarity measure that has been widely used is the cosine
measure, representing the cosine of the angle between query Q and docu-

ment D;, considered as vectors in t-space:

similarity (D)) = : ; 3)
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Expression (3) ranges from 0 when there are no terms in common
between documents and queries to 1 when all terms match and are fully
weighted. The illustration of Fig. 1 shows that the similarity between Q
and D, as measured by the cosine ratio y/z is much larger than the similar-
ity between Q and D,, measured by x/z. D, is correspondingly closer to Q in
the space than D,. By arranging the stored texts in decreasing orderaccord:
ing to the size of the query-document similarity, a ranked retrieval strategy
is obtained which retrieves the stored items in presumed decreasing order of
importance. The ranking feature also serves to control the size of the
retrieved output, because the retrieval operation can simply be discontinued
after the user has seen a sufficient number of items. The global comparison
of weighted term vectors which forms the basis for the vector processing
retrieval model can of course be used not only in text pfocessing, but is
directly extendable to any pattern matching environment where attribute

vectors representing collections of objects can be compared and ranked.

Three main strategies are available for actually carrying out the collec-

tion search in a vector processing environment:

a) A sequential search can be used to compare the query with
each stored document in turn, computing in each case the
corresponding  query-document similarity  coefficients.
Because each document must be individually matched with

the query in a sequential search, this solution is usable only
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in special circumstances when the files are very small.

b) In some situations, a classified.or clustered file organization is
available where records covering the same subject matter are
grouped into affinity classes. This is true notably of many
library files where the documents are grouped according to
library classification numbers. . For clustered collections, fast
search strategies are available in which the search effort can
be concentrated in the most productive document clusters.

[13-15]

¢) Auxiliary index files, similar to those previously described for
the Boolean search system, can be used to provide lists of
record identifiers corresponding to each of the search terms.

In a vector processing environment, it is useful to include the

" term weights in the index lists because the query-document
similarity factors can then be computed directly from the

stored index information.

If real-time responses are needed and a clustered file is not available,
the use of indexed searches provides a reasonably alternative. Augmented
term lists similar to thdse shown at the bottom of Table 1 are then used,
where each document identifier is followed by the weight of the given term
in that document. Thus in the example of Table 1, term A carries a weight

of 0.2 in document D,, and a weight of 0.5 in D5, while term B has a weight
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of 0.1 in D5 and a weight of 0.9 in D,. If the similarity measure of expres-

sion (3) is used to compute the query-document similarities, the index list
t
for term j would contain the weighting factor wd”,/\/-kg1 (wy )? following the

entry for document D,. Since the weights of the query terms can be

separately specified, the complete expression (3) is then easily generated

from the stored index information.

3. The Smart Retrieval System

The Smart system (System for the Manipulation and Retrieval of Texts)
was designed in the early 1960’s as a prototype text processing and retrieval
system. The Smart system is based on the vector processing model and uses
query-document similarity computations similar to those of expression (3).
Successive implementations were prepared in the 1960’s on IBM 7090 and
7094 machines, in the 1970’s on IBM 360 and 370 equipment, and most
recently on a variety of machines running UNIX such as the DEC VAX
11/780 and Microvax computers. [16-19] The Smart system uses automatic
indexing techniques to generate the query and document vectors from avail-

able query and document texts. [20-21]

The value of a term attached to a document or query is assumed to
depend directly on the importance of the term in the document text--for
example on the frequency of occurrence of the term in the text--and

indirectly on the number of documents in the collection to which the term is
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attached. That is, the best terms--those which can most easily distinguish
the documents to which they are attached from the remainder of the
collection--are those occurring frequently in individual text items, but rarely
in the remainder of the collection. Accordingly, a typical term weighting
strategy usable in the Smart environment is

N-f,
fi

(4)

wa, = tf; - log

where tf;; is the frequency of occurrence of term j in document D,, f; is the
number of documents in the collection to which term J is attached and N is
the collection size. [22,23] When the weighting function of expression (4) is
used, the weight of term j in document D; increases as the term frequency

tf,; increases, and as the collection frequency of the term f; decreases.

A dynamic query improvement technique, known as relevance feedback
is utilized in the Smart system which produces new, improved query formu-
lations based on information derived from documents retrieved in earlier
search operations. [24-25] Specifically, indexed searches are carried out
that provide a ranked output display of the retrieved items inv decreasing
similarity order with the respective queries. Some of the displayed items
are then identified by the user as being useful or relevant to his information
needs, or on the contrary as extraneous or not relevant. The query is then
automatically reformulated to render it more similar to the items previously

designated as relevant, and less similar to the items identified as
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nonrelevant. Relevance feedback can be adapted to Boolean query environ-
ments . [26,27] However, the process is especially attractive for vector
queries where the relevant (or nonrelevant) document vectors are simply
added to (or subtracted from) the original query statements. The following

.feedback equation in vector notation is in fact optimal under reasonable con-

ditions: [24]

Qi+1=Q, + a R%l D, - B No%relDt - (5)
Here Q,,, is the new query statement obtained from the previous query for-
mulation @, by adding the terms from all relevant documents with a multi-
plication factor a, and subtracting the terms from the nonrelevant items
with a multiplicative factor of 8. The feedback’ operation of expression (5)
may change the weight of existing query terms that are included in certain
previously retrieved relevant or nonrelevant documents. Alternatively, new

terms derived from the previously retrieved documents may be added to the

query with appropriate weighting factors.

The feedback operation is graphically illustrated in the "vector space"
picture of Fig. 2 where the documents and queries are represented by the
tips of the corresponding vectors. The distance between two points in the
picture is inversely related to the similarity between the corresponding vec-
tors. An original query (open triangle) is shown in Fig. 2 together with
three retrieved documents (x) that are assumed to be relevant. When the

terms from these relevant items are added to the query, a new query
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designated by a closed triangle in Fig. 2 is formed which is much more simi-
lar to the 'previously retrieve& items than the original query. The new
query may then retrieve additional relevant items that would have been

missed by the original query. .

The available evidence indicates that the relevance feedback operation
provides substantial gains in retrieval performance. [24-25, 27] Because
the relevant documents used for query modification will necessarily be
retrieved once more by the feedback query with much improved ranks, the
feedback run will always appear to produce better output than the original
run, even when the user does not actually obtain any new relevant items
that have not previously been seen. In evaluating the relevance feedback
operation one must therefore be careful to subtract the so-called ranking
effect caused by the improvement in the retrieval ranks of previously

retrieved relevant items that were used for query modification purposes.

Table 2 illustrates the ranking effect by displaying an assumed docu-
ment ranking for both initial and feedback searches. Three relevant docu-
ments labelled R;, R, and R, in Table 2 are initially retrieved with
retrieval ranks 1, 3, and 7. When the terms from these documents are
incorporated in the query, the ranks of these items improve from 1, 3, and 7,
to 1, 2, and 3, respectively. The retrieval effectiveness of the run in Table 2
is measured by the well-known recall and precision parameters, reflecting

respectively the proportion of relevant items retrieved, and the proportion of
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retrieved items that are relevant. The fecall (R) may thus be computed as
the number of retrieved relevant items divided by the total number of
relevant items in the collection. Correspondingly, the precision (P) is com-
puted as the number of retrieved, relevant items divided by the total

number of retrieved items.

In the example of Table 2, the assumption is that the collection contains
10 relevant documents in all. In these circumstances the recall increases by
1/10 each time a relevant item is found. The performance figures on the
right side of Table 2 indicate that at every retrieval level following the first
retrieved item, the feedback run outperforms the initial run in both recall
and precision even though in fact the feedback run retrieves no additional

relevant items up to the fifth retrieved item.

Various solutions offer themselves for measuring the true advantage
provided by the relevance feedback process. [28-30] One possibility is the
so-called residual collection system where all items previously seen by the
user (whether relevant or not) are simply removed from the collection, and
both the initial and any subsequent searches are evaluated using the
reduced collection only. This depresses the absolute performance level in
terms of recall and precision, but maintains a correct relative difference
between initial and feedback runs. The residual collection evaluation is
used to evaluate the relevance feedback searches examined later in this

note.
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4. Parallel Computations in Text Processing

Various attempts have been made in recent years to introduce parallel-
ism in the text processing and information retrieval areas. The most obvi-
ous approach consists simply in overlapping, or performing simultaneously,
processes that use different machine resources and can therefore be carried
out independently.of each other. For example, incoming Boolean queries
can be parsed, that is decomposed into into clauses, at the same time as
incoming document texts are analyzed and indexed using dictionary consult-
ing methods. Alternatively, retrieved document citations can be displayed
while simultaneously rephrasing the queries using relevance feedback
operations. This type of coarse-grained parallelism is especially attractive
when the available operating system supports the corresponding procedures.
Under UNIX, user queries that share certain query terms are usefully pro-
cessed together, because the document lists corresponding to the common
query terms are then extracted from the auxiliary indexes and transferr_ed
into buffer memory only once instead of many times. Obviously, no special

equipment is needed to use this type of parallelism.

An alternative possibility for improving the efficiency of operations con-
sists in introducing special-purpose devices designed to provide fast execu-
tion of particular operations that must be performed frequently, and that
prove particularly time-consuming under normal circumstances. An obvious

candidate is the list merging operation needed to process Boolean query
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clauses such as (A and B), or (A or B). When this operation is carried out
sequentially, the number of pairwise comparisons between elements of the
two lists is equal to the sum of number of elements on both lists. The list
merging operation can, however, be speeded up considerably by using a
number of coméarison units in parallel, each capable of comparing two input
elements and of identifying the smaller of the two elements. Thus N/2 com-
parison units may be used for lists of length N/2 to compare respectively the
first entries from each of the two lists (Dg and Dj in the illustration of Table
1), the next two elements from each list (D15 and D), the third elements
(Dg3 and Dy;), and so on until the final two elements (D143 and D,q,) are
allocated to the last comparison unit. By suitably feeding the output of the
first stage of the comparison operation to a second stage using additional
compare units, and continuing on to additional comparison stages, a merging
network can be built which produces a merged list in substantially fewer

than N operations. In particular, when two lists of N/2 entries are handled,

the numer of comparison stages needed is (1 + llogzN /2 l) instead of N as

before, and the number of required comparison units is N + N/2 log, N/2.
[31] Parallel list merge methods have been implemented in various experi-

mental information retrieval systems. [32-33]

The parallel list merge system is useful in retrieval systems based on
auxiliary term index lists. In the vector processing model, parallel opera-

tions may also be used to carry out the vector manipulation operations.
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Thus the vector similarity computations of expression (3) could in principle
be speeded up by performing all the multiplication operations on the dif-
ferent vector elements in parallel, followed by a parallel addition of the indi-
vidual partial products. The introduction of parallel vector operations sub-
stantially enhances the speed of query-document comparisons, as well as the
documentjdocument comparisons used in collection clustering, and the vector

additions needed in relevance feedback (expression (5)).

Special backend vector processing machines, known as array processors,
have been developed capable of performing vector operations in parallel.
The array processors offer a number of parallel functional units, including
for example parallel adders, multipliers, and parallel logical units. In addi-
tion, pipelining is used to overlap the components of the individual opera-
tions. Array proceésors (AP’s) can be attached to front-end "host" machines,
in which case they rely on the host for loading the needed information into
the AP memory before the parallel operations are carried out, and for stor-

ing the results produced by the AP operations.

A host-array processor complex has been used experimentally to imple-
ment various information retrieval operations in the vector processing
model. [34-35] A typical allocation of operations for the host-array proces-
sor combination is shown in Table 3. In the example of Table 3 a cluster
search is carried out which consists in first comparing the query with the

"centroid vectors" that characterize the contents of the individual document
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clusters, followed by a comparison of the query with the document vectors

located in designated document clusters only.

In performing the vector similarity computations, the use of array pro-
cessors provides a two-fold advantage: the computations themselves are car-
ried out more rapidly; in addition, the cost of running the array processor is
much smaller than the cost of computing on the host machine. The avail-
able evaluations indicate, however, that the pure speed advantage of the
array processor is substantially reduced by the need to transfer data back
and forth between host and backend processors. For a sample computation
of 400 query-document similarity measuremAents, 145 milliseconds were
required by a stand-alone IBM 370 system. This was reduced to a total of
13 milliseconds when the AP was in use, plus 45 milliseconds of AP time. |
[34] Considering the fact that a great variety of different operations must
be carried out in text retrieval environments, most of which are not improv-
able by array processing devices, a speed advantage of 3 to 1 for vector simi-
larity computations alone may not be sufficiently attractive in practical

situations.

It was mentioned earlier that in operational retrieval systems the
search file may consist of several million items. The complication and
expense of introducing and maintaining the auxiliary term indexes designed
to provide fast answers in response to incoming search requests may then be

avoided by using specialized back-end search processors designed to carry
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out sequential searches on small subsections of the data files. In particular,
if n such back-end search processors were available, the record file could-be
divided into n pieces, all of which would be searched in parallel by the indi-
vidual back-end machines. When the number of back-end processors is suffi-
ciently large, an exhaustive search of all records in the stored files can be

carried out that nevertheless provides real time responses to the user popu-

lation. [36-39]

A typical multiprocessor arrangement of the type described earlier is
represented in Fig. 3. This configuration introduces substantial conceptual
simplifications in search applications because rapid answers are now obtain-
able without auxiliary file clustering or index maintenance operations. On
the other hand, the record files must be efficiently apportioned to the back-
end machines, and control procedures of substantial complexity may be
needed to coordinate the operations of the parallel processors. Although
various design proposals exist for so-called cellular, parallel processors,

these machines have not so far been applied in operational situations.

In recent years, the back-end processor philosophy has been extended by
greatly increasing the number of back-end machines and having each pro-
cessor carry out the same operations on the data under its control. Concep-
tually, it is then possible to use as many processors as there are documents
in the collection, and hence to carry out the search for the whole collection

in a single global operation performed by all machines in parallel. Such a
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data-driven organization simplifies the control operations and makes it pos-
sible to use conceptually very simple individual processor designs. The so-
called Connection Machine (CM) has been proposed as an implementation of
the back-end seargh machine. [40-41] The relevant details of the text
search operations using the CM hardware organization are covered in the

next section. .

5. Use of the Connection Machine for Text Searching.

The Connection Machine (CM) is a complex of up to 65,000 (2!9) inter-
connected parallel processors. Each processor contains an operations unit
capable of performing various bit-level operations, such as for example the
addition of bits or the logical-or of bits, as well as a small internal memory
capable of storing 4096 bits. As the name indicates, the various processors
are connected with each other, and data can be moved from one processor to
another under the control of stored routing information. In principle, each
processor executes the same operation at the same time on the different data
stored in the individual processors. In practice, control data may be stored
to distinguish the processors from each other and to limit the various opera-

tions to certain chosen processors only.

Before outlining the search and retrieval operations on the Connection
Machine, it is useful to describe briefly the methods used to store the docu-

ments in the CM processors. In principle, it would be useful to store docu-
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ment vectors of the type shown in expressions (1) and (2), consisting of sets
of weighted terms. Assuming that a document is identified by 100 terms of
8 characters each, 6400 bits are needed to the store the terms alone. Addi-
tional space would have to be allocated for the term weights. Since each CM
processor carries only 4096 bits of storage, including 1000 or so bits taken
up by control information, it is obvious that the standard. term vector
representation would have to be spread across several processors. Such an
organization complicates the query-document comparison operations, and

limits the number of documents that will fit into the available machine.

For this reason, the Connection Machine designers propose a bit-string
representation to encode each document. In particular, each term assigned
to a document is represented by a binary word of n bits (a bit string of
length n) with k particular bit positions (k < n) being set to 1, and the
remaining n-k bits set to 0. Documents identified by a single term are
represented directly by the bit string for the corresponding term. Docu-
ments identified by more than one term are represented by the superim-
posed bit vectors for the individual terms; that is, a given bit position in the
n-dimensional bit vector representing the document is set equal to 1 when-
ever that bit position is set equal to 1 in the coded representation of any one

of the terms.

The bit-string representation for documents, also known as a document

signature, actually goes back some 40 years to punched card days when a
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punched card was prepared for each document, and notches placed along the
card edge were used to encode the terms assigned to the documents. A sam-
ple document card with 24 punch positions along the top edge is shown in
Fig. 4. The assumption in the example is that each term assigned to a docu-
ment is represented by four chosen notch positions, and that the card edge is
appropriately notched.when a term is assigned to a document: The notches
corresponding to several different terms are superimposed as shown in the
example of Fig. 4. In punched card days, a needle technique would be used
for retrieval: specifically, to find documents identified by terms A and B,
needles would be inserted at the appropriate punch positions into the stack
of document cards, and cards with notches cut out in all the needle positions
would drop down into a box. [42] In modern bit-string matching systems,
the signature for the query terms can be compared directly with the docu-
ment signature, and documents whose signatures cover the query term sig-
nature (in the sense that each 1 in the query term‘signature is matched by a
1 in the corresponding position in the document signature) can be retriew}ed.
A typical query signature and matching document bit string are shown in

the example of Fig. 5.

The superimposed coding system can cause false retrievals when the
superposition of several terms produces patterns that are identical to the
codes of other assignable terms. For example, if the term "zebra" is encoded

in positions 3, 15, 20, and 21 in the example of Fig. 4, documents about
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"zebras" are necessarily retrieved in answer to queries about "information
retrieval”. The probability of false retrievals can however be minimized by
an appropriate choice of the length n of the bit vectors, and of the number k
of bit positions which are set equal to 1 for each encoded term. In particu-
lar, it is known that the false retrieval probability is smallest when half of

the bit positions in a bit vector are equal to 1. [43,44]

Because the bit string representation of documents and queries saves a
great deal of storage space compared with the weighted term vector
representations of expressions (1) and (2), document signature representa-
tions have been proposed for the implementation of modern text message
and document retrieval systems. [45-47] In the Connection Machine imple-
mentation, bit strings of length 1024 bits are suggested, and up to 35 terms
are encoded into each bit string by setting 10 specified bit positions equal to
1 for each assigned term. For documents represented by 100 terms, 3 dif-
ferent bit strings’ of 1024 bits each are needed, and these can still be
included comfortably in the available 4096 bits of memory available in each
processor. This makes it possible in principle simultaneously to compare up
to 65,000 document signatures stored in 65,000 different processor memories

with each incoming query.

With the exception of the bit vector representation and the absence of
individually stored term weights, the retrieval algorithm envisaged for the

Connection Machine is closely patterned after the Smart system



methodology

a)

b)

c)

d)

e)

.929.

: [40,41]

An indexing process carried out in the host machine is used
to reduce the original document texts to a set of terms; the
elimination of common words included in a special dictionary

is a principal component of the indexing step.

A binary document signature is prepared by superimposing

the hashed bit representations of the terms.

Vector queries (rather than Boolean statements) are used and
a binary signature is separately prepared for each term

included in a query.

The document vectors are loaded into the Connection
Machine and a parallel comparison is carried out between
each query term and all stored documents; that is, if a query
includes m terms, m global similarity computations are
needed, each one comparing one of the query terms with all

stored documents.

A query-document similarity, or document retrieval value, is
computed for all documents whose signatures cover any of the
query term signatures. Since individual term weights are not
stored, the document retrieval value used in the CM imple-

mentation is computed simply as = 1/log f; where f; is the
J
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collection frequency of term j (the number of documents to

which term j is assigned), and the summation ranges over all

document terms j that match the given query terms.

f) A global maximum operation available in the Connection
Machine is used to obtain a ranked retrieval of the top 15 or
20- .documents in decreasing order of the sum of the inverse

collection frequencies of all matching query terms.

g) A relevance feedback step is also available in which the user
designates some of the retrieved documents as relevant, and a
new query is constructed by taking the sets of terms included
in the designated relevant documents and including them in
the query. Since document term weights are not used in the
CM, each new query term j will once again be weighted
according to its inverse collection frequency 1/log f . The ori-
ginal relevance feedback equation (5) which increases or
decreases the individual query term weights is thus replaced

by the formulas @,,, = U Djor@Q,, =Q,or v D,
Relevant D; Rel D

In evaluating the CM retrieval methodology, two main questions must
be considered: the first relates to the speed advantage of the CM compared
with the speed of more conventional retrieval methods using sequential or

indexed searches; the second concerns the retrieval effectiveness of the CM
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methodology, that is, the ability to retrieve what is wanted and to reject
what is extraneous. Earlier text retrievél evaluations have confirmed the
importance of sophisticated term weighting systems capable of assigning dif-
ferent degrees of importance to the terms assigned to distinct documents.
This accounts for the use of the individual term frequencies tf;; of term j in
documents D, as illustrated earlief in the term weighting formulas of
expression (4). [21-23] Furthermore, when the documents contain varying
numbers of terms, it is usually important to incorporate length normaliza-
tion factors in the query-document comparisons, such as those used in the
denominator of the cosine function of expression (3). Without length nor-
malization, documents with more terms receive higher retrieval values and
hence have a better chance of being retrieved than documents with fewer

terms.

Neither term frequency weights, nor length normalization are available
in the CM methodology. Nevertheless, it has been claimed that "unstruc-
tured text retrieval (can be performed on the CM) achieving 80 percent
recall rates compared to 20 percent for conventional systems". [48] Without
attempting to interpret this type of statement--any retrieval system can
obviously always reach a perfeqt 100 percent recall by simply retrieving
everything in the collection--it may nevertheless be useful to assess the
actual performance of the CM procedures for text retrieval. This is done in

the next section.
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6. Evaluation of the CM Methodology

Descriptions are available of the performance of a Connection Machine
with 16,000 processors, using two search queries with 200-term queries.
[40,41] The assumption made in these tests was that each query term
occurs in one percent of the collection, that is, in 160 documents. Assuming
that the document signatures are already stored-in the processor memories
and that data transfers are therefore not required to load information from
the host machine to the CM, the time needed by the CM to compare a 200-
term query with the 16,000 stored document is 40 milliseconds; another 20
milliseconds are needed to retrieve the 20 top documents in decreasing
query-document order. (The 40 ms search time actually suffices to process
65,000 documents by using four CM modules each capable of handling

16,000 documents.)

In interpreting the CM test results, Waltz remarks that 265.8 million
instructions must be executed by a serial machine performing a sequential
search of each of 65,000 documents for a 200-term query (or equivalent,
66.45 million instructions would be needed for a sequential search of 16,000
documents). This implies that the 40 ms search time of the CM can be
attained by a serial machine only if the machine operates at a rate of 6645
million instructions per second (MIPS) for 65,000 documents or equivalently
1661 MIPS for 16,000 documents. [41] While the conclusion may be for-

mally correct, it is also quite misleading because no one in his right mind
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would in fact perform serial searches for text collections comprising tens of

thousands of documents.

The relevant timing data for indexed document searches of the type
actually performed in practice are shown in Table 4. Using the assumptions
made for the CM searches with respect to collection size and query length,
about 140 thousand instructions-are required for an indexed search by a
serial machine. In these circumstances, a SUN3 computer operating at a
speed of 3.5 MIPS performs the search operations as rapidly as the Connec-
tion Machine, while a dedicated VAX operating at one MIPS requires a
search time of 140 ms. In the SMART system environment, a multipurpose
VAX computer is used that performs other text processing tasks in addition
to collection searching. In these circumstances, the auxiliary term index is
not kept in intefnal storage, but the term lists for the query terms are
loaded into memory from a disk store as needed. When disk transfers are
included, the response time on a staﬁdard VAX is about 1.5 seconds for

16,000 documents using a 200-term query.

In interpreting these figures, it must be remembered that in a text
search application, the retrieval process will be controlled by the query
analysis and query formulations speed (which are measured in seconds
rather than milliseconds even in the CM), as well as by the speed at which
the user can absorb the output information. In particular, a few minutes

are normally required by users in order to read the displayed information,
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and to submit the relevance assessments needed for query reformulation in
a relevance feedback process. In these circumstances, even the 1.5 second
response time that includes disk transfer operations will appear adequate.
In any case, a dedicated SUN3 computer with sufficient internal memory for
the storage of the term indexes is as efficient as a comparable CM in this
application. Surely the. SUN3 or VAX. equipment will be far-less expensive
to acquire and run than the parallel Connection Machine. One must con-
clude that from the point of view of retrieval speed, the CM does not provide

any essential advantage for the text retrieval application.

Consider now the problem of retrieval effectiveness. The CM methodol-
ogy uses only inverse collection frequency weights attached to query terms.
This must be compared with the use of alternative term weighting systems
that are available in vector Processing environments. Three types of term

weighting components must be distinguished:

a) a term frequency component which is based on the frequency of

occurrence of a term in a given document or query;

b) a collection frequency component which is based on the number of

documents in a collection to which a term is attached;

¢) and a term weight normalization component which insures that

the lengths of query or document vectors are equal.

Table 5 gives typical assignments for the various term weighting com-
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ponents. By using a variable to designate each weighting component, a
complete term weight specification is expressible as a triple, covering the
term frequency, inverse collection frequency, and vector normalization com-
ponents.respectively. The computation of the document retrieval values is
completely specified by using the product of two adjacent triples, such as
"bnn-btn", where the. first.triple .refers to the weighting -method" used *for
document terms, the second triple refers to query term weights, and the
retrieval value of a document is computed by using a simple inner product
function consisting of the sum of the product of corresponding weights for
matching query and document terms. (Terms absent from a given query or

document vector are assumed to carry a 0 weight.)

A typical similarity computation is shown in Table 6 for the ntc (docu-
ment) - atn (query) weighting system. In this case a normalized term fre-
quency times inverse collection frequency known as (tf - idf) weighting
scheme is used for document terms, and an enhanced term frequency times
inverse document frequency system characterizes the query terms. The
enhanced frequency component used for query terms in Table 6 is designed

to insure that these weights lie in the range between 0.5 and 1.0

The retrieval performance of the CM search methods is reflected in the
evaluation data of Tables 7 to 11. In each case four different document col-
lections in four different subject areas, known as MED, CACM, CISI and

INSPEC, are used, ranging in size from about 1,000 documents for MED to
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about 13,000 for INSPEC. The performance of a given method is evaluated
by using a single number representing the average search precision
obtained at three different recall values of 0.25, 0.50, 0.75 recall respec-
tively. The average precision values at these three recall levels are further
averaged over a number of search requests available for each collection,
ranging from 30 queries for MED to 77 queries for INSPEC: The perfor-
mance figures of Table 7 to 11 thus represent averages of averages that are
somewhat difficult to interpret in absolute terms. However, the average
precision values for different retrieval runs do of course accurately reflect
the relative differences between the retrieval effectiveness of the different

methods.

The output of Table 7 confirms that the inverse collection frequency
weighting used in the CM document ranking system is in fact useful in
retrieval. In this case a totally unweighted retrieval system (bnn-bnn) is
compared with the CM method (bnn-btn) using unweighted terms attached
to documents, but inverse collection weights (idf) for the query terms. The
product (bnn-btn) represents the CM retrieval order according to the sum of
the inverse collection frequencies of matching terms in queries and docu-
ments. The output of Table 7 shows that the idf weighting system provides
improvements in average search precision ranging from 20 percent for the

CISI collection to over 60 percent for INSPEC.
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The experiments of Table 8 demonstrate that the CM base case
(bnn'btn) is not optimal.. When weighted document terms are used instead
of unweighted document terms, substantial additional improvements in
retrieval effectiveness are produced ranging from 8 percent in average
precison for the MED collection to over 40 percent for INSPEC. As
expected, the term weighting system produces relatively less improvement
for collections with a high performarice standard such as MED, than for the
others where more room is left for performance increases. In Table 8, the idf
term weighting system is maintained throughout for the query terms, but
the document term weights are changed from binary (that' is, unweighted) to
term frequency (tf) and (tfidf) weights. The document term weights are not
accessible to the CM process because of the bit-string document representa-

tion.

The output of Table 9 carries the term weighting system one step
further by introducing better term weighting methods (than simple idf) also
for the query terms. When tf-idf weights are used for both query and docu-
ment terms, the improvement in retrieval effectivness over the standard CM
base case ranges from over 10 percent for the MED collection to nearly 80
percent for CISI. The (ntc-atn) weighting used in the right-most column of
Table 9 was described earlier in the example of Table 6. The evaluation
data of Tables 7 to 9 demonstrate that while the CM query weighting sys-

tem in inverse collection frequency is beneficial compared to a totally
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unweighted retrieval method, much greater improvements can be produced
in a vector processing environment such as Smart, that is not based on a

binary document signature representation.

The use of discrimination factors distinguishing relatively good terms _
assigned for content representation from relatively poorer ones is even more
crucial in a relevance feedback situation. In the CM environment where
document term weights are not available, the relevance feedback step con-
sists simply of adding all terms included in documents designated as
relevant to the original query to form a new query. Alternatively, the origi-
nal query could be replaced by the set of terms included in the designated
relevant documents. Such an approach treats each document term as
equally useful for query formulation purposes. The evaluation output of
Table 10 shows that the CM relevance feedback process does not work well

in practice.

In Tables 10 and 11, the CM base case (bnn-btn) is used for the initial
run throughout. The top 15 documents retrieved by the CM base run are
examined for relevance, and the queries are appropriately reformulated. A
new (relevance feedback) run is then performed with the altered query
whose performance can be compared with that of the original run. As
described earlier, the advantages of the feedback run cannot be properly
evaluated if the documents used in the feedback operation are maintained in

the system. A residual collection evaluation is therefore used in Tables 10
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and 11 which subtracts the 15 items examined by the user from the collec-.
tion for evaluation purposes. This accounts for the fact that the CM base
run of Table 10 has a lower overall performance than the CM base case of
Tables 8 and 9, since the top 15 documents retrieved in response to the

queries are now missing in each case.

The true improvement obtainable by the relevance feedback process
incorporated into the Connection Machine system is shown in Table 10. As
the figures indicate, the feedback process used in the Connection Machine
produces a performance degradation ranging from over 30 percent for CISI
to over 60 percent for INSPEC. Obviously, it is not possible to use all docu-
ment terms indiscriminately for query reformulation purposes, as suggested

by the CM designers. [40]

The output of Table 11 demonstrates the usefulness of the more sophisti-
cated relevance feedback methods developed in the Smart system environ-
ment. The second column of Table 11 uses the basic CM relevance feedback
method for query reformulation purposes by constructing a feedback query
with idf term weights. This query is then however matched against prop-
erly weighted document vectors (tfidf normalized). Once again the docu-
ment term weights are essential: the feedback operation now produces

improvements of up to 60 percent for most collections.

To obtain substantial benefits from the feedback operation, it is neces-

sary to use more sophisticated query reformulation processes. The selective
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query term alteration system of expression (5) introduced in the Smart sys-
tem is used for the runs presented in columns 3 and 4 of Table 11. Here the
weights of old query terms are selectively raised or lowered in accordance
with the weights of these terms in the relevant or nonrelevant previously
retrieved documents. In addition, new terms not originally present may be
added to the query. In the last two feedback runs of Table 11, ntc (that is,
normalized term frequency times inverse collection frequency) weights are
used for query reformulation purposes. Moreover, a feedback method intro-
duced by Ide [29] is used which consists in utilizing all previously retrieved
relevant documents for query reformulation as well as one previously

retrieved nonrelevant item (the top nonrelevant previously retrieved item).

The third column of Table 11 uses the Smart feedback process with
selective weight modification and (tfidf) document term weights for query-
document comparison purposes. An additional normalizatio\n factor is used
‘in the run shown in column 4 Qf Table 11 for the document vectors. The
results of Table 11 show that the performance deterioration noted earlier for
the CM feedback methodology, is now replaced by very considerable
increases in performance for the properly reformulated and re-weighted
queries, ranging from an improvement of about 130% for the MED collection
to about 170 percent for CISI and INSPEC. Additional feedback iterations

would no doubt increase the performance still further. [24-27]
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Conclusion

There is no question about the potential usefulness of the "memory
based" reasoning methods proposed by Waltz and others, and of the impor-
tance of the global comparisons and subsequent rankings of weighted attri-
bute vectors representing item properties or item content. [40,41] This type
of approach is surely usable in many» types of pattern matching situations,
such as data base retrieval, medical diagnosis, and character recognition.
Furthermore, the search time obviously decreases when parallel search
methods are used such as those proposed for the Connection Machine. The
experiments described in this study show, however, that the method of
implementation is important and that parallelism per se does not in itself |

improve search and retrieval output.

In the text retrieval application, the search speed is not of primary
importance, since user response time will in fact control the total speed of
operations. Furthermore, indexed searches are usable with modern serial
machines whose response speed is completely competitive with that of the
proposed parallel search equipment. In text retrieval it is also essential that
important terms be distinguished from less important ones. Without sophis-
ticated term weighting systems, acceptable retrieval output is not obtainable
either for initial searches or for the feedback search iterations. If the
memory units attached to the small parallel processing units cannot accom-

modate sophisticated term weight, the losses in retrieval effectiveness of
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several hundred percent compared with alternative nonparallel vector
matching processes are so large, that the parallel search methods will not

prove attractive in practice.

In the end, the potential use of the CM, or of other parallel search dev-
ices, depends on cost factors. When relatively small data collections are pro-
cessed as in certain SDI (selective dissemination of infofmation).systems,
and core swapping is not required too frequently, and when discriminating
attribute vectors are usable in each parallel processing unit, a fast parallel
matching system should certainly be considered. For general commercial
use with lar,g:e collections of several million items these conditions cannot be
met. Since indexed search methods are currently available that can rapidly
eliminate most extraneous items from consideration, and that can also
accommodate term weights or other term discrimination factors, the global
vector matching systems developed over the past 25 years for serial comput-
ing devices appear more attractive in most existing text processing situa-

tions.
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Term A

Term B

{D3, D15, D3, Dgg, D1z, Dyso, Dygg ...}

{Ds, D10, D15 ,Dso, Dog, D123, D1gg ...}

Merged (A,B)

{D3, Ds, D1g, D15, D15, Dy, Dsg, D,
Dgo, D133, D123, D14, D1gg, Digo ,...}

Retrieved Items
for (A and B)

Retrieved Items

{D1s, D133}

{Da, Ds, D1g, D15, Dys, D5, Dgg, Dy

for (A or B) D33, Dy4g, D145, Dogg ...}
Augmented - {D3,0.2; D15,0.5; D33,0.1; Dgy,0.9;
Term A List D123,1.0; D14o,0.2; D1“,0.7 ;...}
Augmented {D5,0.1; D14,0.9; D15,0.7; D34,0.2;
Term B List Dgo,03, D123,0.2; D190,0.1 ,.}

List Manipulations in Indexed Searches

Table 1
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Performance
Initial Document Initial Feedback
Document Ranking
Ranking after R P R P
Feedback

1 R —1 Ry 1110 1 1/10 1

2 x/2 R, 1710 12 | 210 1

3 R, 3 R, 2/10 2/3 | 3/10 1
4 x 4 x 2/10 2/4 | 3/10 3/4
5 x 5 newRel | 2/10 2/5 | 410 4/5
6 x 6 x 210 2/6 | 4/10 4/6
7 Ry 7 x 3/10 3/6 | 410 4/7

Relevance Feedback Illustration
(R, Ry, Rj are relevant items used for feedback;
R recall = number of relevant retrieved/total relevant;

P precision = number of relevant retrieved/total retrieved)

Table 2
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Host Machine

Array Processor (AP)

. User types in query; query vector is generated
and sent to array processor

. Idle

. Document vectors located in the clusters

most similar to the query are transfered to AP

. Search results are obtained from the AP and
corresponding document citations are retrieved
from the files

. Document citations are presented to user and

query is reformulated for relevance feedback

1. Idle

(centroid vectors characterizing cluster

structure already stored in AP)

2. Compare query vector with stored centroid

vectors and identify best clusters

3. AP starts comparison of query vector that are

with some document vectors
4. Query-document comparisons are carried out,
and identifiers for most highly matching

documents are sent to host

5. AP is initialized for a new search

Typical Collection Search Using Host-Array Processor Combination

Table 3
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Query Processing
. 200 terms for query
each term occurs in 1% of collection
16,000 documents

Sequential Processing (using term index)
200 terms X 160 documents/term
X 4 instructions for inner loop
X 1.1 outer loop overhead = 140,800 instructions

Time for Document-Query Comparisons

1. Connection Machine (no disk transfers)* 40 ms
2. SUN 3 (8 Mbyte, 3.5 MIPS) 40 ms
3. VAX 11/780 (8 Mbyte, 1 MIPS) 140 ms
4. VAX 11/780 (multipurpose machine; 1,500 ms = 1.5 sec.

term index stored on disk)

.Sample Timing for Query-Document Comparisons
(* data from reference [41)])

Table 4




Term Weighting Components

(first triple covers document, second triple covers query)

i) left most component covers term frequency

(frequency of occurrence of term in a document:tf)

1.0 .
n T tf
a : 0.5 + 05 tf (max tf in document vector)
max {f

ii) middle component covers collection frequency

- (number of documents in collection to which a term is assigned:f)

n : 1.0

t log N/f (inverse collection frequency (idf) component)

iii) third component covers document length normalization

n : 1.0
¢ = N/ Z(w;)* (document vectors normalized to maximum length of 1)
13

Term Weight Construction

Table 5
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n t [

sum(D,,@) = 2 {[(tfl) (log—-) ( )]
\/-2 tf? - (log ~)2

N
fj) 1]}

fy,
-((0.5 + 0.5 ) (log
m

ax f,

fy;  term frequency of term jinQ

tfd‘,j term frequency of term j in D,

fi  collection frequency of term j

max /f, maximum term frequency of any term in Q

N collection size

Sample Similarity Computation for ntc-atn Weights

Table 6
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Binary documents Binary Documents Improvement
Binary Queries Idf Queries over Pure
(Combination Level) (CM base case) Binary Case
ban-bnn bnn-btn
MED (1033 documents 0.4132 0.5098 +23%
30 queries)
CACM (3204 documents 0.1848 0.2388 +29%
52 queries
CISI (1460 documents 0.1033 0.1226 +19%
35 queries
INSPEC (12684 documents 0.0944 0.1562 +65%

77 queries

Importance of Inverse Document Frequency (idf) Weighting

Used in CM Base Case
(initial collection search)

Table 7
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CACM 3204

CISI 1460

INSPEC 12684
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Binary Docs Normalized Term
Idf Queries  Frequency (tf) Docs

Normalized tf-idf
Documents and

(CM Base) Idf Queries Idf Queries
bnn-btn ann-btn atn-btn
0.5098 0.5441 (+ 7%) 0.5502 (+ 8%)
0.2388 0.3101 (+30%) 0.3095 (+30%)
0.1226 0.1410 (+15%) 0.1528 (+25%)
0.1562 0.2070 (+33%) 0.2236 (+43%)

Importance of Term Weighting for Documents

(with Conventional CM Queries)

(initial collection search)

Table 8




MED 1033

CACM 3204

CISI 1460

INSPEC 12684

Binary Docs
Idf Queries
(CM Base)

ban-btn

- 48 -

Tf X Idf Length

Normalized Documents

Idf Queries
ntc-btn

Tf X Idf Length
Normalized Documents
Tf X 1df Queries

ntc-atn

0.5098

0.2388

0.1226

0.1562

0.5586 (+10%)

0.3523 (+48%)

0.1864 (+52%)

0.2433 (+56%)

0.5628 (+11%)

0.3630 (+52%)

0.2189 (+79%)

0.2626 (+68%)

Importance of Fancy Term Weighting for Documents and Queries

(initial collection search)

Table 9




MED 1033

CACM 3204

CISI 1460

INSPEC 12684
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Initial Run CM Relevance Deterimination
Binary Docs Feedback Run  of First Feedback
Idf Queries Binary Docs Run over
(CM Base Case) Idf Queries Initial Run
ban-btn bnn-btn
0.2812 0.1438 -49%
0.1283 0.0850 -34%
0.0962 0.0644 -33%
0.0905 0.0323 . -64%

Evaluation of Connection Machine Relevance Feedback Method

Table 10
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CACM 3204

CISI 1460

INSPEC 12684

-50 -

All Relevance Feedback Runs Based on CM Base Run

Initial Run

Binary Docs Tf-1df Length Tf-1df Documents TfIdf Length
Idf Queries | Normalized Docs | Weighted Query | Normalized Docs.
(CM Base) Idf Queries Adjustment (5) Weighted Query

bnn-btn ntc-btn atn-IDE(ntc) Adjustment (5)
ntc-IDE(ntc)
0.2812 0.4486 (+60%) 0.6425 (+128%) 0.8385 (+127%)
0.1283 0.2035 (+59%) 0.2972 (+132%) 0.3301 (+157%)
0.0962 0.1314 (+37%) 0.2101 (+118%) 0.2590 (+169%)
0.0905 0.0884 (- 2%) 0.2282 (+152%) 0.2478 (+174%)

Importance of Weighted Documents and of Query Weight Adjustment

in Relevance Feedback

Table 11




Vector Similarity Measurements
Fig. 1

Sim(Q,D,) = cos a = y/z; Sim(Q,D,) = cos B =zxz

y=Qcosa>x=Qcosf

A original query

X retrieved items

designated as relevant

A altered query

Relevance Feedback [llustration

Fig. 2
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