
Palkowski and Bielecki BMC Bioinformatics (2017) 18:290
DOI 10.1186/s12859-017-1707-8

RESEARCH ARTICLE Open Access

Parallel tiled Nussinov RNA folding loop
nest generated using both dependence graph
transitive closure and loop skewing
Marek Palkowski* and Wlodzimierz Bielecki

Abstract

Background: RNA secondary structure prediction is a compute intensive task that lies at the core of several search
algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization,
involve mathematical operations over affine control loops whose iteration space can be represented by the
polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense
array codes. However, classical affine loop nest transformations used with these techniques do not optimize
effectively codes of dynamic programming of RNA structure predictions.

Results: The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov
RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due
to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously
published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first
forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the
transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled
Nussinov loop nest.

Conclusions: The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO
compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up
factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in
which only the two outer loops of the Nussinov loop nest are tiled.

Keywords: RNA folding, Parallel biological computing, Loop tiling, Transitive closure, Loop skewing

Background
RNA secondary structure prediction is an important
ongoing problem in bioinformatics. RNA provides a
mechanism to copy the genetic information of DNA and
can catalyze various biological reactions. RNA folding is
the process by which a linear ribonucleic acid molecule
acquires secondary structure through intra-molecular
interactions.
Algorithms to make predictions of the structure of sin-

gle RNA molecules use empirical models to estimate the

*Correspondence: mpalkowski@wi.zut.edu.pl
West Pomeranian University of Technology, Faculty of Computer Science,
Zolnierska 49, 71-210 Szczecin, Poland

free energies of folded structures. This paper focuses
on the base pair maximization algorithm developed by
Nussinov [1], which predicts RNA secondary structure in
a computationally efficient way. Given an RNA sequence
x1, x2, . . . , xn, where xi is a nucleotide from the alphabet
{G (guanine), A (adenine), U (uracil), C (cytosine)}, Nussi-
nov’s algorithm solves the problem of RNA non-crossing
secondary structure prediction by means of computing
the maximum number of base pairs for subsequences
xi, . . . , xj, starting with subsequences of length 1 and
building upwards, storing the result of each subsequence
in a dynamic programming array.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1707-8&domain=pdf
mailto: mpalkowski@wi.zut.edu.pl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 2 of 10

The following Nussinov recursion S(i, j) is defined over
the region 1 ≤ i < j ≤ N as

S(i, j) = max(S(i + 1, j − 1) + δ(i, j),
max
i≤k<j
(S(i, k) + S(k + 1, j))), (1)

and zero elsewhere, where S is theN×N Nussinov matrix,
and δ(i, j) is the function which returns 1 if (xi, xj) is an
AU, GC or GU pair and i < j, or 0 otherwise.
Nussinov’s algorithm is within nonserial polyadic

dynamic programming (NPDP). The term nonserial
polyadic stands for another family of dynamic program-
ming (DP) with nonuniform data dependences, which is
more difficult to be optimized [2].
On modern computer architectures, the cost of mov-

ing data frommain memory is orders of magnitude higher
than the cost of computation. Improving data locality and
extracting loop nest parallelism of NPDP are still challeng-
ing tasks, although a number of authors have developed
theoretical approaches to accelerating NPDP codes for
RNA folding [3–8].
Fortunately, the Nussinov recursion involves mathemat-

ical operations over affine control loops whose iteration
space can be represented by the polyhedral model [9]. In
this paper, we consider a formulation that is suitable for
automatically producing parallel and tiled program loop
nests from the dependence structure of the program (as
would be used in an automatic optimizing compiler).
Loop tiling, or blocking, is a key transformation used

for both coarsening the granularity of parallelism and
improving code locality. Smaller blocks of loop nest state-
ment instances in a loop nest iteration space (tiles) can
improve cache line utilization and avoid false sharing.
On the basis of a valid schedule of tiles, parallel coarse-
grained code can be generated.
To our best knowledge, well-known loop nest tiling

techniques are based on linear or affine transformations
[10–13]. However, only the two outer loops from the three
ones of the Nussinov code can be tiled by means of stan-
dard tiling algorithms implemented in polyhedral tools
[14]. For example, the state-of-the-art compiler, Pluto [10],
extracting and applying affine transformations, is able to
tile and parallelize the two outer loops of the consid-
ered Nussinov code and is not able to tile the innermost
loop. The iterations of this loop can be executed only
in serial order that prevents enhancing code locality and
parallelism degree.
Moreover, classical affine transformations have com-

monly known limitations [9, 14, 15], which complicate
extraction of available parallelism and locality improve-
ment in NPDP codes. Mullapudi and Bondhugula pre-
sented dynamic tiling for Zuker’s optimal RNA folding1 in
paper [9]. They have explored techniques for tiling codes
that lie outside the domain of standard tiling techniques.

3D iterative tiling for dynamic scheduling is calculated
by means of reduction chains. Operations along each
chain find maximum and can be reordered to eliminate
cycles. Their approach involves dynamic scheduling of
tiles, rather than the generation of a static schedule. At this
time, a precise characterization of the relative domains of
this technique is not available.
Wonnacott et al. introduced 3D tiling of “mostly-

tileable” loop nests of the Nusinov algorithm in the paper
[14]. The “mostly-tileable” term means the iteration space
is dominated by non-problematic iterations (iterations
of loops ’i’ and ’j’). This approach tiles non-problematic
iterations with classic tiling strategies while problematic
iterations of loop (’k’) are peeled off and executed later.
Generated code is serial and the authors do not present
any parallelization of this code.
Rizk et al. [16] provide an approach to produce efficient

GPU code for RNA folding, but they do not consider any
loop nest tiling. Tang et al. [17] presented the Pochoir
compiler for automatic parallelization and cache per-
formance optimization of stencil computations. Pochoir
computes the optimal cost of aligning a pair of DNA or
RNA sequences by means of Gotoh’s algorithm. It trans-
forms computation to obtain diamond-shaped grid that
can be evaluated as a stencil, but it can tile only two
of the three loops of original code. Stivala et al. [18]
describe a lock-free algorithm for parallel dynamic pro-
gramming. However, code locality improvement is not
considered.
Paper [15] introduces a new technique to generate par-

allel code applying the power k of a relation representing
a dependence graph, but that paper does not consider
generation of tiled code and does not concern any RNA
folding. Paper [19] considers runtime scheduling of RNA
folding for untiled program loops with known bounds.
Motivated by the deficiency of the mentioned tech-

niques, we developed and present in this paper a novel
approach for tiling and parallelization of the Nussinov
loop nest. To generate valid tiles in all three dimensions,
we apply the exact transitive closure of loop nest depen-
dence graphs. It allows for generating target tiles such
that there is no cycle in a corresponding inter-tile depen-
dence graph. It is well-known that for such a case, a valid
schedule of target tiles exists, i.e., a valid serial or par-
allel tiled code can be generated [9]. Such a tiling can
be applied to bands of original loops not being fully per-
mutable. To parallelize generated serial tiled code, we use
the loop skewing transformation and prove its application
validity.

Methods
Brief introduction
An introduced approach uses the dependence anal-
ysis proposed by Pugh and Wonnacott [20] where

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 3 of 10

dependences are represented by relations with constraints
defined by means of the Presburger arithmetic using log-
ical and existential operators. A dependence relation is a
tuple relation of the form [input list]→[output list]: for-
mula, where input list and output list are the lists of vari-
ables and/or expressions used to describe input and out-
put tuples and formula describes the constraints imposed
upon input list and output list. Such a relation is a mathe-
matical representation of a data dependence graph whose
vertices correspond to loop statement instances while
edges connect dependent instances. The input and out-
put tuples of a relation represent dependence sources and
destinations, respectively; the relation constraints specify
instances which are dependent.
Standard operations on relations and sets are used,

such as intersection (∩), union (∪), difference (−), domain
(dom R), range (ran R), relation application (S′ = R(S):
e′ ∈S′ iff exists e s.t. e→e′ ∈R, e∈S). In detail, the description
of these operations is presented in papers [20, 21].
The positive transitive closure for a given lexicographi-

cally forward relation R, R+, is defined as follows [21]:

R+ = {e→ e′ ∶ e→ e′ ∈ R ∨
∃e′′s.t. e→ e′′ ∈ R ∧ e′′ → e′ ∈ R+}.

It describes which vertices e′ in a dependence graph
(represented by relation R) are connected directly or tran-
sitively with vertex e.
Transitive closure, R*, is defined as below:

R∗ = R+ ∪ I,

where I is the identity relation. It describes the same con-
nections in a dependence graph (represented by R) that R+
does plus connections of each vertex with itself. Figure 1
presents R+ and R∗ in a graphical way.

Fig. 1 Transitive closure. An example of dependence relation R,
positive transitive closure R+ , and transitive closure R∗

In the sequential loop nest, the iteration i executes
before j if i is lexicographically less than j, denoted as

i ≺ j, i.e., i1 < j1 ∨ ∃k ≥ 1 ∶ ik < jk ∧ it = jt , for t < k. (2)

A schedule is a function σ ∶ LD → Z which assigns
a discrete time of execution to each loop nest statement
instance or tile. A schedule is valid if for each pair of
dependent statement instances, s1(I) and s2(J), satisfy-
ing the condition s1(I) ≺ s2(J), the condition σ(s1(I)) <
σ(s2(J)) holds true, i.e. the dependences are preserved
when statement instances are executed in an increasing
order of schedule times.

The Nussinov loop nest
The Nussinov recurrence is challenging to acceler-
ate because of its non-local dependency structure
shown in Fig. 2. Cell S(i, j) is depended to adjacent
cells of the dynamic programming matrix as well as
to non-local cells. These non-local dependences are
affine, that is, S(i, j) depends on other cells S(r, s)
such that the differences i–r or j–s are not constant
but rather depend on i and j. Therefore, the Nussinov
data dependences result in a nonuniform structure [5].
Equation 1 leads directly to the form of
the O(n3) Nussinov loop nest presented in
Listing 1. The loop nest is imperfectly-nested and is
comprised of two statements, s0 and s1.

Fig. 2 Cell dependences. Nussinov’s loop nest dependences for one
iteration (i = 1, j = 5); iteration (i = 1, j = 5) depends on three adjacent
iterations and five non-local ones

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 4 of 10

Listing 1 Nussinov loop nest

for (i = N−1 ; i >= 0 ; i −−) {
for (j = i +1 ; j < N; j ++) {

for (k = 0 ; k < j − i ; k++) {
S [i] [j] = max (S [i] [k+ i] + S [k+ i +1] [j] , S [i] [j]) ; / / s0

}
S [i] [j] = max (S [i] [j] , S [i +1] [j −1] + d e l t a (i , j)) ; / / s1

}
}

The following sub-section discusses how to generate
serial tile code bymeans of the transitive closure of depen-
dence graphs.

Loop nest tiling based on the transitive closure of
dependence graphs
To generate valid tiled code, we apply the approach pre-
sented in paper [22] based on the transitive closure of
dependence graphs. We briefly present the steps of that
technique for tiling the Nussinov loop nest. Dependence
relations for this loop nest, including non-uniform ones,
can be extracted with Petit (the Omega project depen-
dence analyser) [20] and they are presented below.

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0→ s0 ∶ {[i, j, k] → [i, j′, j − i] ∶ j < j′ < N∧
0 ≤ k ∧ i + k < j ∧ 0 ≤ i} ∪
{[i, j, k] → [i′, j, i − i′ − 1] ∶
0 ≤ i′ < i ∧ j < N ∧ 0 ≤ k ∧ i + k < j} ∪
{[i, j, k] → [i, j, k′] ∶ 0 ≤ k < k′ ∧ j < N
∧0 ≤ i ∧ i + k′ < j}

s0→ s1 ∶ {[i, j, k] → [i − 1, j + 1] ∶ j ≤ N − 2 ∧
0 ≤ k ∧ i + k < j ∧ 1 ≤ i} ∪
{[i, j, k] → [i, j] ∶ j < N ∧ 0 ≤ k ∧
i + k < j ∧ 0 ≤ i}

s1→ s0 ∶ {[i, j] → [i, j′, j − i] ∶ 0 ≤ i < j < j′ < N}
∪{[i, j] → [i′, j, i − i′ − 1] ∶
0 ≤ i′ < i < j < N}

s1→ s1 ∶ {[i, j] → [i − 1, j + 1] ∶ 1 ≤ i < j ≤ N − 2}.

Next, we calculate the exact transitive closure of the
union of all dependence relations, R+, applying the mod-
ified Floyd-Warshall algorithm [23]. For brevity, we skip
the mathematical representation of R+.
Let vector I = (i, j, k)T represent indices of the Nussinov

loop nest, vector B = (b1,b2,b3)T define an original tile
size, vectors II = (ii, jj, kk)T and II′ = (iip, jjp, kkp)T spec-
ify tile identifiers. Each tile identifier is represented with a
non-negative integer, i.e., the constraints II ≥ 0 and II′ ≥
0 have to be satisfied.

Below, the mathematical representation of original rect-
angular tiles for the Nussinov loop nest with the tile size
defined with vector B is presented.

TILE =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ∶ N − 1 − b1 ∗ ii ≥ i ≥ max(−b1 ∗ (ii + 1),
N − 1) ∧ ii ≥ 0

j ∶ b2 ∗ jj + i + 1 ≤ j ≤ min(b2 ∗ (jj + 1) + 1,
N − 1) ∧ jj ≥ 0

k ∶
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s0 ∶ b3 ∗ kk ≤ k ≤ min(b3 ∗ (kk + 1) − 1,
j − i − 1) ∧ kk ≥ 0

s1 ∶ k = 0.

Let us note that for index i, the constraints are defined
inversely because the value of index i is decremented.
For the tile identifiers, we define constraints,

CONSTR(II,B), which have to be satisfied for given
values b1, b2, b3, defining a tile size, and parameter N
specifying the upper loop index bound.

CONSTR(II,B) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ii,b1 ∶ N − 1 − b1 ∗ ii >= 0
jj,b2 ∶ (i + 1) + b2 ∗ jj <= N − 1
kk,b3 ∶ b3 ∗ kk + 0 <= j − i − 1.

(3)

In accordance with formula (2), we present below the
lexicographical ordering II ≺ II′ on vectors II, II′ defining
tile identifiers as follows.

II′ ≺ II =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 ∶
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s0 ∶ ii > iip ∨ (ii = iip ∧ jj > jjp) ∨
(ii = iip ∧ jj = jjp ∧ kk > kkp))

s1 ∶ ii > iip ∨ (ii = iip ∧ jj > jjp)

s1 ∶
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s0 ∶ ii > iip ∨ (ii = iip ∧ jj > jjp) ∨
(ii = iip ∧ jj = jjp))

s1 ∶ ii > iip ∨ (ii = iip ∧ jj > jjp).

Next, we build sets TILE_LT and TILE_GT that are the
unions of all the tiles whose identifiers are lexicographi-
cally less and greater than that of TILE(II,B), respectively:
TILE_LT(GT) = {[I]∣ ∃ II′ ∶ II′ ≺ (≻)II ∧ II ≥ 0∧
CONSTR(II,B) ∧ II′ ≥ 0 ∧ CONSTR(II′,B) ∧ I ∈

TILE(II′,B)}.
Using the exact form of R+, we calculate set, TILE_ITR,

as follows.

TILE_ITR = TILE − R+(TILE_GT).

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 5 of 10

This set does not include any invalid dependence tar-
get, i.e., it does not include any dependence target whose
source is within set TILE_GT.
The following set

TVLD_LT = (R+(TILE_ITR) ∩ TILE_LT)
− R+(TILE_GT)

includes all the iterations that i) belong to the tiles
whose identifiers are lexicographically less than that of set
TILE_ITR, ii) are the targets of the dependences whose
sources are contained in set TILE_ITR, and iii) are not
any target of a dependence whose source belong to set
TILE_GT.
Target valid tiles are defined by the following set

TILE_VLD = TILE_ITR ∪ TVLD_LT .

To generate serial tiled code, we first form set
TILE_VLD_EXT by means of inserting i) into the first
positions of the tuple of set TILE_VLD elements of vec-
tor II ∶ ii, jj, kk; ii) into the constraints of set TILE_VLD
the constraints defining tile identifiers II ≥ 0 and CON-
STR(II,B).
The following step is to use the original schedule

of the original Nussinov loop nest statement instances,
SCHED_ORIG, to form a target set allowing for re-
generation of serial valid code. The original schedule can
be extracted bymeans of the Clan tool [24] and is as shown
below.

SCHED_ORIG = { s0 ∶ 0, i, 0, j, 0, ks1 ∶ 0, i, 0, j, 1, k.

Next we enlarge that schedule with indices ii, jj, kk
(responsible for tile identifiers) repeating the same
sequence of elements as that for indices i, j, k in the origi-
nal schedule to get the following schedule.

SCHED =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s0 ∶ 0, ii, 0, jj, 0, kk, 0, i, 0, j, 0, k

s1 ∶ { s0 ∶ 0, ii, 0, jj, 1, kk, 0, i, 0, j, 0, ks1 ∶ 0, ii, 0, jj, 1, kk, 0, i, 0, j, 1, k.

Let us note that tiles, formed for statement s0, include
only instances of statement s0, while those generated for
statement s1 comprise instances of both statement s0 and
statement s1.
In the next step, we form relation, Rmaps0, for the sub-

set of set TILE_VLD_EXT representing tiles for statement
s0, as follows

Rmaps0 = {
TILE_s0 [ii, jj, kk] →
[0, ii, 0, jj, 0, kk, 0, i, 0, j, 0, k] } ,

and relation, Rmaps1, for the sub-set of set
TILE_VLD_EXT representing tiles for statement s1, as
follows

Rmaps1 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

TILE_s0 [ii, jj, kk] →
[0, ii, 0, jj, 1, kk, 0, i, 0, j, 0, k];

TILE_s1 [ii, jj, kk] →
[0, ii, 0, jj, 1, kk, 0, i, 0, j, 1, k]

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

and finally, form target set, TILE_VLD_EXT ′, as bellow

TILE_VLD_EXT ′ = Rmap(TILE_VLD_EXT),

where Rmap = Rmaps0 ∪ Rmaps1.
Sequential tiled code is generated by means of apply-

ing the isl AST code generator [25] allowing for scanning
elements of set TILE_VLD_EXT ′ in lexicographic order.

Tiled code parallelization
To parallelize generated serial tiled code, we apply
the well-known loop skewing transformation [26]. Loop
skewing is a transformation that has been used to remap
an iteration space by creating a new loop whose index is
a linear combination of two or more loop indices. This
results in code whose outermost loop is serial while the
other loops can be parallelized.
We use the following skewing transformation: ii′ = ii+jj,

where ii′ is the new loop index, ii, jj are the indices of the
first two loops in tiled code. Figure 3 illustrates the loop
skewing technique applying to the Nussinov loop nest.
Iterations lying on each horizontal line can be executed
in parallel while time partitions should be enumerated
serially.

Fig. 3 Loop skewing. Scheduling for Nussinov’s recurrence cells. Cells
lying on each horizontal line are independent and can be run in
parallel; the vertical coordinate represents time partitions to be
enumerated serially

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 6 of 10

To apply the loop skewing transformation, we create the
following relation

R_SCHED = {[0, ii′, 0, jj, . . . , 0, i, 0, j, . . .] →
[0, ii + jj, 0, jj, . . . , 0,−i, 0, j, . . .] ∶
constraints of set TILE_VLD_EXT ′ },

and apply it to set TILE_VLD_EXT ′.
Applying the loop skewing transformation is not always

valid. To prove the validity of this transformation applied
to generated serial tiled code, we form the following rela-
tion, R_VALID, which checks whether all original inter-
tile dependences will be respected in parallel code.

R_VALID = {[II] → [JJ]∣ ∃ I, J ∶
I ∈ domain R ∧ J = R(I)
���

(*)

∧

I ∈ TILE(II) ∧ J ∈ TILE(JJ)
��

(**)

∧

R_SCHED(II) ⪰ R_SCHED(JJ)
���

(***)

},

where:
(*) means that J is the destination of the dependence

whose source is I,
(**) means that I, J belong to the tiles with identifiers II

and JJ , respectively,
(***) means that the schedule time of tile II is greater

or the same as that of tile JJ , i.e., the schedule is invalid
because the dependence I → J is not respected.
This relation returns the empty set when all original

inter-tile dependences are respected, otherwise it repre-
sents all the pairs of the tile identifiers for which original
ones are not respected. Figure 4 presents the case of an
invalid schedule, where I and J are vectors represent-
ing the source and destination of a dependence, respec-
tively, within the tiles with identifiers II and JJ . Relation
R_VALID is empty for the generated serial tiled Nussinov
code, this proves the validity of applying the loop skewing
transformation.
Target pseudo-code is generated by means of apply-

ing the isl AST code generator [25] allowing for scanning
elements of set R_SCHED(TILE_VLD_EXT ′) in lexico-
graphic order. Then we postprocess this code replacing
pseudo-statements for the original loop nest statements
and insert the work-sharing OpenMP parallel for prag-
mas [27] before the second loop in the generated code to
make it parallel. Listing 2 presents the target code for the
Nussinov loop nest (Listing 1) tiled with the tiles of the
size 16x16x16. The first loop in this code enumerates seri-
ally time partitions while the second one scans all the tiles
to be executed in parallel for a given time defined with the
first loop.

Fig. 4 Illustration of an invalid schedule. Vectors I and J represent the
source and destination of a dependence, respectively. TILE(II) is
scheduled to run after (lexicographically greater) TILE(JJ)

Results and discussion
The presented approach has been implemented as a part
of the polyhedral TRACO compiler2. It takes on input an
original loop nest in the C language, a tile size, and affine
transformations for each loop nest statement to paral-
lelize serial tiled code. Then TRACO generates serial valid
tiled code and checks whether the affine transformations
are valid by means of calculating relation R_VALID. If so,
parallel tiled code is generated.
All parallel Nussinov tiled codes were generated by

means of the Intel C++ Compiler (icc 17.0.1) with the -O3
flag of optimization.
This section presents speed-up of generated parallel

tiled code. To carry out experiments, we used machines
with two processors Intel Xeon E5-2699 v3 (3.6 Ghz, 32
cores, 45MB Cache), four coprocessors Intel Xeon Phi
7120P (1.238 GHz, 61 cores, 30.5 MB Cache), and 128 GB
RAM.
Problem sizes 2200 and 5000 were chosen because

they are the average and the longest lengths of randomly
generated RNA strands (from the {ACGU} alphabet) in
human body to illustrate any additional advantages for
medium and larger instances, respectively [14]. Further-
more, we used several mRNAs and lncRNAs from the
NCBI database3 for homo sapiens. Analyzing the program
code, we expected there should be no difference, perfor-
mance wise, between actual sequences versus randomly
generated sequences. To confirm this fact, we measured

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 7 of 10

Listing 2 3D-tiled and parallel NPDP in the Nussinov algorithm.

for(c1 = 0; c1 <= floord(N - 2, 8); c1 += 1) //ii
#pragma omp parallel for shared(c1, S) private(c2,c3,c4,c5,c7,c9,c10,c11) schedule(dynamic,1)
for(c3 = max(0, c1 - (N + 15) / 16 + 1); c3 <= c1 / 2; c3 += 1) // ii+jj
for(c4 = 0; c4 <= 1; c4 += 1) { // SCHED for s0 and s1
if (c4 == 1) { // SCHED for s1
for(c7 = max(-N + 16 * c1 - 16 * c3 + 1, -N + 16 * c3 + 2); c7 <= min(0,

-N + 16 * c1 - 16 * c3 + 16); c7 += 1) // i
for(c9 = 16*c3-c7+1; c9 <= min(N - 1, 16*c3 - c7 + 16); c9++) // j
for(c10 = max(0, 16 * c3 - c7 - c9 + 2); c10 <= 1; c10 += 1) { // 0 for s0, 1 for s1
if (c10 == 1) {
S[-c7][c9] = max(S[-c7][c9], S[-c7+1][c9-1] + delta(-c7, c9)); // s1

} else {
if (N + 16 * c3 + c7 >= 16 * c1 + 2)
for(c11 = 0; c11 <= 16 * c3; c11 += 1) // k
S[-c7][c9] = max(S[-c7][c11-c7] + S[c11-c7+1][c9], S[-c7][c9]); // s0

for(c11 = 16 * c3 + 1; c11 < c7 + c9; c11 += 1) // k
S[-c7][c9] = max(S[-c7][c11-c7] + S[c11-c7+1][c9], S[-c7][c9]); // s0

}
}

} else // SCHED for s0
for(c5 = 0; c5 <= c3; c5 += 1) // kk
for(c7 = max(-N + 16 * c1 - 16 * c3 + 1, -N + 15 * c1 - 14 * c3 + 2); c7 <=

min(0, -N + 16 * c1 - 16 * c3 + 16); c7++) { // i
if (N + 16 * c3 + c7 >= 16 * c1 + 2) {
for(c11 = 16*c5; c11 <= min(15*c3 + c5, 16*c5 + 15); c11++) // k
S[-c7][16*c3-c7+1] = max(S[-c7][c11+-c7] + S[c11+-c7+1][16*c3-c7+1],

S[-c7][16*c3-c7+1]); // s0
} else
for(c9 = N - 16*c1 + 32*c3; c9 <= N - 16*c1 + 32*c3 + 15; c9++) // j
for(c11 = 16*c5; c11 <= min(15*c3 + c5, 16 * c5 + 15); c11++) // k
S[N-16*c1+16*c3-1][c9] = max(S[N-16*c1+16*c3-1][c11+N-16*c1+16*c3-1] +

S[c11+N-16*c1+16*c3-1+1][c9], S[N-16*c1+16*c3-1][c9]); // s0
}

}

the summary time of calling bonding function δ(i, j). It
takes less than 0.2 percent of the whole tiled code run-
ning time regardless of the sequence type, for example,
0.017 seconds for the problem size equal to 5000 (over 12
mln calls) on an Intel Xeon E5-2699 v3 platform. It can
be therefore concluded that the studied algorithm perfor-
mance does not change based on the strings themselves,
but it depends on the size of a string.
For generated tiled code, we empirically recognized that

the best tile size is 16x16x16 and the most efficient work-
sharing is achieved by applying the OpenMP for directive
[27] with the dynamic scheduling of loop iterations and
the chunk size equal to 1.
Table 1 presents the execution times of the serial orig-

inal and parallel tiled Nussinov loop nest from one to 64
threads for Intel Xeon E5-2699 v3 processors and from
one to 244 threads for Intel Xeon Phi 7120P coproces-
sors. As we can see, for all cases, the execution time of the
tiled codes is shorter than that of the original code and
it reduces with increasing the number of threads. Speed-
up is illustrated in Figs. 5 and 6 in a graphical way for
multi-core processors and coprocessors, respectively.
Those figures also present the speed-up of parallel 2D

tiled code produced with the state-of-the-art Pluto+ [28]
optimizing compiler, which does not enable to tile the
third loop in the Nussinov loop nest4. From Figs. 5 and 6,
we may conclude that the tiled code generated with

Table 1 Execution times (in seconds) of the tiled Nussinov loop
nest

Platform Threads
Times

N=2200 N=5000

Intel Xeon 1 (original) 12.28 334.32

E5-2699 v3 1 8.25 225.23

2 4.76 147.30

4 2.37 76.79

8 1.66 39.81

16 0.75 21.49

32 0.44 11.90

64 0.37 10.50

Intel Xeon 1 (original) 235.38 2879.66

Phi 7120P 1 166.92 2556.65

8 29.29 339.15

16 15.09 266.34

32 8.38 124.51

64 4.84 72.56

128 3.78 48.81

244 3.72 37.75

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 8 of 10

Fig. 5 Speed-up of parallel codes using two 32-core processors Intel Xeon E5-2699 v3. The horizontal coordinate represents number of threads and
the vertical one shows the speedup of codes generated with the TRACO and PluTo compilers for two problem sizes of RNA folding

the proposed approach outperforms that generated with
standard affine transformations extracted and applied
with Pluto+ for both Intel multi-core processors and
coprocessors.
The parallel code presented in the paper is not syn-

chronization free (to our best knowledge, there does not
exist any synchronization-free code for Nussinov’s loop
nest), after each parallel iteration multiple tasks must be
synchronized. Synchronization usually involves waiting
by at least one task, and can therefore cause a parallel
applications wall clock execution time to increase, i.e.,
it introduces parallel program overhead. Any time one
task spends waiting for another is considered synchro-
nization overhead. Synchronization overhead grows with
increasing the number of synchronization events and the

number of threads and tends to grow rapidly (in a non-
linear manner) as the number of tasks in a parallel job
increases, it is the most important factor in obtaining
good scaling behavior for the parallel program. Synchro-
nization overhead leads to non-linear character of speed-
up when the numbers of threads grows (see Figs. 5 and
6). When the number of threads are less than 16, the code
presented in the paper and that generated with PLUTO,
have comparable synchronization overhead and locality,
but for the number of threads more than 16, our code
has less synchronization overhead and better locality that
results in higher speed-up.
It is worth noting that the generated tiled serial code

has improved locality in comparison with that of the serial
original code. This results in about 1.5 and 1.4 higher

Fig. 6 Speed-up of parallel codes using four 61-core coprocessors Intel Xeon Phi 7120P. The horizontal coordinate represents number of threads
and the vertical one shows the speedup of codes generated with the TRACO and PluTo compilers for two problem sizes of RNA folding

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 9 of 10

serial tiled code performance for the used Intel muti-
core processors and co-processors, respectively. Below, we
compare the speed-up achieved for the tiled code gen-
erated by the presented technique with that of related
code.
In paper [7], the authors write: “We have developed

GTfold, a parallel and multicore code for predicting RNA
secondary structures that achieves 19.8 fold speedups
over the current best sequential program”. This speed-up
is achieved on 32 threads. The code, presented in our
paper, outperforms this code (for 32 threads, it yields 28.1
speed-up for the problem size equal to 5000). We also
present speed-up for 64 threads for an Intel Xeon E5-2699
v3 platform and from one to 244 threads for Intel Xeon
Phi 7120P coprocessors. The higher performance of our
code is achieved due to applying loop nest tiling.
Rizk et al. [16] provide an efficient GPU code for RNA

folding, but they do not consider any loop nest tiling.
The authors give a table which shows that the maximal
speedup, using a graphical card GTX280, is 33.1. Apply-
ing Intel Xeon Phi 7120P coprocessors for running our
code, we reach the maximal speed-up 75.6 for 244 threads
(the problem size is equal to 5000). This demonstrates that
tiling allows for considerable improving code locality that
leads to significant increasing parallel code speed-up.
Pochoir [17] computes the optimal cost of aligning a pair

of DNA or RNA sequences by means of diamond-shaped
grid that can be evaluated as a stencil, but it can tile only
two of the three loops of original code, i.e., tiled code is of
maximum 2-d dimension. This results in only 4.5 speedup
of the RNA code generated with Pochoir on 12 cores – the
maximal number of cores that the authors examined.
Summing up, we conclude that the presented approach

allows for generation of a parallel tiled Nussinov loop nest
which considerable reduces execution time in compari-
son with related codes. The code presented in our paper
is dedicated to be run on high performance computer sys-
tems with the large number of cores. Since the number of
cores tends to grow, in our opinion, the presented code is
very actual because it has improved scalability and can be
run on computer systems with the large number of cores.

Conclusion
The paper presents automatic tiling and parallelization of
the Nussinov program loop nest. The transitive closure of
dependence graphs is used to tile this code, whereas for
extracting parallelism in the tiled loop nest, the loop skew-
ing transformation is applied, which is within the affine
transformation framework. To the best of our knowledge,
the presented approach is the first attempt to generate
static parallel 3D tiled code for Nussinov’s prediction. An
experimental study demonstrates significant parallel tiled
code speed-up achieved on modern multi-core computer
systems.

The presented approach is an important starting point
for future research aimed at effective tiling and paral-
lelization of other NPDP codes, in particular the detailed
energy models used by Zuker’s algorithm.
We are going to examine how the presented approach

based on both the transitive closure of dependence graph
and affine transformations can be applied to tile and
parallelize other important applications of bioinformatics.

Endnotes
1 Zuker’s algorithm has the same dependence patterns

as Nussinov’s algorithm [9].
2 http://traco.sourceforge.net
3 https://www.ncbi.nlm.nih.gov/
4 Pluto 0.11.4 BETA and Pluto+ generate the same tiled

code for the Nussinov loop nest.

Abbreviations
AST: Abstract syntax tree; DP: Dynamic programming; GPU: Graphics
processing unit; NPDP: Nonserial polyadic dynamic programming

Acknowledgements
Not applicable.

Availability of data andmaterials
Our compiler is available at the website http://traco.sourceforge.net. The
experimental study and source codes are available at the TRACO repository
https://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/rna/.

Authors’ contributions
MP proposed the main concept of the presented technique, implemented it
in the TRACO optimizing compiler, and carried out the experimental study. WB
checked the correctness of the presented technique, participated in its
implementation and the analysis of the results of the experimental study. Both
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 10 January 2017 Accepted: 23 May 2017

References
1. Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ. Algorithms for loop

matchings. SIAM J Appl Math. 1978;35(1):68–82.
2. Liu L, Wang M, Jiang J, Li R, Yang G. Efficient nonserial polyadic dynamic

programming on the cell processor. In: IPDPS Workshops. Anchorage,
Alaska: IEEE; 2011. p. 460–71.

3. Almeida F, et al. Optimal tiling for the rna base pairing problem. In:
Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures. SPAA ’02, New York: ACM; 2002. p. 173–82.
doi:10.1145/564870.564901.

4. Tan G, Feng S, Sun N. Locality and parallelism optimization for dynamic
programming algorithm in bioinformatics. In: SC 2006 Conference,
Proceedings of the ACM/IEEE. Tampa: IEEE, Conference Location; 2006. p.
41–1.

http://traco.sourceforge.net
https://www.ncbi.nlm.nih.gov/
http://traco.sourceforge.net
https://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/rna/
http://dx.doi.org/10.1145/564870.564901

Palkowski and Bielecki BMC Bioinformatics (2017) 18:290 Page 10 of 10

5. Jacob A, Buhler J, Chamberlain RD. Accelerating Nussinov RNA
secondary structure prediction with systolic arrays on FPGAs. In:
Proceedings of the 2008 International Conference on Application-Specific
Systems, Architectures and Processors. ASAP ’08, Washington: IEEE
Computer Society; 2008. p. 191–6. doi:10.1109/ASAP.2008.4580177.

6. Markham NR, Zuker M. In: Keith JM, editor. UNAFold. Totowa, NJ:
Humana Press; 2008, pp. 3–31.

7. Mathuriya A, Bader DA, Heitsch CE, Harvey SC. Gtfold: A scalable
multicore code for rna secondary structure prediction. In: Proceedings of
the 2009 ACM Symposium on Applied Computing. SAC ’09, New York:
ACM; 2009. p. 981–8.

8. Jacob AC, Buhler JD, Chamberlain RD. Rapid rna folding: Analysis and
acceleration of the zuker recurrence. In: Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual Int. Symp. On.
Charlotte: IEEE, Conference Location; 2010. p. 87–94.

9. Mullapudi RT, Bondhugula U. Tiling for dynamic scheduling In:
Rajopadhye S, Verdoolaege S, editors. Proceedings of the 4th
International Workshop on Polyhedral Compilation Techniques. Vienna,
Austria; 2014. http://impact.gforge.inria.fr/impact2014/papers/
impact2014-mullapudi.pdf.

10. Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A practical
automatic polyhedral parallelizer and locality optimizer. SIGPLAN Not.
2008;43(6):101–13. doi:10.1145/1379022.1375595.

11. Griebl M. Automatic Parallelization of Loop Programs for Distributed
Memory Architectures: University of Passau; 2004. Habilitation thesis.

12. Lim A, Cheong GI, Lam MS. An affine partitioning algorithm to maximize
parallelism and minimize communication. In: Proceedings of the 13th
ACM SIGARCH Int. Conf. on Supercomputing. Portland: ACM Press; 1999.
p. 228–37.

13. Xue J. On tiling as a loop transformation. Parallel Process Lett. 1997;7(4):
409-424.

14. Wonnacott D, Jin T, Lake A. Automatic tiling of “mostly-tileable” loop
nests. In: IMPACT 2015: 5th International Workshop on Polyhedral
Compilation Techniques. Amsterdam; 2015. http://impact.gforge.inria.fr/
impact2015/papers/impact2015-wonnacott.pdf.

15. Bielecki W, Palkowski M, Klimek T. Free scheduling for statement
instances of parameterized arbitrarily nested affine loops. Parallel
Comput. 2012;38(9):518–32.

16. Rizk G, Lavenier D. Gpu accelerated rna folding algorithm In: Allen G,
Nabrzyski J, Seidel E, van Albada G, Dongarra J, Sloot PA, editors.
Computational Science – ICCS 2009. Lecture Notes in Computer Science,
Baton Rouge, LA, USA: Springer; 2009. p. 1004–1013.

17. Tang Y, Chowdhury RA, Kuszmaul BC, Luk CK, Leiserson CE. The pochoir
stencil compiler. In: Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures. SPAA ’11, New York: ACM;
2011. p. 117–28. doi:10.1145/1989493.1989508.

18. Stivala A, Stuckey PJ, Garcia de la Banda M, Hermenegildo M, Wirth A.
Lock-free parallel dynamic programming. J Parallel Distrib Comput.
2010;70(8):839–48.

19. Palkowski M. Finding Free Schedules for RNA Secondary Structure
Prediction, Springer Int. Publishing, Rutkowski et al., Artificial Intelligence
and Soft Computing: ICAISC 2016, Poland, Proceedings, Part II. Zakopane:
Springer International Publishing; 2016, pp. 179–88.

20. Pugh W, Wonnacott D. In: Banerjee U, Gelernter D, Nicolau A, Padua
D, editors. An exact method for analysis of value-based array data
dependences. Berlin, Heidelberg: Springer; 1994, pp. 546–66.

21. Kelly W, Maslov V, Pugh W, Rosser E, Shpeisman T, Wonnacott D. The
omega library interface guide. Technical report, College Park, MD, USA 1995.

22. Bielecki W, Palkowski M. Tiling of arbitrarily nested loops by means of the
transitive closure of dependence graphs. Int J Appl Math Comput Sci
(AMCS). 2016;26(4):919–939.

23. Bielecki W, Kraska K, Klimek T. Using basis dependence distance vectors in
the modified floyd–warshall algorithm. J Comb Optim. 2015;30(2):253–75.

24. Bastoul C. Code generation in the polyhedral model is easier than you
think. In: PACT’13 IEEE International Conference on Parallel Architecture
and Compilation Techniques. Juan-les-Pins: IEEE Computer Society; 2004.
p. 7–16.

25. Verdoolaege S. Integer set library - manual, Technical report 2016. http://
isl.gforge.inria.fr/manual.pdf. Accessed 27 May 2017.

26. Wolfe M. Loops skewing: The wavefront method revisited. Int J Parallel
Programm. 1986;15(4):279–93.

27. OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 4.5. 2015. http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf. Accessed 27 May 2017.

28. Bondhugula U, Acharya A, Cohen A. The pluto+ algorithm: A practical
approach for parallelization and locality optimization of affine loop nests.
ACM Trans Program Lang Syst. 2016;38(3):12–11232. doi:10.1145/2896389.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1109/ASAP.2008.4580177
http://impact.gforge.inria.fr/impact2014/papers/impact2014-mullapudi.pdf
http://impact.gforge.inria.fr/impact2014/papers/impact2014-mullapudi.pdf
http://dx.doi.org/10.1145/1379022.1375595
http://impact.gforge.inria.fr/impact2015/papers/impact2015-wonnacott.pdf
http://impact.gforge.inria.fr/impact2015/papers/impact2015-wonnacott.pdf
http://dx.doi.org/10.1145/1989493.1989508
http://isl.gforge.inria.fr/manual.pdf
http://isl.gforge.inria.fr/manual.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1145/2896389

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Brief introduction
	The Nussinov loop nest
	Loop nest tiling based on the transitive closure of dependence graphs
	Tiled code parallelization

	Results and discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	References

