
reprinted from

JJoouurrnnaall ooff
AAllggoorriitthhmmss &&
CCoommppuuttaattiioonnaall
TTeecchhnnoollooggyy
VVoolluummee 33 ·· NNuummbbeerr 11

DDeecceemmbbeerr 22000099

MMuullttii--SScciieennccee PPuubblliisshhiinngg CCoo.. LLttdd

PPaarraalllleell ttoooollss ffoorr ssoollvviinngg iinnccrreemmeennttaall ddeennssee
lleeaasstt ssqquuaarreess pprroobblleemmss:: aapppplliiccaattiioonn ttoo ssppaaccee
ggeeooddeessyy

MMaarrcc BBaabboouulliinn,, LLuucc GGiirraauudd,, SSeerrggee GGrraattttoonn aanndd JJuulliieenn
LLaannggoouu

Parallel tools for solving incremental
dense least squares problems:
application to space geodesy

Marc Baboulin, Luc Giraud, Serge Gratton and Julien Langou
CERFACS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex, France.

Email: baboulin@cerfacs.fr
ENSEEIHT, 2 rue Camichel, 31071 Toulouse Cedex, France.

Email: giraud@n7.fr
CNES, 18 Avenue Edouard Belin, 31401 Toulouse Cedex, France.

Email: serge.gratton@cnes.fr
Dept. of Mathematical Sciences, The University of Colorado at Denver and Health

Sciences Center, Downtown Denver Campus, Denver, Colorado 80217-3364, USA.
Email: langou@math.cudenver.edu

ABSTRACT
We present a parallel distributed solver that enables us to solve incremental
dense least squares arising in some parameter estimation problems. This
solver is based on ScaLAPACK [8] and PBLAS [9] kernel routines. In the
incremental process, the observations are collected periodically and the
solver updates the solution with new observations using a QR factorization
algorithm. It uses a recently defined distributed packed format [3] that
handles symmetric or triangular matrices in ScaLAPACK-based
implementations. We provide performance analysis on IBM pSeries 690. We
also present an example of application in the area of space geodesy for
gravity field computations with some experimental results.

Key words: Scientific computing, dense linear algebra, parallel distributed
algorithms, ScaLAPACK, QR factorization, gravity field computation.

1. INTRODUCTION
Many parameter estimation problems lead to linear least squares problems
(LLSP) of the type

Journal of Algorithms & Computational Technology Vol. 3 No. 1 117

(1)

where each row of A ∈ R m × n and b ∈ Rm are collected periodically. The result
is that we have to solve successive LLSP. Throughout this paper, b and A will be
called respectively the observation vector and the data matrix. After
accumulating a sufficient number of observations and/or by using regularization
techniques, A is a full column rank matrix. In that case (1) has a unique solution
[13, p. 237].

In general n and m are large (at least several tens of thousands for n and
several hundreds of thousands for m) and we have m >> n. This problem
requires the use of parallel platforms that currently offer increasing capabilities
in terms of floating-point operations per second and memory storage.

The normal equations method that solves the system

is a classical way of solving an LLSP. This method has the advantage of being
easy to code and faster than other direct methods. For instance we deduce from
[13, p. 225 and p. 238] that when m >> n, the normal equations approach
requires about half the flop count of the Householder QR factorization (mn2 vs
2mn2). This explains why the normal equations method is often favored by
statisticians. For large scale problems, a parallel distributed solver that performs
the assembly of the normal equations and computes a solution using a Cholesky
factorization is described in [2]. This solver performs the assembly of the
normal equations at the sustained peak rate of a matrix-matrix product and
stores the symmetric matrix AT A compactly. The Cholesky factorization gives
performance results similar to the corresponding ScaLAPACK [8] routine on
moderately parallel platforms (up to 32 processors) while requiring about half
the memory.

When the application requires an accurate solution, orthogonal transformations
and in particular the QR factorization may be more appropriate. In that case, the
computational time may be an issue if we want to compute a solution that
complies with the requirements of the physical application (e.g. daily
computation). Also, similarly to the storage of AT A for the normal equations
approach, we have to take advantage of the triangular structure of the R factor.

Out-of-core parallel QR solvers were implemented in several projects [14, 15]
that are based on the PLAPACK library [20] and where only the blocks of one

A Ax A bT T=

min
x

Ax b
n∈

−
� 2

118 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

triangular part are stored. But for faster computation of a partial solution or of
the covariance (AT A)–1, we may want to keep the R factor in-core.

We propose in this paper a parallel implementation based on ScaLAPACK
routines that solve incremental least squares using QR factorization and stores the
R factor in-core and compactly. This implementation uses a recently defined
distributed packed storage [3] on top of ScaLAPACK routines. In the incremental
process, there will be a trade-of between performance and memory depending on
how many observations we consider at a time for updating the R factor.

This paper is organized as follows. In Section 2, we recall how to use the QR
factorization for solving incremental least squares. The purpose of Section 3 is
to give an overview of the distributed packed storage that can be used in
ScaLAPACK-based implementations that handle symmetric or triangular
matrices. In Section 4, we describe the parallel implementation of the QR
updating functionality using the distributed packed format, this includes
algorithms description and performance analysis on the IBM pSeries 690
machine. In Section 5, we present first results in the area of gravity field
computations. Finally, some concluding comments are given in Section 6.

2. QR APPROACH FOR INCREMENTAL LINEAR LEAST SQUARES
A reliable way of solving LLSP consists of using orthogonal transformations.
The commonly used QR factorization can be performed by using orthogonal
transformations called Householder reflections [13, p. 208]. The QR
factorization of A is given by

where Q is an m-by-m orthogonal matrix and R is an n-by-n upper triangular
matrix. Since A has full column rank, then R is nonsingular. If we denote Q =
(Q1 Q2) where Q1 and Q2 correspond respectively to the first n columns and
the m– n remaining columns of Q, then we have A = Q1R.

From it follows that x can be

computed by solving the triangular system Rx = Q1
T b.

In the QR method, the matrix R may overwrite the upper triangular part of A
while the Householder vectors are stored in the lower trapezoidal part of A.

Note that Q1 is not required explicitly and we just need to apply to a
vector. The computation of Q1

Tb can be performed by applying the Householder
QT

1

Ax b Q b Q Ax
Q b Rx

Q b
T T

T

T
,− = − = −

2 2

1

2 2

A Q
R

=

0

Journal of Algorithms & Computational Technology Vol. 3 No. 1 119

transformation used to compute R to the vector b. This is achieved by
appending b to A and factorizing (A b).

This factorization overwrites b by b~ and we solve Rx = b~ using the first n
elements of b~. If we neglect the cost of the triangular solve, then the
computational cost of the least squares solution using a Householder QR
factorization is 2n2(m – n/3) [13, p. 225].

We now describe an algorithm that aims to solve an incremental least squares
problem where, at each step of this algorithm, we solve an LLSP.

Let AN and BN be respectively the cumulated parameter matrix and
observation vector up to date N.
Let AN and bN be respectively the data matrix and observation vector that has been
collected at date N.
Then we have:

The least squares problem to solve at date N can be stated as:

We assume that we have solved the least squares problem

at date N.
Then, at date N + 1, we have:

We consider the case where we use a QR approach that utilizes Householder
transformations. If we denote by RN the R-factor obtained at date N, then
RN+1corresponds to the R-factor in the QR factorization of But we

observe that the QR factorization of produces the

same upper triangular factor as does the factorization of

Furthermore, the storage of the Householder vectors can be avoided by
appending the observation vector bN to the matrix to be factorized and overwriting
this vector with the (n + 1)-th column of the so-obtained triangular factor.

R
A

RN

N
N

+
+

1
1.i.e

A
A

N A N

N
+ =

+

1 1

AN +1.

A
A

B
B

N N

N
bN

N
+ =

+

 + =

+

1 1 1 1

.anA d N

min .
x N Nn x∈ −R A B

2

A BN

N N

A

A

b

b
.=

=

1 1

M Mand N

120 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

The result is that the updating of the R-factor at date N+1 is done by

performing the QR factorization of where contains the updated

values of resulting from the N previous QR factorizations.

This enables us to obtain the upper trianglar matrix and the

solution xN+1 is computed by solving where contains

the first n elements of B~N+1. The algorithm that performs the QR factorization of

will be described in Section 4.

Similar algorithms for incremental Cholesky and QR factorizations are
described in [7, p. 224] in the framework of block angular least squares
problems. Note that alternative algorithms referred to as covariance algorithms
can update (A T A)–1 or a factor of it [18].

3. BRIEF REVIEW OF PACKED DISTRIBUTED STORAGE
Contrary to the serial library LAPACK [1], the parallel library ScaLAPACK
does not currently support packed format for symmetric, Hermitian or
triangular matrices [11]. We recently described in [3] a packed storage scheme
that allows us to store compactly symmetric or triangular matrices in parallel
implementation on top of ScaLAPACK routines. We quickly recall in this
section the principle of this packed format.

ScaLAPACK proposes a data layout based on a two-dimensional block
cyclic distribution. In this type of distribution, a matrix of size n is divided into
blocks of size s (if we use square blocks) that are assigned to processors in
cyclic manner according to a p × q process grid. We refer to [8] for more details
about this data layout. The blocks of size s that are spread among processors are
called elementary blocks and the blocks of size p.s × q.s corresponding to the
p × q process grid are called grid blocks.

In order to be stored in a distributed packed format, a matrix is first
partitioned into larger square blocks of size b such that b is proportional to l.s
where l is the least common multiple of p and q (b ≥ l.s). We define these blocks
as “distributed blocks”.

In the remainder of this paper, the algorithms will be expressed in terms of
distributed blocks that will be simply called “blocks”. Note that the distributed
block performs naturally what is defined in [20] as algorithmic blocking or tile
for out-of-core implementations [15].

The following figure summarizes the hierarchy between the elementary
block (hosted by one process), the grid block (corresponding to the process

R
A b

N N

N N

%B

+ +

1 1

ZN+1R N+1N N
x

+ +
=

1 1
Z

()RN N+ +1 1
%B

BK K N()≤

%BN
R

A b
N N

N N

%B

+ +

1 1

Journal of Algorithms & Computational Technology Vol. 3 No. 1 121

grid), and the distributed block (square block consisting of grid blocks). It
shows the three kinds of blocks that we get when we consider a 2 × 3 process
grid, s = 1, b = 6 and each block is labeled with the number of process that
stores it.

: elementary block, : grid block,

:distributed block.

We consider here a matrix A partitioned into distributed blocks Aij and A can
be either symmetric or upper triangular or lower triangular. We propose to store
A compactly in a distributed packed format that consists in storing the blocks
belonging to the upper or the lower triangle of A in a ScaLAPACK matrix ADP
(A Distributed Packed).

The blocks of A will be stored horizontally in ADP so that the entries in the
elementary, grid and distributed blocks are contiguous in memory and then will
map better to the highest levels of cache.

Let us consider the following symmetric matrix A described using distributed
blocks, that is

We provide two ways of storing A using our distributed packed format. In the
Lower distributed packed format, the lower triangle of A is packed by columns
in ADP i.e:

In the Upper distributed packed format, the upper triangle of A is packed by
rows in ADP i.e:

The distributed packed storage for upper and lower triangular matrices
follows from that of a symmetric matrix since the upper triangular blocked

ADP A A A A A AT T T .= 11 22 3321 31 32

ADP A A A A A A .= []11 21 31 22 32 33

A
A A A
A A A
A A A

T T

T=

11 21 31

21 22 32

31 32 33

.

0 1 2 0 1 2
3 4 5 3 4 5
0 1 2 0 1 2
3 4 5 3 4 5
0 1 2 0 1 2
3 4 5 3 4 5

0 1 2
3 4 5

0

122 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

matrix is stored in a packed distributed format as

and the lower triangular blocked matrix will be stored as

We point out that the matrix ADP corresponds “physically” to a
ScaLAPACK array that is laid out on the p × q mesh. We also specify that,
contrary to LAPACK where upper and lower triangular matrices are both
packed by columns, our distributed packed format is different for upper and
lower triangular matrices since they are respectively packed by rows and
columns. Note also that the diagonal blocks are full blocks and thus do not
exploit the triangular or symmetric structure.

In the rest of this paper we will use the following designations and notations.
The distributed packed format will be simply referred to as the packed format
and an implementation using this format as a packed implementation. We denote

by the number of block rows in A. The packed structure ADP will be

described using the Aij as previously or will be denoted as the blocked matrix
[B1 B2 B3 B4 B5 B6]. A block Bk = Aij in ADP will be addressed through the
indirect addressing INDGET that maps (i, j) to k (this mapping depends
whether a lower or an upper packed storage is chosen).

4. PARALLEL IMPLEMENTATION OF QR UPDATING
4.1. Description of the Algorithm
A packed implementation of the QR factorization updating can be based on the
ScaLAPACK routines PDGEQRF (QR factorization) and PDORMQR
(multiplication by QT). We suppose that the R factor is partitioned into

distributed blocks and stored in a distributed packed format as

[B1 B2 B3 B4 B5 B6] that we also denote by B1:6.

B B B
B B

B

1 2 3

4 5

6

0
0 0

N
n

b
=

ADP A A A A A A .= []11 21 31 22 32 33

A
A
A A
A A A

=

11

21 22

31 32 33

0 0
0

ADP A A A A A A= 11 12 13 22 23 33

A
A A A

A A
A

=

11 12 13

22 23

33

0
0 0

Journal of Algorithms & Computational Technology Vol. 3 No. 1 123

The new observations are stored in a block matrix L1:N that contains N.b
columns and we first assume that L contains b rows. The updating of R is
obtained by successively performing the QR factorization of each block row of
R with L, as described below. At the first step, we factor:

and we advance the updating of the R factor as follows:

and so on until completion.

We now consider the work array where j = INDGET (i,i), i,e

C contains 2b rows and (N – i + 1)b columns.
The different ways for implementing the i-th stage in the R updating are

described in Figure 1, where the shaded part refers to the part of C that is factored
by the routine PDGEQRF and the dark shaded part represents the part of C to
which we apply the Householder transformations using the routine PDORMQR.

In Figure 1 (a), we perform the QR factorization of the whole matrix C. In
that case, using the flop counts given in [13, p. 213 and 225], the R updating
algorithm involves about 4bn2 operations (if n >>b).

This flop count can be reduced by performing a QR factorization of the
first b columns of C subsequently followed by the updating of the remaining
columns by the Householder transformations (Figure 1 (b)). From [13], the
computational cost becomes about 3bn2 (still if n >> b).

Figure 2 compares the gigaflops rate of a QR factorization of a b × 2b
matrix performed either using PDGEQRF on the whole matrix or using
PDGEQRF on the first b columns then PDORMQR on the remaining b
columns. One may notice that the combination of PDGEQRF and
PDORMQR is much less efficient due to the extra-cost in communication
(using two routines involves one more synchronization and also PDORMQR
exchanges data that was already available while executing PDGEQRF).

Thus step i in the R updating was implemented as a call to the PDGEQRF
routine applied to the whole matrix C that stops the factorization after the first
b columns (Figure 1 (c)). The global updating involves about 3bn2 operations
that are performed efficiently. For that reason, we modified the ScaLAPACK
routine PDGEQRF by stopping the QR factorization of an m-by-n matrix after

C
B

L
j j N i

i N

=

+ −:

:
%

B

L
B

L
4 5

2 3

4 5

2 3

:

:

:

:
%

%
→

B
L

B

L
1 3

1 3

1 3

1 3

:

:

:

:

→
%

%

124 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

Journal of Algorithms & Computational Technology Vol. 3 No. 1 125

Figure 1. Different possibilities for the QR factorization of C.

Block row of R

New observations

i-th stage in R updating
C =

0

(a) PDGEQRF on C

(b) PDGEQRF + PDORMQR

(c) PDGEQRF partial

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
1

1.5

2

2.5

3

3.5

Distributed block size b

P
er

fo
rm

an
ce

 p
er

 p
ro

ce
ss

or
 [G

flo
ps

]

PDGEQRF
PDGEQRF+PDORMQR

Figure 2. QR factorization of a b × 2b matrix (4 processors of IBM pSeries 690).

126 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

Algorithm 1. Updating the R factor in a QR factorization

read new data in
for i = 1 : N

stopped after the first b columns have been factored

(PDGEQRF_partial)

end (i-loop)

B Bj j N i j j N i: :+ − + −←

→ =

+ −

+

%
%

C
B

L
j j N i

i N

:

:* 2

%C qr C= ()

C
B

L
j j N i

i N

←

+ −:

:
%

j INDGET i i= (,)

L L LN N N1 1 1: : :; % ←

the first m
2 columns. The so-modified routine is named PDGEQRF_partial.

Algorithm 1 represents the updating of the R factor using PDGEQRF_partial.

One may notice that this algorithm does not take into account the upper
triangular structure of Bj:j. As will be confirmed by our experiments, this can be
compensated by storing more data into L and thus applying PDGEQRF_partial to
a block matrix C containing more than 2b rows. As a result, the number of
floating-point operations will also decrease. The initialization of the R factor can
be implemented by starting with R = 0 and then by successively updating the
previous rows by a new one until we have processed the N block rows of R. This
allows us to compare the performance of Algorithm 1 with that of PDGEQRF
applied to an n-by-n matrix (notice that the factorization time cannot be compared
since the initialization of R by successive updates involves 1.5 more operations).

We point out that the ScaLAPACK or PBLAS routines do not have to be
modified to support the new packed storage format. The PDGEQRF routine has
been modified only for sake of performance.
Note that in the case where A has a given block structure, it is possible to reduce
the computational effort by exploiting the structure of A and R [12].
Remark 1. Triangular solve and condition number estimate:

We consider a right-hand side that is partitioned into distributed

row-blocks of size b and mapped onto the same process grid as the R factor.

X
X

XN

=

1

M

Then a simple ScaLAPACK-based implementation of the triangular solve in
packed format can be described in Algorithm 2.

Journal of Algorithms & Computational Technology Vol. 3 No. 1 127

Algorithm 2. : Packed triangular solve
for i = 1: N

for k = i + 1 : N

(PDGEMV)

end (k-loop)

(PDTRSV)
end (i-loop)

X B Xi j i← −1

X X B Xi i j k i k← − + −

j INDGET i i= (,)

This routine performs the product of R–1 by a vector X. Using the same kind
of implementation, we obtain routines that perform the products RX, RT X
and R–T X using the packed format. Then it becomes easy to get a packed
implementation of the condition number of RT R based for instance on the
Power method or on the Lanczos method [13]. Since AT A=RT R and

K(AT A)=K(A)2, we obtain K(A) from

4.2. Performance Results
Our algorithm was implemented on an IBM pSeries 690 (2 nodes of 32
processors Power- 4/1.7 GHz and 64 Gbytes memory per node) installed at
CINES and linked with the PBLAS and ScaLAPACK libraries provided by the
vendor (in particular the Pessl library). There is only one ScaLAPACK routine
that must be considered when tuning our program parameters s, b and the p × q
process grid. Here s will be chosen equal to 128 since it provides good
performance of the PDGEQRF routine on the chosen platform. The p × q

process grid is determined in accordance with [10] i.e such that

The value of b cannot be too large since it also influences the size of the matrix
C and then the required storage for the calculation. We take b = l.s in our
experiments.

Table 1 compares the performance of the initialization of R by successive
updates with the performance of a QR factorization of an n-by-n matrix using
PDGEQRF. To see the effect of the communication on the performance, we
choose values of n such that each processor uses roughly the same amount of

1
4

1
2

≤ ≤p

q
.

K R RT().

memory. We notice that the gigaflops rates of our implementation are similar to
the ones of ScaLAPACK for all processor counts considered in this study.

Let nL be the number of rows in the matrix L that contains the new
observations for updating the QR factorization. In Table 2, we update a 25600
× 25600 matrix R by 51200 new observations and nL varies from 512 to 25600.
As expected at the end of Section 4.1, the number of operations decreases as nL
increases. This gain in operations is evaluated by computing the ratio between
the operations involved in the updating of R and the operations required in a QR
factorization of the 76800 × 25600 matrix containing the original data and the
new observations. Then if nL increases, the factorization time decreases but the
performance is stable (close to the peak performance of the ScaLAPACK
routine PDGEQRF). Here again, choosing the best size for L corresponds to
finding a compromise between performance (in time) and storage since large L
demands more storage.

5. APPLICATION TO SPACE GEODESY
An important task in space geodesy is the computation of an accurate model of
the Earth’s gravity field and of the geoid. It will have applications in many
scientific areas such as solid-Earth physics, geodesy, oceanography, glaciology
and climate change. The geoid corresponds to a particular surface of equal

128 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

Table 2. Updating of a 25600 × 25600 R factor by 51200 new observations (1 × 4 procs)

Number of rows in L 512 1024 2048 5120 10240 12800 25600

Storage (Gbytes) 0.72 0.75 0.80 0.96 1.22 1.35 2.00

Flops overhead (vs ScaLAPACK) 1.50 1.31 1.22 1.16 1.14 1.14 1.13

Factorization time (sec) 7577 5824 5255 5077 5001 4894 4981

Performance (Gflops) 3.33 3.61 3.59 3.47 3.44 3.50 3.40

Table 1. Initialization of R by updates vs ScaLAPACK QR (Gflops)

problem size n 10240 14336 20480 28672 40960 61440 81920
p × q process grid 1 1 × 2 1 × 4 2 × 4 2 × 8 4 × 8 4 × 16

Initialization of R 2.47 3.02 3.30 2.87 2.89 2.80 2.37

ScaLAPACK PDGEQRF 3.50 3.36 3.20 3.25 2.93 2.83 2.63

potential of a hypothetical ocean at rest. It is used to defined physical altitudes
and to forecast water circulation that enables us to study ocean circulation, ice
motion, sea-level change. The computational task is quite challenging because
of the huge quantity of daily accumulated data and because of the coupling of
the parameters resulting in completely dense matrices. An imminent GOCE*

satellite mission [4, 19] will estimate 90,000 parameters of the Earth’s
gravitational potential via an incremental least squares problem involving
millions of observations.

Following [6], the Earth’s gravitational potential V is expressed in spherical
coordinates (r, θ, λ) by:

(2)

where G is the gravitational constant, M is the Earth’s mass, R is the Earth’s
reference radius, the represent the fully normalized Legendre functions of

degree l and order m and are the corresponding normalized harmonic

coefficients. In the above expression we have For GOCE

calculations we will have (about 90,000 unknowns). For the

previous missions CHAMP† and GRACE†, we have respectively

(about 15, 000 unknowns) and (about 23, 000 unknowns). We point out
that the number of unknown parameters is expressed by

We have to compute the harmonic coefficients the most
accurately as possible.

The gravity field parameters are computed at CNES§ using the orbit
determination software GINS [5]. Measurements which are a function of a satellite
position and/or velocity are taken into account. These observations are obtained

C and Sm ml l

n = +()lmax 1
2
.

lmax �150

lmax �120

lmax � 300

m ≤ ≤l lmax .

C Sm ml l,

P ml

V r
GM

R

R

r
P m

m

(, ,) (cos)θ λ =

+

==
∑

l

l

l

l

l 1

00

θ
mmax

∑ + C m S mm ml lcos sinλ λ

Journal of Algorithms & Computational Technology Vol. 3 No. 1 129

*Gravity field and steady-state Ocean Circulation Explorer - European Space Agency
†CHAllenging Minisatellite Payload for Geophysical Research an Application, GFZ,
launched July 2000

‡Gravity Recovery and Climate Experiment, NASA, launched March 2002
§Centre National d’Etudes Spatiales, Toulouse, France

via ground stations (Laser, Doppler) or other satellites (GPS). Then we aim to
minimize the difference between the measurements and the corresponding
quantities evaluated from the computed orbit by adjusting given parameters
(here the gravity field coeffcients). The measured quantities correspond to
gravity gradients, i.e the second order spatial derivatives of the gravitational
potential V expressed in (2). This yields to a nonlinear least squares problem
that can be solved via a Gauss-Newton algorithm [17] by

solving successive LLSP where

- the unknown x represents the gravity field deviation (difference
between the gravity field parameters and reference values),

- the observation vector b contains the difference between the observed
gravity gradients and reference values,

- the data matrix A contains the first order spatial derivatives of the
gravity gradient with respect to the gravity field coefficients (Jacobian
of the nonlinear least squares problem).

In our experiments we consider 10 days of observations using GRACE
measurements. The total number of observations m = 166, 451. The number of
computed spherical harmonic coefficients is n = 22, 801.

Table 3 gives performance results in gigaflops per second for computing the
gravity field parameters on 4 processors of an IBM eServer p5 (1 node of 8
processors Power5/1.9GHz) dedicated for gravity field calculations at CNES.
The computation can be performed in about 4 hours and this satisfies the
operational constraints of the users.

To validate the accuracy of the solution, the physicists usually plot a
spectrum that represents the geoid height error between the computed model
and a reference model. They also depict the resulting geoid map. The solution
computed in our example complies with the requirements of the physicists.

We now propose a short error analysis of our numerical results. Following
Remark 1, the condition number of A was estimated using the power and
inverse power methods that respectively evaluate and and
then we obtained

To confirm the well-known accuracy of the QR approach, we may compute
the relative forward error bound resulting from the backward stability of the

K A R R R RT T() () .= ⋅() = ⋅− ⁄
1

1 2
65 10

()R RT −1R RT

minx n Ax b∈ −� 2

130 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

Householder QR factorization method [16, p. 385]. This error bound is roughly

proportional to where u is the unit roundoff and

r the residual b – Ax [7, p. 31]. Then, if x denotes the exact solution of the LLSP
and x~ is the solution computed with our QR solver, we get

Let now evaluate the influence of errors of measurement. The measurement noise
given by the physicists is of order 10–9m/s2, so we perturbed the right-hand side b
by adding to each component bi a constant equal to mod(i, 10)
The relative error with the previously computed solution is equal to

1.2·10–6, showing then that, for our given data, the error of measurement may
be significant compared with rounding errors. The next mission GOCE will
supply much more accurate measures (the measurement noise will be of order
10–12m/s2). In that case, the errors due to finite-precision calculations may
become more significant and then justify if needed the use of a QR approach
for gravity field calculations.

6. CONCLUSION
The parallel distributed solver proposed in this paper allows us to compute an
accurate solution for incremental least squares. The performance analysis
showed that there is a trade-off between performance and memory in the choice
of some program parameters like the block size or the number of rows
considered in the updating process. This QR updating functionality benefits
from the packed distributed storage since the memory required for storing the
R factor is near minimal (depending on the size of the block size). The good
performance of the parallel code is due to the efficient implementation of the
ScaLAPACK kernel routine PDGEQRF. The fact that our implementation is

⋅ ⋅ −b 10 8.

x x

x

−
≤ ⋅ −

%
6 10 10.

K A K A
r

A x
u() () ,1 2

2 2

+

Journal of Algorithms & Computational Technology Vol. 3 No. 1 131

Table 3. Performance for gravity field computation on 4 processors (IBM Power5)

Performance (Gflops)

peak DGEMM 6

Init. R 4.4

Update R 4.3

Total time 4 h 10 min

based on the top of ScaLAPACK and Level-3 PBLAS routines ensures the
portability of our code on different parallel machines. Finally, this solver
enables us to tackle the huge least squares problems encountered in the area of
space geodesy. The good numerical and performance results that we obtained
encourage us to perform similar experiments on GOCE simulation data.

ACKNOWLEDGMENTS
We would like to thank the CINES (Centre Informatique National de
l’Enseignement Supérieur) for allowing us to perform experimentation on its
parallel computers. We also thank Georges Bahmino and Jean-Charles Marty
from CNES for their precious help with the geodesy application. We are
grateful to Jack Dongarra (Innovative Computing Laboratory - University of
Tennessee) for fruitful discussions.

REFERENCES
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK user’s
guide, SIAM, 1999, Third edition.

[2] M. Baboulin, L. Giraud, and S. Gratton, A parallel distributed solver for large dense
symmetric systems: applications to geodesy and electromagnetism problems, Int. J.
of High Performance Computing Applications 19 (2005), no. 4, 353–363.

[3] M. Baboulin, L. Giraud, S. Gratton, and J. Langou, A distributed packed storage for large
dense parallel in-core calculations, Technical Report TR/PA/05/30, CERFACS, Toulouse,
France, 2005, To appear in Concurrency and Computation: Practice and Experience.

[4] G. Balmino, The European GOCE Gravity Consortium (EGG-C), (April 2001), 7–12,
Proceedings of the International GOCE User Workshop.

[5] G. Balmino, S. Bruinsma, and J-C. Marty, Numerical simulation of the gravity field
recovery from GOCE mission data, (March 8-10, 2004), Proceedings of the Second
International GOCE User Workshop “GOCE, The Geoid and Oceanography”,
ESAESRIN, Frascati, Italy.

[6] G. Balmino, A. Cazenave, A. Comolet-Tirman, J. C. Husson, and M. Lefebvre, Cours
de gédésie dynamique et spatiale, ENSTA, 1982.

[7] A. Björck, Numerical methods for least squares problems, SIAM, 1996.
[8] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley,
ScaLAPACK user’s guide, SIAM, 1997.

[9] J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, and R. Whaley, A proposal
for a set of parallel basic linear algebra subprograms, Tech. report, 1995, LAPACK
Working Note 100.

132 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

[10] ____, The design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines, Scientific Programming 5 (1996), 173–184.

[11] J. Demmel and J. Dongarra, LAPACK 2005 prospectus: Reliable and scalable
software for linear algebra computations on high end computers, (February 2005),
LAPACK Working Note 164.

[12] G. H. Golub, P. Manneback, and Ph. L. Toint, A comparison between some direct and
iterative methods for certain large scale geodetic least squares problems, SIAM J.
Scientific Computing 7 (1986), no. 3, 799–816.

[13] G. H. Golub and C. F. van Loan, Matrix computations, The Johns Hopkins University
Press, 1996, Third edition.

[14] B. Gunter, W. Reiley, and R. van de Geijn, Parallel out-of-core Cholesky and QR
factorizations with POOCLAPACK, IEEE Computer Society (2001), Proceedings of the
15th International Parallel and Distributed Processing Symposium (IPDPS).

[15] B. Gunter and R. van de Geijn, Parallel out-of-core computation and updating of the
QR factorization, ACM Trans. Math. Softw. 31 (2005), no. 1, 60–78.

[16] N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, 2002, Second
edition.

[17] J. E. Dennis Jr. and R. B. Schnabel, Numerical methods for unconstrained optimiza-
tion and nonlinear equations, SIAM, 1996.

[18] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation, Prentice-Hall, 2000.
[19] H. Sünkel, From Eötvös to milligal+, Final Report, ESA/ESTEC Contract No.

13392/98/NL/GD, Graz University of Technology, 2000.
[20] R. van de Geijn, Using PLAPACK, The MIT Press, 1997.

Journal of Algorithms & Computational Technology Vol. 3 No. 1 133

134 Parallel tools for solving incremental dense least squares problems:
application to space geodesy

