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ABSTRACT

Camera phones are a promising platform for hand-held augmented
reality. As their computational resources grow, they are becom-
ing increasingly suitable for visual tracking tasks. At the same
time, they still offer considerable challenges: Their cameras offer
a narrow field-of-view not best suitable for robust tracking; images
are often received at less than 15Hz; long exposure times result in
significant motion blur; and finally, a rolling shutter causes severe
smearing effects. This paper describes an attempt to implement a
keyframe-based SLAM system on a camera phone (specifically, the
Apple iPhone 3G). We describe a series of adaptations to the Par-
allel Tracking and Mapping system to mitigate the impact of the
device’s imaging deficiencies. Early results demonstrate a system
capable of generating and augmenting small maps, albeit with re-
duced accuracy and robustness compared to SLAM on a PC.

1 INTRODUCTION

Modern mobile phones have become a compelling platform for mo-
bile Augmented Reality. They contain all the equipment typically
required for video-see-though AR: A computer with graphics ac-
celeration, a camera, and a display. Even though the computational
power available on phones still lags far behind desktop PCs, some
researchers have already demonstrated that it is sufficient to per-
form real-time visual tracking [8, 10, 14, 15]. In particular, we are
encouraged by [15]: Wagner et al. demonstrate that by carefully
adapting, refining and combining established methods, phones are
capable of extracting FAST corners, detecting SIFT / fern features,
calculating a camera pose, and rendering augmented graphics at
interactive frame-rates. The authors demonstrate their results on
known planar targets, but there is little reason to doubt the method
could be extended to a larger suitably textured 3D scene – as long
as a map of salient points is available a priori.

In this paper we consider the task of tracking a phone’s position
in a previously unknown environment. In particular, we attempt to
implement a keyframe-based SLAM system on the Apple iPhone
3G. Previous experience with the keyframe-based PTAM system [6,
7] on the PC has shown that it is able to generate room-sized maps
and track a moving camera, while (crucially) offering a high level
robustness to rapid motion, poor imaging conditions, and inevitable
data association failures. We adopt this system as a starting point.
The iPhone is selected as representative of the current generation
of camera-equipped smart phones. Other devices may have faster
CPUs and cameras, but the iPhone’s form-factor and widespread
deployment make it an interesting platform for AR applications.

As a platform for PTAM, the iPhone offers two main challenges.
The lack of processing power is obvious, and particularly signifi-
cant when PTAM on the PC derives a large part of its robustness
from a somewhat brute-force approach to mapping. The second
(and perhaps more interesting) challenge comes from the device’s
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Figure 1: PTAM running on an iPhone 3G. A map is started on a
book (a), expanded to circa 220 points (b), and then used to insert
virtual flowers into the scene (c).

camera, which differs in three ways from the cameras commonly
used for SLAM. It operates at a low (<15Hz) frame-rate; it has a
rolling shutter; and most importantly, it has a narrow field-of-view.
Each of these effects individually would be problematic, but when
all three are present they reinforce one another and conspire to pro-
duce video images poorly suited to 3D reconstruction.

After a brief review of related mobile tracking work in Section
2, this paper describes a series of changes to the PTAM algorithm
which mitigate the impact of the above imaging and processing lim-
itations. Among the contributions described in Sections 3–6 are
new strategies for automatic stereo initialisation, feature detection,
rolling shutter compensation, and map pruning. Preliminary results,
presented in Section 7, show that the PTAM on the iPhone is capa-
ble of creating and tracking small maps. Conclusions and likely
areas of future work are presented in Section 8.

2 RELATED WORK

Besides the natural feature tracking system of [15], marker-based
systems have also been demonstrated on phones. A recent exam-
ple attempting to reduce the area taken up by the physical marker
is [14], but demonstrations of mobile marker tracking go back to
[16] in which ARToolkit markers were detected on a PDA and [8]
who develop their own marker on an early camera phone. (Today
FPUs, OpenGL acceleration and faster CPUs have greatly reduced
the engineering effort required to develop AR systems on phones.)
A marker/texture hybrid system is demonstrated in [10], where the
tracking of a known map texture is assisted by adding a grid of
black dots to the map.

3 MANAGING THE COST OF BUNDLE ADJUSTMENT

We adopt the basic framework of the PTAM [6] where processing is
performed on two threads. A foreground thread handles frame-to-
frame tracking and camera registration, while a background thread
performs bundle adjustment to optimize the map. This arrangement
works despite the iPhone having only a single processor, as its OS
respects requested thread priorities — bundle adjustment only runs
while the tracking thread is waiting for a new frame.



We find that the 412MHz CPU on the iPhone, although floating-
point enabled, is a factor of 15-30× slower than a single core of
an Intel E6700 CPU. Considering that PTAM on the PC dedicates
a processing core to bundle adjustment alone, it is clear that some
compromises need to be made to perform bundle adjustment on the
phone: A numerical reduction in map size is required.

The scalability of bundle adjustment is detailed in [3]. Given a
map of N points and M keyframes, with each point observed by
T keyframes, different parts of bundle adjustment scale with differ-
ent quantities: projections, differentials and back substitution cost
O(NT ); generating the reduced system costsO(NT 2); solving the
reduced system costs O(M3). Here we reduce each of N, M, T .

3.1 Fewer (but multi-scale) map points

PTAM on the PC derives its tracking robustness in part from the use
of a large number of point measurements per frame. To generate
such a number of points, every possible landmark is inserted into
the map: For each of four image pyramid levels, every detected
FAST [11] corner which can be triangulated is added. This can be
wasteful, as a single physical point may have map duplicates at a
number of scales. We use a different approach here, and require
that features be corners across multiple scale levels.

Images from the iPhone are received at a resolution of 240×320
pixels, from which five pyramid levels (up to L4 at 15×20 pixels)
are generated. We require that new features be valid Shi-Tomasi
(ST) corners [12] in at least all of L0,L1,L2. This requirement al-
lows efficient corner extraction, since exhaustive ST-corner extrac-
tion is only required in the (relatively small) L2 image. Each maxi-
mal corner is projected down to the L1 image, where the immediate
local neighborhood is searched for the best ST score. This search
proceeds by iterative ascent, with the best pixel in a 3×3 window
becoming the next window center, until a maximum is found or
three iterations are exceeded. If a good corner is found at L1, the
same procedure is repeated in the L0 image, and the L0 position is
used as the position of the detected corner.

3.2 Measurement culling

For the map sizes encountered by PTAM, the O(NT 2) outer prod-
uct cost often dominates bundle adjustment. When running on a
PC, operating with large T (measurements per map point) is ac-
ceptable; in fact, the background thread actively seeks to increase
the density of measurements by re-searching for every map point in
every keyframe. On the iPhone we take the opposite approach. Not
only do we omit the map-densification steps, we actively reduce
the number of measurements taken of each point, keeping only the
most useful measurements of that point.

For a point p, bundle adjustment builds the information matrix
V (we adopt the notation of [5], Appendix 6.6):

V =
X

j
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X

j
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T
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where Bj is the point’s 2×3 projection Jacobian (w.r.t. point posi-
tion) in the jth keyframe, with corresponding measurement noise
Σ−1

j and wj is the weight returned by the Tukey M-Estimator.

The determinant |V | is a metric corresponding to the amount of
information constraining the position of the point (given known
camera poses). We consider for each keyframe the metric mj =
|V |−|V −Vj |: This corresponds to information which would be lost
were this keyframe’s measurement removed. A low value indicates
a measurement which is redundant: Either the point is viewed from
an angle from which it is already well observed, or measurement
noise is high, or the measurement may be classed an outlier. When-
ever a point is observed simultaneously by more than 8 keyframes,
we discard all measurements beyond the 8th most useful.

3.3 Keyframe culling

On the iPhone, the O(M3) cost of solving the reduced camera sys-
tem rapidly becomes prohibitive to the point that bundle adjustment
does not converge: The number of keyframes in bundle adjustment
must be kept low. Unfortunately, the narrow field-of-view of the
iPhone’s camera, coupled with a portrait form factor which reduces
horizontal FOV even further, mandates the use of many keyframes
when exploring (so that new features are initialised before old ones
go out of view). While we cannot avoid adding keyframes to the
map densely, we can instead eliminate keyframes later on.

Once the number of keyframes in the map exceeds a thresh-
old (M>35 on the iPhone), the bundle adjustment thread attempts
to find redundant keyframes to erase. This might be a keyframe
which observes some portion of the map which is already well-
constrained by some other keyframes which provide a better base-
line. Keyframes are ranked by a voting system, whereby map points
vote for keyframes they consider useful. If a keyframe j is one of
only two which observe a map point, it receives a utility score of
uj = 0.5 from that point. If more than two keyframes observe a
point, a point’s score contribution to each keyframe depends on the
keyframe’s rank according to the information metric mj above:

uj =
ô − (rank(j) − 1)

Pô

i=1
i

, ô = min(o, 4)

where o is the number of keyframes which observe the point. The
keyframes with the lowest sum utility score (which must also be
lower than a fixed threshold) are erased. 1

4 TRACKING

The iPhone’s combination of narrow field-of-view and low frame-
rate (with exposure times approaching 60ms) results in blurry im-
ages as soon as the device is moved at any speed. This is somewhat
mitigated by the fact that the screen is also on the device, so the user
will generally move it gently to be able to see the screen— but even
so, motion blur is a frequent occurrence and must be addressed.

Our previous work on the PC [7] proposed two methods for
tracking blurred frames: the addition of edges to the map, and full-
frame rotation estimation. Edges are more blur-resistant than point
features, but the computational cost of adding them to the map is
prohibitive on the iPhone. On the other hand full-frame rotation es-
timation, which aligns successive video frames by direct 3-DOF ef-
ficient second-order (ESM [2]) alignment on the coarsest (15×20-
pixel) pyramid level, is very fast and we use this method here. This
effectively acts as a gyroscope, which the iPhone physically lacks.

PTAM on the PC tracks point features in two stages: Initially,
large features are found in coarse levels of the image pyramid; after
a pose update calculated from these, more features are searched
in lower (finer) levels of the image pyramid, with a tighter search
radius. Additionally, feature searches are performed only around
FAST corners. This strategy allows a large number (∼1000) of
features to be measured, ensuring accurate tracking.

On the iPhone—where the map contains far fewer features, blur
is a constant problem, and CPU bandwidth is limited — this does
not work. Here we cannot rely on corner responses, and the FAST
detector is not used. We omit the fine tracking stage altogether:
Feature point searches are performed in the L1 (120×160) im-
age, by exhaustive evaluation of a 4-pixel-radius circle using zero-
normalised SSD against an 8×8 template. To compensate the loss
of measurement precision at this coarse resolution, each match is

1Erased keyframes are retained in memory, and their positions occasion-

ally updated to track changes in the map, for three purposes: First to provide

pixels for point features created in them; second to prevent new keyframes

being created in the exact same position; and third for relocalisation with

the keyframe-based method of [7].



subpixel-refined by 2-DOF ESM alignment. This strategy is made
possible by the multi-scale corner detection described in §3.1: In-
stead of always sourcing template pixels from the same pyramid
levels and varying the search level (as in [6]), here we can fix search
level and vary the source level (as in [17]) to compensate changes in
scale as the camera moves, and still be assured a trackable template.

When the camera is rotating quickly even the L1 image becomes
too blurred. When this is predicted by the full-frame initialiser,
searches are performed only in the L2 image, and the error thresh-
old for a successful template match is reduced. This strategy allows
the system to track moderately fast rotations, but frames tracked in
this way are inaccurate, and never used as keyframes.

5 INITIALISATION

5.1 Simplified stereo initialisation from a planar scene

PTAM on the PC must be bootstrapped by the provision of an ini-
tial stereo pair, along with point correspondences, from which an
initial map is generated either using five-point-pose [13] or, in later
versions of the system, a homography decomposition [4]. We have
since found that requiring users to provide two initial keyframes is
problematic, as some will not understand stereo baseline require-
ment and attempt to initialise the system using pure rotation. A
single-click procedure whereby the user needs only provide the first
keyframe would be preferable. Further, [6]’s stereo initialisation is
fragile in that it requires long uninterrupted feature tracks (difficult
with the iPhone’s camera); it has a RANSAC stage for choosing a
best-fit homography (slow on the iPhone); and it sometimes fails to
disambiguate between two possible plane/motion hypotheses, re-
sulting in an incorrect initialisation (the iPhone’s narrow field-of-
view exacerbates this effect, as it sees fewer disambiguating points).

Here we propose a more robust, two-stage initialisation method.
We retain the assumption that the user is initially viewing a planar
scene (this will form the ground-plane for future augmentations).
In the first stage, the user presses the screen to initialise the first
keyframe; corners are extracted from this, un-projected to the z =
1-plane and added to the map as features.

In subsequent frames, the user moves the camera, and the map
points are tracked in a procedure similar to §4 — but instead of
tracking a 3-DOF camera pose (R, t)∈SE(3), points are projected
into the viewing frustum by a homography H∈SL(3), which is up-
dated from each frame’s measurements. The use of a homography
to project points allows robust tracking by the use of patch warping
and full-frame rotation estimation, and eliminates the need for in-
dividually continuous feature tracks. A robust M-estimator reduces
the effect of out-of-plane points on this estimation.

During every frame of this first stage, H is decomposed into
(usually two) hypotheses for 3D camera pose (R, t) and plane nor-
mal n̂ as per [4]. Initially, when the camera is very close to its
start pose, n̂ is poorly constrained as any plane normal would sat-
isfy the projection constraints. The map is therefore tracked by H
until the camera has moved far enough to constrain the decompo-
sition well. We use the condition number (the ratio of minimum to
maximum eigenvalues) of the information matrix JT J as a quality
metric, where J is the Jacobian matrix of partial derivatives of each
point’s projection with respect to 8-DOF changes to the decompo-
sition (3+3+2 DOF respectively for changes to R, t and n̂). This
metric considers not only the value of H but also the image distri-
bution and noise of the feature measurement on which it is based.2

Once the decomposition(s) has been suitably constrained, a two-
fold ambiguity often remains. If this is the case, a separate 3D
map is generated for each hypothesis or (R, t), with point positions
found by triangulation. In the second stage, the tracker tracks a sep-
arate SE(3) camera pose estimate for both 3Dmaps at every frame,

2We note that an H-only metric is used successfully in [17] for initialis-

ing a per-patch plane orientation EKF.

until the objective function (the robustified sum-squared reprojec-
tion error) for one case is twice as large as the other: At this point,
the hypothesis with the larger error is eliminated, and a single 3D
map remains. This now has two (or three, if disambiguation was
necessary) keyframes on which bundle adjustment is performed to
complete the initial map.

5.2 Adding points to the map

One of the advantages of the above method on the iPhone is that
it spreads computing effort over multiple frames: Instead of a sin-
gle expensive RANSAC homography fit at the moment the second
view is added, the homography is updated incrementally over the
intermediate frames. A similar strategy can also be applied to the
insertion of new points to the map. We replace the epipolar search
of [6] (which delays the appearance of new points on the iPhone)
with the concept of partially initialised points which is common in
incremental monocular SLAM.

Whenever a keyframe is added to the map, corner detection as
described in §3.1 is performed, and up to 25 detected corners which
are sufficiently far away from existing features are added to the
map. The position of each new point (in the coordinates of the
new keyframe K) is

pK =
1

q

`

x y 1
´T

, q ∼ N(q̂, σ)

where x, y are the un-projected corner coordinates. The inverse
depth estimate q̂ is initially set to the observed scene’s mean inverse
depth and assigned an initial uncertainty σ = ∞.

In subsequent frames, once the tracker has determined camera
pose, partially initialised features are projected into the image us-
ing their inverse depth estimate q̂, and the L1-image is searched for
the feature. For any successful measurement, the reprojection er-
ror along the epipolar line is used to update q̂ and σ by the use of
an extended information filter. We consider q̂ to be the only free
variable, with cameras and x, y assumed perfectly known.

When any subsequent keyframe is added, all partially initialised
points are projected into the image. Any point successfully mea-
sured is re-triangulated against the original keyframe and imme-
diately inserted into the map with standard Cartesian coordinates.
This means that in contrast to most MonoSLAM systems (such as
[9], which this approach resembles) the inverse-depth information
filter is used purely for data association: Any information gathered
from the intermediate frames is discarded once a second keyframe
observes the point — as is any bias introduced by the false assump-
tions of independence and perfect camera poses, which make the
method computationally cheap.

6 ROLLING SHUTTER COMPENSATION

The iPhone uses a rolling shutter to the effect that the left edge
of the video image records the scene ∼60ms after the right edge.
This unfortunate byproduct of the CMOS sensor introduces bias
into almost every step of a SLAM system (where, typically, the
assumption of a global shutter is made). While some authors have
demonstrated that a rolling shutter can be exploited to directly mea-
sure velocity from a single image [1], this was done in the context
of fast high-res cameras, small accelerations, and known models;
here, we merely aim to reduce the negative impact of the rolling
shutter on map accuracy. This is done by applying a rolling shutter
correction to all image measurements used in bundle adjustment.

Each keyframe has a list of 2D image measurements m =
(u v)T . We store also a list of measurements made in the preceding
and following video frames, from which a set 2D image velocities
ṁ = (u̇ v̇)T can be derived by assuming constant image velocity.
These velocities are noisy and incomplete (as some points may not
be measured in all three successive frames) so they are not used di-
rectly as corrections; instead, the instantaneous camera velocity µ̇



during the keyframe is estimated as the least-squares solution of
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where Ji is the 2×6 image projection Jacobian of the ith point with
respect to keyframe camera pose. The estimated camera velocity
is then used to generate the corrected point measurements m̂i =
mi − Jiµ̇δti, where δti = f(ui) is the time offset (relative to the
center of the image) at which image column ui was imaged.

The above method is crude in that it uses a constant veloc-
ity model and keeps velocity estimation outside of bundle adjust-
ment — however it is only intended to provide a rough, first-
order correction of measurements, and any more advanced tech-
nique would carry a substantially higher computational cost. As
the map changes, measurements are occasionally re-corrected, but
this is done at a far lower frequency than bundle adjustment.

7 RESULTS AND LIMITATIONS

Video results (also shown in Figure 1) of the system described
above are included as an attachment, and demonstrate PTAM on the
iPhone generating, tracking, and augmenting small maps in both in-
door and outdoor settings. The system is mostly able to cope with
the difficult images received (especially indoors).

A typical video frame is processed in 30ms. 5ms are required
for BGRA-to-Y conversion and image pyramid generation; 1.5ms
for rotation estimation; 17.5ms to warp and search for 50 point fea-
tures; 2.5ms to calculate a pose update; and 3.5ms to find and up-
date 12 partially initialised features. The remaining 36ms per frame
are used for image capture, rendering overheads and bundle adjust-
ment. Corner detection requires 10ms when a keyframe is added.

A single iteration of bundle adjustment with 35 keyframes and a
map of 300 points completes after approximately 750ms — how-
ever the number of iterations required for convergence varies from
a few to dozens. The culling procedure outlined in §3 requires circa
50ms to decide which measurements and keyframes to erase, but
is successful in keeping the cost of bundle adjustment in check. It
is possible for this method to erase a keyframe such that the map
is split in half and corrupted — but this is rare, and has only been
observed when actively trying to map too-large areas.

In our tests, rolling shutter compensation consistently reduces
the total objective function (robustified sum of squared reprojection
errors) of bundle adjustment. Error can be reduced by as much as
50% when observing test patterns such as checkerboards, but in
more general scenes a reduction by 10% to 20% is the norm.

In a direct subjective comparison to PTAM on the PC with a
wide-angle camera, the phone-based system is far less accurate and
robust. Pose jitter for identically placed stationary cameras is a
factor of 30 higher on the phone. The difference in speed at which
a map can be expanded is also notable; the system will refuse to
insert new keyframes if camera pose is poorly constrained, which
happens frequently with the sparser maps generated on the phone.
Finally, the system here requires scenes with substantial quantities
of texture which satisfies the multi-scale corner detector, whereas
PTAM on the PC is more flexible in this regard.

8 CONCLUSIONS AND FURTHER WORK

This paper has demonstrated that keyframe-based SLAM can op-
erate on mobile phones. Although the accuracy and scope of the
system may be limited compared to what is possible on a PC, the
iPhone is nevertheless able to generate and augment small maps in
real time and at full frame-rate. Tracking will likely become more
accurate on future phones with faster CPUs and 30Hz cameras —
we may hope that wider fields-of-view become available too.

A number of interesting avenues for further research have
emerged in the course of this work. Here information is discarded to
keep bundle adjustment computationally manageable — but there
are many alternatives to this. One would be to simply declare the
map full and stop adding new information; another would be to
marginalize parameters out of the estimation, or declare some map
points well enough constrained that they can be regarded as fixed.
Perhaps a work-flow by which the user initially maps out a work-
space and then locks the map for tracking would be acceptable.

Finally, this work has discussed the iPhone’s limitations vis-à-vis
the PC, but has not attempted to exploit its extra capabilities. The
iPhone’s camera can take high-resolution stills, the phone contains
an accelerometer and a GPS receiver, and future devices will con-
tain magnetic compasses and gyroscopes. These extra capabilities
could surely be used to benefit visual tracking and AR.
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